2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "glsl_symbol_table.h"
26 #include "glsl_types.h"
28 #include "main/core.h" /* for MIN2 */
31 convert_component(ir_rvalue
*src
, const glsl_type
*desired_type
);
34 apply_implicit_conversion(const glsl_type
*to
, ir_rvalue
* &from
,
35 struct _mesa_glsl_parse_state
*state
);
38 process_parameters(exec_list
*instructions
, exec_list
*actual_parameters
,
39 exec_list
*parameters
,
40 struct _mesa_glsl_parse_state
*state
)
44 foreach_list (n
, parameters
) {
45 ast_node
*const ast
= exec_node_data(ast_node
, n
, link
);
46 ir_rvalue
*result
= ast
->hir(instructions
, state
);
48 ir_constant
*const constant
= result
->constant_expression_value();
52 actual_parameters
->push_tail(result
);
61 * Generate a source prototype for a function signature
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters Parameter list for the function. This may be either a
66 * formal or actual parameter list. Only the type is used.
69 * A talloced string representing the prototype of the function.
72 prototype_string(const glsl_type
*return_type
, const char *name
,
73 exec_list
*parameters
)
77 if (return_type
!= NULL
)
78 str
= talloc_asprintf(str
, "%s ", return_type
->name
);
80 str
= talloc_asprintf_append(str
, "%s(", name
);
82 const char *comma
= "";
83 foreach_list(node
, parameters
) {
84 const ir_instruction
*const param
= (ir_instruction
*) node
;
86 str
= talloc_asprintf_append(str
, "%s%s", comma
, param
->type
->name
);
90 str
= talloc_strdup_append(str
, ")");
96 process_call(exec_list
*instructions
, ir_function
*f
,
97 YYLTYPE
*loc
, exec_list
*actual_parameters
,
98 struct _mesa_glsl_parse_state
*state
)
102 ir_function_signature
*sig
= f
->matching_signature(actual_parameters
);
104 /* The instructions param will be used when the FINISHMEs below are done */
108 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
109 * isn't done in ir_function::matching_signature because that function
110 * cannot generate the necessary diagnostics.
112 exec_list_iterator actual_iter
= actual_parameters
->iterator();
113 exec_list_iterator formal_iter
= sig
->parameters
.iterator();
115 while (actual_iter
.has_next()) {
116 ir_rvalue
*actual
= (ir_rvalue
*) actual_iter
.get();
117 ir_variable
*formal
= (ir_variable
*) formal_iter
.get();
119 assert(actual
!= NULL
);
120 assert(formal
!= NULL
);
122 if ((formal
->mode
== ir_var_out
)
123 || (formal
->mode
== ir_var_inout
)) {
124 if (! actual
->is_lvalue()) {
125 /* FINISHME: Log a better diagnostic here. There is no way
126 * FINISHME: to tell the user which parameter is invalid.
128 _mesa_glsl_error(loc
, state
, "`%s' parameter is not lvalue",
129 (formal
->mode
== ir_var_out
) ? "out" : "inout");
133 if (formal
->type
->is_numeric() || formal
->type
->is_boolean()) {
134 ir_rvalue
*converted
= convert_component(actual
, formal
->type
);
135 actual
->replace_with(converted
);
142 /* Always insert the call in the instruction stream, and return a deref
143 * of its return val if it returns a value, since we don't know if
144 * the rvalue is going to be assigned to anything or not.
146 ir_call
*call
= new(ctx
) ir_call(sig
, actual_parameters
);
147 if (!sig
->return_type
->is_void()) {
149 ir_dereference_variable
*deref
;
151 var
= new(ctx
) ir_variable(sig
->return_type
,
152 talloc_asprintf(ctx
, "%s_retval",
153 sig
->function_name()),
155 instructions
->push_tail(var
);
157 deref
= new(ctx
) ir_dereference_variable(var
);
158 ir_assignment
*assign
= new(ctx
) ir_assignment(deref
, call
, NULL
);
159 instructions
->push_tail(assign
);
160 if (state
->language_version
>= 120)
161 var
->constant_value
= call
->constant_expression_value();
163 deref
= new(ctx
) ir_dereference_variable(var
);
166 instructions
->push_tail(call
);
170 char *str
= prototype_string(NULL
, f
->name
, actual_parameters
);
172 _mesa_glsl_error(loc
, state
, "no matching function for call to `%s'",
176 const char *prefix
= "candidates are: ";
177 foreach_list (node
, &f
->signatures
) {
178 ir_function_signature
*sig
= (ir_function_signature
*) node
;
180 str
= prototype_string(sig
->return_type
, f
->name
, &sig
->parameters
);
181 _mesa_glsl_error(loc
, state
, "%s%s\n", prefix
, str
);
187 return ir_call::get_error_instruction(ctx
);
193 match_function_by_name(exec_list
*instructions
, const char *name
,
194 YYLTYPE
*loc
, exec_list
*actual_parameters
,
195 struct _mesa_glsl_parse_state
*state
)
198 ir_function
*f
= state
->symbols
->get_function(name
);
201 _mesa_glsl_error(loc
, state
, "function `%s' undeclared", name
);
202 return ir_call::get_error_instruction(ctx
);
205 /* Once we've determined that the function being called might exist, try
206 * to find an overload of the function that matches the parameters.
