2 * Copyright © 2008, 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
26 * \brief Doubly-linked list abstract container type.
28 * Each doubly-linked list has a sentinel head and tail node. These nodes
29 * contain no data. The head sentinel can be identified by its \c prev
30 * pointer being \c NULL. The tail sentinel can be identified by its
31 * \c next pointer being \c NULL.
33 * A list is empty if either the head sentinel's \c next pointer points to the
34 * tail sentinel or the tail sentinel's \c prev poiner points to the head
37 * Instead of tracking two separate \c node structures and a \c list structure
38 * that points to them, the sentinel nodes are in a single structure. Noting
39 * that each sentinel node always has one \c NULL pointer, the \c NULL
40 * pointers occupy the same memory location. In the \c list structure
41 * contains a the following:
43 * - A \c head pointer that represents the \c next pointer of the
45 * - A \c tail pointer that represents the \c prev pointer of the head
46 * sentinel node and the \c next pointer of the tail sentinel node. This
47 * pointer is \b always \c NULL.
48 * - A \c tail_prev pointer that represents the \c prev pointer of the
51 * Therefore, if \c head->next is \c NULL or \c tail_prev->prev is \c NULL,
54 * To anyone familiar with "exec lists" on the Amiga, this structure should
55 * be immediately recognizable. See the following link for the original Amiga
56 * operating system documentation on the subject.
58 * http://www.natami.net/dev/Libraries_Manual_guide/node02D7.html
60 * \author Ian Romanick <ian.d.romanick@intel.com>
64 #ifndef LIST_CONTAINER_H
65 #define LIST_CONTAINER_H
79 struct exec_node
*next
;
80 struct exec_node
*prev
;
83 /* Callers of this talloc-based new need not call delete. It's
84 * easier to just talloc_free 'ctx' (or any of its ancestors). */
85 static void* operator new(size_t size
, void *ctx
)
89 node
= talloc_size(ctx
, size
);
95 /* If the user *does* call delete, that's OK, we will just
96 * talloc_free in that case. */
97 static void operator delete(void *node
)
102 exec_node() : next(NULL
), prev(NULL
)
107 const exec_node
*get_next() const
112 exec_node
*get_next()
117 const exec_node
*get_prev() const
122 exec_node
*get_prev()
136 * Link a node with itself
138 * This creates a sort of degenerate list that is occasionally useful.
147 * Insert a node in the list after the current node
149 void insert_after(exec_node
*after
)
151 after
->next
= this->next
;
154 this->next
->prev
= after
;
158 * Insert a node in the list before the current node
160 void insert_before(exec_node
*before
)
163 before
->prev
= this->prev
;
165 this->prev
->next
= before
;
170 * Insert another list in the list before the current node
172 void insert_before(struct exec_list
*before
);
175 * Replace the current node with the given node.
177 void replace_with(exec_node
*replacement
)
179 replacement
->prev
= this->prev
;
180 replacement
->next
= this->next
;
182 this->prev
->next
= replacement
;
183 this->next
->prev
= replacement
;
187 * Is this the sentinel at the tail of the list?
189 bool is_tail_sentinel() const
191 return this->next
== NULL
;
195 * Is this the sentinel at the head of the list?
197 bool is_head_sentinel() const
199 return this->prev
== NULL
;
206 /* This macro will not work correctly if `t' uses virtual inheritance. If you
207 * are using virtual inheritance, you deserve a slow and painful death. Enjoy!
209 #define exec_list_offsetof(t, f, p) \
210 (((char *) &((t *) p)->f) - ((char *) p))
212 #define exec_list_offsetof(t, f, p) offsetof(t, f)
216 * Get a pointer to the structure containing an exec_node
218 * Given a pointer to an \c exec_node embedded in a structure, get a pointer to
219 * the containing structure.
221 * \param type Base type of the structure containing the node
222 * \param node Pointer to the \c exec_node
223 * \param field Name of the field in \c type that is the embedded \c exec_node
225 #define exec_node_data(type, node, field) \
226 ((type *) (((char *) node) - exec_list_offsetof(type, field, node)))
242 bool has_next() const
248 class exec_list_iterator
: public iterator
{
250 exec_list_iterator(exec_node
*n
) : node(n
), _next(n
->next
)
271 bool has_next() const
273 return _next
!= NULL
;
281 #define foreach_iter(iter_type, iter, container) \
282 for (iter_type iter = (container) . iterator(); iter.has_next(); iter.next())
287 struct exec_node
*head
;
288 struct exec_node
*tail
;
289 struct exec_node
*tail_pred
;
292 /* Callers of this talloc-based new need not call delete. It's
293 * easier to just talloc_free 'ctx' (or any of its ancestors). */
294 static void* operator new(size_t size
, void *ctx
)
298 node
= talloc_size(ctx
, size
);
299 assert(node
!= NULL
);
304 /* If the user *does* call delete, that's OK, we will just
305 * talloc_free in that case. */
306 static void operator delete(void *node
)
318 head
= (exec_node
*) & tail
;
320 tail_pred
= (exec_node
*) & head
;
323 bool is_empty() const
325 /* There are three ways to test whether a list is empty or not.