208 return process_call(instructions
, f
, loc
, actual_parameters
, state
);
213 * Perform automatic type conversion of constructor parameters
215 * This implements the rules in the "Conversion and Scalar Constructors"
216 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
219 convert_component(ir_rvalue
*src
, const glsl_type
*desired_type
)
221 void *ctx
= talloc_parent(src
);
222 const unsigned a
= desired_type
->base_type
;
223 const unsigned b
= src
->type
->base_type
;
224 ir_expression
*result
= NULL
;
226 if (src
->type
->is_error())
229 assert(a
<= GLSL_TYPE_BOOL
);
230 assert(b
<= GLSL_TYPE_BOOL
);
232 if ((a
== b
) || (src
->type
->is_integer() && desired_type
->is_integer()))
238 if (b
== GLSL_TYPE_FLOAT
)
239 result
= new(ctx
) ir_expression(ir_unop_f2i
, desired_type
, src
, NULL
);
241 assert(b
== GLSL_TYPE_BOOL
);
242 result
= new(ctx
) ir_expression(ir_unop_b2i
, desired_type
, src
, NULL
);
245 case GLSL_TYPE_FLOAT
:
248 result
= new(ctx
) ir_expression(ir_unop_u2f
, desired_type
, src
, NULL
);
251 result
= new(ctx
) ir_expression(ir_unop_i2f
, desired_type
, src
, NULL
);
254 result
= new(ctx
) ir_expression(ir_unop_b2f
, desired_type
, src
, NULL
);
262 result
= new(ctx
) ir_expression(ir_unop_i2b
, desired_type
, src
, NULL
);
264 case GLSL_TYPE_FLOAT
:
265 result
= new(ctx
) ir_expression(ir_unop_f2b
, desired_type
, src
, NULL
);
271 assert(result
!= NULL
);
273 /* Try constant folding; it may fold in the conversion we just added. */
274 ir_constant
*const constant
= result
->constant_expression_value();
275 return (constant
!= NULL
) ? (ir_rvalue
*) constant
: (ir_rvalue
*) result
;
279 * Dereference a specific component from a scalar, vector, or matrix
282 dereference_component(ir_rvalue
*src
, unsigned component
)
284 void *ctx
= talloc_parent(src
);
285 assert(component
< src
->type
->components());
287 /* If the source is a constant, just create a new constant instead of a
288 * dereference of the existing constant.
290 ir_constant
*constant
= src
->as_constant();
292 return new(ctx
) ir_constant(constant
, component
);
294 if (src
->type
->is_scalar()) {
296 } else if (src
->type
->is_vector()) {
297 return new(ctx
) ir_swizzle(src
, component
, 0, 0, 0, 1);
299 assert(src
->type
->is_matrix());
301 /* Dereference a row of the matrix, then call this function again to get
302 * a specific element from that row.
304 const int c
= component
/ src
->type
->column_type()->vector_elements
;
305 const int r
= component
% src
->type
->column_type()->vector_elements
;
306 ir_constant
*const col_index
= new(ctx
) ir_constant(c
);
307 ir_dereference
*const col
= new(ctx
) ir_dereference_array(src
, col_index
);
309 col
->type
= src
->type
->column_type();
311 return dereference_component(col
, r
);
314 assert(!"Should not get here.");
320 process_array_constructor(exec_list
*instructions
,
321 const glsl_type
*constructor_type
,
322 YYLTYPE
*loc
, exec_list
*parameters
,
323 struct _mesa_glsl_parse_state
*state
)
326 /* Array constructors come in two forms: sized and unsized. Sized array
327 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
328 * variables. In this case the number of parameters must exactly match the
329 * specified size of the array.
331 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
332 * are vec4 variables. In this case the size of the array being constructed
333 * is determined by the number of parameters.
335 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
337 * "There must be exactly the same number of arguments as the size of
338 * the array being constructed. If no size is present in the
339 * constructor, then the array is explicitly sized to the number of
340 * arguments provided. The arguments are assigned in order, starting at
341 * element 0, to the elements of the constructed array. Each argument
342 * must be the same type as the element type of the array, or be a type
343 * that can be converted to the element type of the array according to
344 * Section 4.1.10 "Implicit Conversions.""
346 exec_list actual_parameters
;
347 const unsigned parameter_count
=
348 process_parameters(instructions
, &actual_parameters
, parameters
, state
);
350 if ((parameter_count
== 0)
351 || ((constructor_type
->length
!= 0)
352 && (constructor_type
->length
!= parameter_count
))) {
353 const unsigned min_param
= (constructor_type
->length
== 0)
354 ? 1 : constructor_type
->length
;
356 _mesa_glsl_error(loc
, state
, "array constructor must have %s %u "
358 (constructor_type
->length
!= 0) ? "at least" : "exactly",
359 min_param
, (min_param
<= 1) ? "" : "s");
360 return ir_call::get_error_instruction(ctx
);
363 if (constructor_type
->length
== 0) {
365 glsl_type::get_array_instance(constructor_type
->element_type(),
367 assert(constructor_type
!= NULL
);
368 assert(constructor_type
->length
== parameter_count
);
371 bool all_parameters_are_constant
= true;
373 /* Type cast each parameter and, if possible, fold constants. */
374 foreach_list_safe(n
, &actual_parameters
) {
375 ir_rvalue
*ir
= (ir_rvalue
*) n
;
376 ir_rvalue
*result
= ir
;
378 /* Apply implicit conversions (not the scalar constructor rules!) */
379 if (constructor_type
->element_type()->is_float()) {
380 const glsl_type
*desired_type
=
381 glsl_type::get_instance(GLSL_TYPE_FLOAT
,
382 ir
->type
->vector_elements
,
383 ir
->type
->matrix_columns
);
384 result
= convert_component(ir
, desired_type
);
387 if (result
->type
!= constructor_type
->element_type()) {
388 _mesa_glsl_error(loc
, state
, "type error in array constructor: "
389 "expected: %s, found %s",
390 constructor_type
->element_type()->name
,
394 /* Attempt to convert the parameter to a constant valued expression.
395 * After doing so, track whether or not all the parameters to the
396 * constructor are trivially constant valued expressions.
398 ir_rvalue
*const constant
= result
->constant_expression_value();
400 if (constant
!= NULL
)
403 all_parameters_are_constant
= false;
405 ir
->replace_with(result
);
408 if (all_parameters_are_constant
)
409 return new(ctx
) ir_constant(constructor_type
, &actual_parameters
);
411 ir_variable
*var
= new(ctx
) ir_variable(constructor_type
, "array_ctor",
413 instructions
->push_tail(var
);
416 foreach_list(node
, &actual_parameters
) {
417 ir_rvalue
*rhs
= (ir_rvalue
*) node
;
418 ir_rvalue
*lhs
= new(ctx
) ir_dereference_array(var
,
419 new(ctx
) ir_constant(i
));
421 ir_instruction
*assignment
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
);
422 instructions
->push_tail(assignment
);
427 return new(ctx
) ir_dereference_variable(var
);
432 * Try to convert a record constructor to a constant expression
435 constant_record_constructor(const glsl_type
*constructor_type
,
436 exec_list
*parameters
, void *mem_ctx
)
438 foreach_list(node
, parameters
) {
439 ir_constant
*constant
= ((ir_instruction
*) node
)->as_constant();
440 if (constant
== NULL
)
442 node
->replace_with(constant
);
445 return new(mem_ctx
) ir_constant(constructor_type
, parameters
);
450 * Determine if a list consists of a single scalar r-value
453 single_scalar_parameter(exec_list
*parameters
)
455 const ir_rvalue
*const p
= (ir_rvalue
*) parameters
->head
;
456 assert(((ir_rvalue
*)p
)->as_rvalue() != NULL
);
458 return (p
->type
->is_scalar() && p
->next
->is_tail_sentinel());
463 * Generate inline code for a vector constructor
465 * The generated constructor code will consist of a temporary variable
466 * declaration of the same type as the constructor. A sequence of assignments
467 * from constructor parameters to the temporary will follow.
470 * An \c ir_dereference_variable of the temprorary generated in the constructor
474 emit_inline_vector_constructor(const glsl_type
*type
,
475 exec_list
*instructions
,
476 exec_list
*parameters
,
479 assert(!parameters
->is_empty());
481 ir_variable
*var
= new(ctx
) ir_variable(type
, "vec_ctor", ir_var_temporary
);
482 instructions
->push_tail(var
);
484 /* There are two kinds of vector constructors.
486 * - Construct a vector from a single scalar by replicating that scalar to
487 * all components of the vector.
489 * - Construct a vector from an arbirary combination of vectors and
490 * scalars. The components of the constructor parameters are assigned
491 * to the vector in order until the vector is full.
493 const unsigned lhs_components
= type
->components();
494 if (single_scalar_parameter(parameters
)) {
495 ir_rvalue
*first_param
= (ir_rvalue
*)parameters
->head
;
496 ir_rvalue
*rhs
= new(ctx
) ir_swizzle(first_param
, 0, 0, 0, 0,
498 ir_dereference_variable
*lhs
= new(ctx
) ir_dereference_variable(var
);
499 const unsigned mask
= (1U << lhs_components
) - 1;
501 assert(rhs
->type
== lhs
->type
);
503 ir_instruction
*inst
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
, mask
);
504 instructions
->push_tail(inst
);
506 unsigned base_component
= 0;
507 ir_constant_data data
;
508 unsigned constant_mask
= 0;
510 memset(&data
, 0, sizeof(data
));
512 foreach_list(node
, parameters
) {
513 ir_rvalue
*param
= (ir_rvalue
*) node
;
514 unsigned rhs_components
= param
->type
->components();
516 /* Do not try to assign more components to the vector than it has!