327 * - Check to see if the \c head points to the \c tail.
328 * - Check to see if the \c tail_pred points to the \c head.
329 * - Check to see if the \c head is the sentinel node by test whether its
330 * \c next pointer is \c NULL.
332 * The first two methods tend to generate better code on modern systems
333 * because they save a pointer dereference.
335 return head
== (exec_node
*) &tail
;
338 const exec_node
*get_head() const
340 return !is_empty() ? head
: NULL
;
343 exec_node
*get_head()
345 return !is_empty() ? head
: NULL
;
348 const exec_node
*get_tail() const
350 return !is_empty() ? tail_pred
: NULL
;
353 exec_node
*get_tail()
355 return !is_empty() ? tail_pred
: NULL
;
358 void push_head(exec_node
*n
)
361 n
->prev
= (exec_node
*) &head
;
367 void push_tail(exec_node
*n
)
369 n
->next
= (exec_node
*) &tail
;
376 void push_degenerate_list_at_head(exec_node
*n
)
378 assert(n
->prev
->next
== n
);
380 n
->prev
->next
= head
;
381 head
->prev
= n
->prev
;
382 n
->prev
= (exec_node
*) &head
;
387 * Remove the first node from a list and return it
390 * The first node in the list or \c NULL if the list is empty.
392 * \sa exec_list::get_head
394 exec_node
*pop_head()
396 exec_node
*const n
= this->get_head();
404 * Move all of the nodes from this list to the target list
406 void move_nodes_to(exec_list
*target
)
409 target
->make_empty();
413 target
->tail_pred
= tail_pred
;
415 target
->head
->prev
= (exec_node
*) &target
->head
;
416 target
->tail_pred
->next
= (exec_node
*) &target
->tail
;
423 * Append all nodes from the source list to the target list
426 append_list(exec_list
*source
)
428 if (source
->is_empty())
431 /* Link the first node of the source with the last node of the target list.
433 this->tail_pred
->next
= source
->head
;
434 source
->head
->prev
= this->tail_pred
;
436 /* Make the tail of the source list be the tail of the target list.
438 this->tail_pred
= source
->tail_pred
;
439 this->tail_pred
->next
= (exec_node
*) &this->tail
;
441 /* Make the source list empty for good measure.
443 source
->make_empty();
446 exec_list_iterator
iterator()
448 return exec_list_iterator(head
);
451 exec_list_iterator
iterator() const
453 return exec_list_iterator((exec_node
*) head
);
460 inline void exec_node::insert_before(exec_list
*before
)
462 if (before
->is_empty())
465 before
->tail_pred
->next
= this;
466 before
->head
->prev
= this->prev
;
468 this->prev
->next
= before
->head
;
469 this->prev
= before
->tail_pred
;
471 before
->make_empty();
476 * This version is safe even if the current node is removed.
478 #define foreach_list_safe(__node, __list) \
479 for (exec_node * __node = (__list)->head, * __next = __node->next \
481 ; __node = __next, __next = __next->next)
483 #define foreach_list(__node, __list) \
484 for (exec_node * __node = (__list)->head \
485 ; (__node)->next != NULL \
486 ; (__node) = (__node)->next)
488 #define foreach_list_const(__node, __list) \
489 for (const exec_node * __node = (__list)->head \
490 ; (__node)->next != NULL \
491 ; (__node) = (__node)->next)
493 #define foreach_list_typed(__type, __node, __field, __list) \
494 for (__type * __node = \
495 exec_node_data(__type, (__list)->head, __field); \
496 (__node)->__field.next != NULL; \
497 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
499 #define foreach_list_typed_const(__type, __node, __field, __list) \
500 for (const __type * __node = \
501 exec_node_data(__type, (__list)->head, __field); \
502 (__node)->__field.next != NULL; \
503 (__node) = exec_node_data(__type, (__node)->__field.next, __field))
505 #endif /* LIST_CONTAINER_H */