518 if ((rhs_components
+ base_component
) > lhs_components
) {
519 rhs_components
= lhs_components
- base_component
;
522 const ir_constant
*const c
= param
->as_constant();
524 for (unsigned i
= 0; i
< rhs_components
; i
++) {
525 switch (c
->type
->base_type
) {
527 data
.u
[i
+ base_component
] = c
->get_uint_component(i
);
530 data
.i
[i
+ base_component
] = c
->get_int_component(i
);
532 case GLSL_TYPE_FLOAT
:
533 data
.f
[i
+ base_component
] = c
->get_float_component(i
);
536 data
.b
[i
+ base_component
] = c
->get_bool_component(i
);
539 assert(!"Should not get here.");
544 /* Mask of fields to be written in the assignment.
546 constant_mask
|= ((1U << rhs_components
) - 1) << base_component
;
549 /* Advance the component index by the number of components that were
552 base_component
+= rhs_components
;
555 if (constant_mask
!= 0) {
556 ir_dereference
*lhs
= new(ctx
) ir_dereference_variable(var
);
557 ir_rvalue
*rhs
= new(ctx
) ir_constant(var
->type
, &data
);
559 ir_instruction
*inst
=
560 new(ctx
) ir_assignment(lhs
, rhs
, NULL
, constant_mask
);
561 instructions
->push_tail(inst
);
565 foreach_list(node
, parameters
) {
566 ir_rvalue
*param
= (ir_rvalue
*) node
;
567 unsigned rhs_components
= param
->type
->components();
569 /* Do not try to assign more components to the vector than it has!
571 if ((rhs_components
+ base_component
) > lhs_components
) {
572 rhs_components
= lhs_components
- base_component
;
575 const ir_constant
*const c
= param
->as_constant();
577 /* Generate a swizzle that puts the first element of the source at
578 * the location of the first element of the destination.
580 unsigned swiz
[4] = { 0, 0, 0, 0 };
581 for (unsigned i
= 0; i
< rhs_components
; i
++)
582 swiz
[i
+ base_component
] = i
;
584 /* Mask of fields to be written in the assignment.
586 const unsigned write_mask
= ((1U << rhs_components
) - 1)
589 ir_dereference
*lhs
= new(ctx
) ir_dereference_variable(var
);
590 ir_rvalue
*rhs
= new(ctx
) ir_swizzle(param
, swiz
, lhs_components
);
592 ir_instruction
*inst
=
593 new(ctx
) ir_assignment(lhs
, rhs
, NULL
, write_mask
);
594 instructions
->push_tail(inst
);
597 /* Advance the component index by the number of components that were
600 base_component
+= rhs_components
;
603 return new(ctx
) ir_dereference_variable(var
);
608 * Generate assignment of a portion of a vector to a portion of a matrix column
610 * \param src_base First component of the source to be used in assignment
611 * \param column Column of destination to be assiged
612 * \param row_base First component of the destination column to be assigned
613 * \param count Number of components to be assigned
616 * \c src_base + \c count must be less than or equal to the number of components
617 * in the source vector.
620 assign_to_matrix_column(ir_variable
*var
, unsigned column
, unsigned row_base
,
621 ir_rvalue
*src
, unsigned src_base
, unsigned count
,
624 ir_constant
*col_idx
= new(mem_ctx
) ir_constant(column
);
625 ir_dereference
*column_ref
= new(mem_ctx
) ir_dereference_array(var
, col_idx
);
627 assert(column_ref
->type
->components() >= (row_base
+ count
));
628 assert(src
->type
->components() >= (src_base
+ count
));
630 /* Generate a swizzle that puts the first element of the source at the
631 * location of the first element of the destination.
633 unsigned swiz
[4] = { src_base
, src_base
, src_base
, src_base
};
634 for (unsigned i
= 0; i
< count
; i
++)
635 swiz
[i
+ row_base
] = src_base
+ i
;
637 ir_rvalue
*const rhs
=
638 new(mem_ctx
) ir_swizzle(src
, swiz
, column_ref
->type
->components());
640 /* Mask of fields to be written in the assignment.
642 const unsigned write_mask
= ((1U << count
) - 1) << row_base
;
644 return new(mem_ctx
) ir_assignment(column_ref
, rhs
, NULL
, write_mask
);
649 * Generate inline code for a matrix constructor
651 * The generated constructor code will consist of a temporary variable
652 * declaration of the same type as the constructor. A sequence of assignments
653 * from constructor parameters to the temporary will follow.
656 * An \c ir_dereference_variable of the temprorary generated in the constructor
660 emit_inline_matrix_constructor(const glsl_type
*type
,
661 exec_list
*instructions
,
662 exec_list
*parameters
,
665 assert(!parameters
->is_empty());
667 ir_variable
*var
= new(ctx
) ir_variable(type
, "mat_ctor", ir_var_temporary
);
668 instructions
->push_tail(var
);
670 /* There are three kinds of matrix constructors.
672 * - Construct a matrix from a single scalar by replicating that scalar to
673 * along the diagonal of the matrix and setting all other components to
676 * - Construct a matrix from an arbirary combination of vectors and
677 * scalars. The components of the constructor parameters are assigned
678 * to the matrix in colum-major order until the matrix is full.
680 * - Construct a matrix from a single matrix. The source matrix is copied
681 * to the upper left portion of the constructed matrix, and the remaining
682 * elements take values from the identity matrix.
684 ir_rvalue
*const first_param
= (ir_rvalue
*) parameters
->head
;
685 if (single_scalar_parameter(parameters
)) {
686 /* Assign the scalar to the X component of a vec4, and fill the remaining
687 * components with zero.
689 ir_variable
*rhs_var
=
690 new(ctx
) ir_variable(glsl_type::vec4_type
, "mat_ctor_vec",
692 instructions
->push_tail(rhs_var
);
694 ir_constant_data zero
;
700 ir_instruction
*inst
=
701 new(ctx
) ir_assignment(new(ctx
) ir_dereference_variable(rhs_var
),
702 new(ctx
) ir_constant(rhs_var
->type
, &zero
),
704 instructions
->push_tail(inst
);
706 ir_dereference
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
708 inst
= new(ctx
) ir_assignment(rhs_ref
, first_param
, NULL
, 0x01);
709 instructions
->push_tail(inst
);
711 /* Assign the temporary vector to each column of the destination matrix
712 * with a swizzle that puts the X component on the diagonal of the
713 * matrix. In some cases this may mean that the X component does not
714 * get assigned into the column at all (i.e., when the matrix has more
715 * columns than rows).
717 static const unsigned rhs_swiz
[4][4] = {
724 const unsigned cols_to_init
= MIN2(type
->matrix_columns
,
725 type
->vector_elements
);
726 for (unsigned i
= 0; i
< cols_to_init
; i
++) {
727 ir_constant
*const col_idx
= new(ctx
) ir_constant(i
);
728 ir_rvalue
*const col_ref
= new(ctx
) ir_dereference_array(var
, col_idx
);
730 ir_rvalue
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
731 ir_rvalue
*const rhs
= new(ctx
) ir_swizzle(rhs_ref
, rhs_swiz
[i
],
732 type
->vector_elements
);
734 inst
= new(ctx
) ir_assignment(col_ref
, rhs
, NULL
);
735 instructions
->push_tail(inst
);
738 for (unsigned i
= cols_to_init
; i
< type
->matrix_columns
; i
++) {
739 ir_constant
*const col_idx
= new(ctx
) ir_constant(i
);
740 ir_rvalue
*const col_ref
= new(ctx
) ir_dereference_array(var
, col_idx
);
742 ir_rvalue
*const rhs_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
743 ir_rvalue
*const rhs
= new(ctx
) ir_swizzle(rhs_ref
, 1, 1, 1, 1,
744 type
->vector_elements
);
746 inst
= new(ctx
) ir_assignment(col_ref
, rhs
, NULL
);
747 instructions
->push_tail(inst
);
749 } else if (first_param
->type
->is_matrix()) {
750 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
752 * "If a matrix is constructed from a matrix, then each component
753 * (column i, row j) in the result that has a corresponding
754 * component (column i, row j) in the argument will be initialized
755 * from there. All other components will be initialized to the
756 * identity matrix. If a matrix argument is given to a matrix
757 * constructor, it is an error to have any other arguments."
759 assert(first_param
->next
->is_tail_sentinel());
760 ir_rvalue
*const src_matrix
= first_param
;
762 /* If the source matrix is smaller, pre-initialize the relavent parts of
763 * the destination matrix to the identity matrix.
765 if ((src_matrix
->type
->matrix_columns
< var
->type
->matrix_columns
)
766 || (src_matrix
->type
->vector_elements
< var
->type
->vector_elements
)) {
768 /* If the source matrix has fewer rows, every column of the destination
769 * must be initialized. Otherwise only the columns in the destination
770 * that do not exist in the source must be initialized.
773 (src_matrix
->type
->vector_elements
< var
->type
->vector_elements
)
774 ? 0 : src_matrix
->type
->matrix_columns
;
776 const glsl_type
*const col_type
= var
->type
->column_type();
777 for (/* empty */; col
< var
->type
->matrix_columns
; col
++) {
778 ir_constant_data ident
;
787 ir_rvalue
*const rhs
= new(ctx
) ir_constant(col_type
, &ident
);
789 ir_rvalue
*const lhs
=
790 new(ctx
) ir_dereference_array(var
, new(ctx
) ir_constant(col
));
792 ir_instruction
*inst
= new(ctx
) ir_assignment(lhs
, rhs
, NULL
);
793 instructions
->push_tail(inst
);
797 /* Assign columns from the source matrix to the destination matrix.
799 * Since the parameter will be used in the RHS of multiple assignments,
800 * generate a temporary and copy the paramter there.
802 ir_variable
*const rhs_var
=
803 new(ctx
) ir_variable(first_param
->type
, "mat_ctor_mat",
805 instructions
->push_tail(rhs_var
);
807 ir_dereference
*const rhs_var_ref
=
808 new(ctx
) ir_dereference_variable(rhs_var
);
809 ir_instruction
*const inst
=
810 new(ctx
) ir_assignment(rhs_var_ref
, first_param
, NULL
);
811 instructions
->push_tail(inst
);
813 const unsigned last_row
= MIN2(src_matrix
->type
->vector_elements
,
814 var
->type
->vector_elements
);
815 const unsigned last_col
= MIN2(src_matrix
->type
->matrix_columns
,
816 var
->type
->matrix_columns
);
818 unsigned swiz
[4] = { 0, 0, 0, 0 };
819 for (unsigned i
= 1; i
< src_matrix
->type
->vector_elements
; i
++)
822 const unsigned write_mask
= (1U << last_row
) - 1;
824 for (unsigned i
= 0; i
< last_col
; i
++) {
825 ir_dereference
*const lhs
=
826 new(ctx
) ir_dereference_array(var
, new(ctx
) ir_constant(i
));
827 ir_rvalue
*const rhs_col
=
828 new(ctx
) ir_dereference_array(rhs_var
, new(ctx
) ir_constant(i
));
830 /* If one matrix has columns that are smaller than the columns of the
831 * other matrix, wrap the column access of the larger with a swizzle
832 * so that the LHS and RHS of the assignment have the same size (and
833 * therefore have the same type).
835 * It would be perfectly valid to unconditionally generate the
836 * swizzles, this this will typically result in a more compact IR tree.
839 if (lhs
->type
->vector_elements
!= rhs_col
->type
->vector_elements
) {
840 rhs
= new(ctx
) ir_swizzle(rhs_col
, swiz
,
841 lhs
->type
->vector_elements
);
846 assert(lhs
->type
== rhs
->type
);
848 ir_instruction
*inst
=
849 new(ctx
) ir_assignment(lhs
, rhs
, NULL
, write_mask
);
850 instructions
->push_tail(inst
);
853 const unsigned cols
= type
->matrix_columns
;
854 const unsigned rows
= type
->vector_elements
;
855 unsigned col_idx
= 0;
856 unsigned row_idx
= 0;
858 foreach_list (node
, parameters
) {
859 ir_rvalue
*const rhs
= (ir_rvalue
*) node
;
860 const unsigned components_remaining_this_column
= rows
- row_idx
;
861 unsigned rhs_components
= rhs
->type
->components();
862 unsigned rhs_base
= 0;
864 /* Since the parameter might be used in the RHS of two assignments,
865 * generate a temporary and copy the paramter there.
867 ir_variable
*rhs_var
=
868 new(ctx
) ir_variable(rhs
->type
, "mat_ctor_vec", ir_var_temporary
);
869 instructions
->push_tail(rhs_var
);
871 ir_dereference
*rhs_var_ref
=
872 new(ctx
) ir_dereference_variable(rhs_var
);
873 ir_instruction
*inst
= new(ctx
) ir_assignment(rhs_var_ref
, rhs
, NULL
);
874 instructions
->push_tail(inst
);
876 /* Assign the current parameter to as many components of the matrix
879 * NOTE: A single vector parameter can span two matrix columns. A
880 * single vec4, for example, can completely fill a mat2.
882 if (rhs_components
>= components_remaining_this_column
) {
883 const unsigned count
= MIN2(rhs_components
,
884 components_remaining_this_column
);
886 rhs_var_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
888 ir_instruction
*inst
= assign_to_matrix_column(var
, col_idx
,
892 instructions
->push_tail(inst
);
900 /* If there is data left in the parameter and components left to be
901 * set in the destination, emit another assignment. It is possible
902 * that the assignment could be of a vec4 to the last element of the
903 * matrix. In this case col_idx==cols, but there is still data
904 * left in the source parameter. Obviously, don't emit an assignment
905 * to data outside the destination matrix.
907 if ((col_idx
< cols
) && (rhs_base
< rhs_components
)) {
908 const unsigned count
= rhs_components
- rhs_base
;
910 rhs_var_ref
= new(ctx
) ir_dereference_variable(rhs_var
);
912 ir_instruction
*inst
= assign_to_matrix_column(var
, col_idx
,
917 instructions
->push_tail(inst
);
924 return new(ctx
) ir_dereference_variable(var
);
929 emit_inline_record_constructor(const glsl_type
*type
,
930 exec_list
*instructions
,
931 exec_list
*parameters
,
934 ir_variable
*const var
=
935 new(mem_ctx
) ir_variable(type
, "record_ctor", ir_var_temporary
);
936 ir_dereference_variable
*const d
= new(mem_ctx
) ir_dereference_variable(var
);
938 instructions
->push_tail(var
);
940 exec_node
*node
= parameters
->head
;
941 for (unsigned i
= 0; i
< type
->length
; i
++) {
942 assert(!node
->is_tail_sentinel());
944 ir_dereference
*const lhs
=
945 new(mem_ctx
) ir_dereference_record(d
->clone(mem_ctx
, NULL
),
946 type
->fields
.structure
[i
].name
);
948 ir_rvalue
*const rhs
= ((ir_instruction
*) node
)->as_rvalue();
951 ir_instruction
*const assign
= new(mem_ctx
) ir_assignment(lhs
, rhs
, NULL
);
953 instructions
->push_tail(assign
);
962 ast_function_expression::hir(exec_list
*instructions
,
963 struct _mesa_glsl_parse_state
*state
)
966 /* There are three sorts of function calls.
968 * 1. constructors - The first subexpression is an ast_type_specifier.
969 * 2. methods - Only the .length() method of array types.
970 * 3. functions - Calls to regular old functions.
972 * Method calls are actually detected when the ast_field_selection
973 * expression is handled.
975 if (is_constructor()) {
976 const ast_type_specifier
*type
= (ast_type_specifier
*) subexpressions
[0];
977 YYLTYPE loc
= type
->get_location();
980 const glsl_type
*const constructor_type
= type
->glsl_type(& name
, state
);
983 /* Constructors for samplers are illegal.
985 if (constructor_type
->is_sampler()) {
986 _mesa_glsl_error(& loc
, state
, "cannot construct sampler type `%s'",
987 constructor_type
->name
);
988 return ir_call::get_error_instruction(ctx
);
991 if (constructor_type
->is_array()) {
992 if (state
->language_version
<= 110) {
993 _mesa_glsl_error(& loc
, state
,
994 "array constructors forbidden in GLSL 1.10");
995 return ir_call::get_error_instruction(ctx
);
998 return process_array_constructor(instructions
, constructor_type
,
999 & loc
, &this->expressions
, state
);
1003 /* There are two kinds of constructor call. Constructors for built-in
1004 * language types, such as mat4 and vec2, are free form. The only
1005 * requirement is that the parameters must provide enough values of the
1006 * correct scalar type. Constructors for arrays and structures must
1007 * have the exact number of parameters with matching types in the
1008 * correct order. These constructors follow essentially the same type
1009 * matching rules as functions.
1011 if (!constructor_type
->is_numeric() && !constructor_type
->is_boolean())
1012 return ir_call::get_error_instruction(ctx
);
1014 /* Total number of components of the type being constructed. */
1015 const unsigned type_components
= constructor_type
->components();
1017 /* Number of components from parameters that have actually been
1018 * consumed. This is used to perform several kinds of error checking.
1020 unsigned components_used
= 0;
1022 unsigned matrix_parameters
= 0;
1023 unsigned nonmatrix_parameters
= 0;
1024 exec_list actual_parameters
;
1026 foreach_list (n
, &this->expressions
) {
1027 ast_node
*ast
= exec_node_data(ast_node
, n
, link
);
1028 ir_rvalue
*result
= ast
->hir(instructions
, state
)->as_rvalue();
1030 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1032 * "It is an error to provide extra arguments beyond this
1033 * last used argument."
1035 if (components_used
>= type_components
) {
1036 _mesa_glsl_error(& loc
, state
, "too many parameters to `%s' "
1038 constructor_type
->name
);
1039 return ir_call::get_error_instruction(ctx
);
1042 if (!result
->type
->is_numeric() && !result
->type
->is_boolean()) {
1043 _mesa_glsl_error(& loc
, state
, "cannot construct `%s' from a "
1044 "non-numeric data type",
1045 constructor_type
->name
);
1046 return ir_call::get_error_instruction(ctx
);
1049 /* Count the number of matrix and nonmatrix parameters. This
1050 * is used below to enforce some of the constructor rules.
1052 if (result
->type
->is_matrix())
1053 matrix_parameters
++;
1055 nonmatrix_parameters
++;
1057 actual_parameters
.push_tail(result
);
1058 components_used
+= result
->type
->components();
1061 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1063 * "It is an error to construct matrices from other matrices. This
1064 * is reserved for future use."
1066 if (state
->language_version
== 110 && matrix_parameters
> 0
1067 && constructor_type
->is_matrix()) {
1068 _mesa_glsl_error(& loc
, state
, "cannot construct `%s' from a "
1069 "matrix in GLSL 1.10",
1070 constructor_type
->name
);
1071 return ir_call::get_error_instruction(ctx
);
1074 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1076 * "If a matrix argument is given to a matrix constructor, it is
1077 * an error to have any other arguments."
1079 if ((matrix_parameters
> 0)
1080 && ((matrix_parameters
+ nonmatrix_parameters
) > 1)
1081 && constructor_type
->is_matrix()) {
1082 _mesa_glsl_error(& loc
, state
, "for matrix `%s' constructor, "
1083 "matrix must be only parameter",
1084 constructor_type
->name
);
1085 return ir_call::get_error_instruction(ctx
);
1088 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1090 * "In these cases, there must be enough components provided in the
1091 * arguments to provide an initializer for every component in the
1092 * constructed value."
1094 if (components_used
< type_components
&& components_used
!= 1
1095 && matrix_parameters
== 0) {
1096 _mesa_glsl_error(& loc
, state
, "too few components to construct "
1098 constructor_type
->name
);
1099 return ir_call::get_error_instruction(ctx
);
1102 /* Later, we cast each parameter to the same base type as the
1103 * constructor. Since there are no non-floating point matrices, we
1104 * need to break them up into a series of column vectors.
1106 if (constructor_type
->base_type
!= GLSL_TYPE_FLOAT
) {
1107 foreach_list_safe(n
, &actual_parameters
) {
1108 ir_rvalue
*matrix
= (ir_rvalue
*) n
;
1110 if (!matrix
->type
->is_matrix())
1113 /* Create a temporary containing the matrix. */
1114 ir_variable
*var
= new(ctx
) ir_variable(matrix
->type
, "matrix_tmp",
1116 instructions
->push_tail(var
);
1117 instructions
->push_tail(new(ctx
) ir_assignment(new(ctx
)
1118 ir_dereference_variable(var
), matrix
, NULL
));
1119 var
->constant_value
= matrix
->constant_expression_value();
1121 /* Replace the matrix with dereferences of its columns. */
1122 for (int i
= 0; i
< matrix
->type
->matrix_columns
; i
++) {
1123 matrix
->insert_before(new (ctx
) ir_dereference_array(var
,
1124 new(ctx
) ir_constant(i
)));
1130 bool all_parameters_are_constant
= true;
1132 /* Type cast each parameter and, if possible, fold constants.*/
1133 foreach_list_safe(n
, &actual_parameters
) {
1134 ir_rvalue
*ir
= (ir_rvalue
*) n
;
1136 const glsl_type
*desired_type
=
1137 glsl_type::get_instance(constructor_type
->base_type
,
1138 ir
->type
->vector_elements
,
1139 ir
->type
->matrix_columns
);
1140 ir_rvalue
*result
= convert_component(ir
, desired_type
);
1142 /* Attempt to convert the parameter to a constant valued expression.
1143 * After doing so, track whether or not all the parameters to the
1144 * constructor are trivially constant valued expressions.
1146 ir_rvalue
*const constant
= result
->constant_expression_value();
1148 if (constant
!= NULL
)
1151 all_parameters_are_constant
= false;
1154 ir
->replace_with(result
);
1158 /* If all of the parameters are trivially constant, create a
1159 * constant representing the complete collection of parameters.
1161 if (all_parameters_are_constant
) {
1162 return new(ctx
) ir_constant(constructor_type
, &actual_parameters
);
1163 } else if (constructor_type
->is_scalar()) {
1164 return dereference_component((ir_rvalue
*) actual_parameters
.head
,
1166 } else if (constructor_type
->is_vector()) {
1167 return emit_inline_vector_constructor(constructor_type
,
1172 assert(constructor_type
->is_matrix());
1173 return emit_inline_matrix_constructor(constructor_type
,
1179 const ast_expression
*id
= subexpressions
[0];
1180 YYLTYPE loc
= id
->get_location();
1181 exec_list actual_parameters
;
1183 process_parameters(instructions
, &actual_parameters
, &this->expressions
,
1186 const glsl_type
*const type
=
1187 state
->symbols
->get_type(id
->primary_expression
.identifier
);
1189 if ((type
!= NULL
) && type
->is_record()) {
1190 exec_node
*node
= actual_parameters
.head
;
1191 for (unsigned i
= 0; i
< type
->length
; i
++) {
1192 ir_rvalue
*ir
= (ir_rvalue
*) node
;
1194 if (node
->is_tail_sentinel()) {
1195 _mesa_glsl_error(&loc
, state
,
1196 "insufficient parameters to constructor "
1199 return ir_call::get_error_instruction(ctx
);
1202 if (apply_implicit_conversion(type
->fields
.structure
[i
].type
, ir
,
1204 node
->replace_with(ir
);
1206 _mesa_glsl_error(&loc
, state
,
1207 "parameter type mismatch in constructor "
1208 "for `%s.%s' (%s vs %s)",
1210 type
->fields
.structure
[i
].name
,
1212 type
->fields
.structure
[i
].type
->name
);
1213 return ir_call::get_error_instruction(ctx
);;
1219 if (!node
->is_tail_sentinel()) {
1220 _mesa_glsl_error(&loc
, state
, "too many parameters in constructor "
1221 "for `%s'", type
->name
);
1222 return ir_call::get_error_instruction(ctx
);
1225 ir_rvalue
*const constant
=
1226 constant_record_constructor(type
, &actual_parameters
, state
);
1228 return (constant
!= NULL
)
1230 : emit_inline_record_constructor(type
, instructions
,
1231 &actual_parameters
, state
);
1234 return match_function_by_name(instructions
,
1235 id
->primary_expression
.identifier
, & loc
,
1236 &actual_parameters
, state
);
1239 return ir_call::get_error_instruction(ctx
);