2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
31 * * Symbol table management
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
56 #include "glsl_types.h"
60 _mesa_ast_to_hir(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
)
62 _mesa_glsl_initialize_variables(instructions
, state
);
63 _mesa_glsl_initialize_functions(instructions
, state
);
65 state
->symbols
->language_version
= state
->language_version
;
67 state
->current_function
= NULL
;
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
82 state
->symbols
->push_scope();
84 foreach_list_typed (ast_node
, ast
, link
, & state
->translation_unit
)
85 ast
->hir(instructions
, state
);
90 * If a conversion is available, convert one operand to a different type
92 * The \c from \c ir_rvalue is converted "in place".
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
103 apply_implicit_conversion(const glsl_type
*to
, ir_rvalue
* &from
,
104 struct _mesa_glsl_parse_state
*state
)
107 if (to
->base_type
== from
->type
->base_type
)
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
113 if (state
->language_version
< 120)
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
126 if (!to
->is_float() || !from
->type
->is_numeric())
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
132 to
= glsl_type::get_instance(GLSL_TYPE_FLOAT
, from
->type
->vector_elements
,
133 from
->type
->matrix_columns
);
135 switch (from
->type
->base_type
) {
137 from
= new(ctx
) ir_expression(ir_unop_i2f
, to
, from
, NULL
);
140 from
= new(ctx
) ir_expression(ir_unop_u2f
, to
, from
, NULL
);
143 from
= new(ctx
) ir_expression(ir_unop_b2f
, to
, from
, NULL
);
153 static const struct glsl_type
*
154 arithmetic_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
156 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
158 const glsl_type
*type_a
= value_a
->type
;
159 const glsl_type
*type_b
= value_b
->type
;
161 /* From GLSL 1.50 spec, page 56:
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
167 if (!type_a
->is_numeric() || !type_b
->is_numeric()) {
168 _mesa_glsl_error(loc
, state
,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type
;
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
178 if (!apply_implicit_conversion(type_a
, value_b
, state
)
179 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
180 _mesa_glsl_error(loc
, state
,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type
;
185 type_a
= value_a
->type
;
186 type_b
= value_b
->type
;
188 /* "If the operands are integer types, they must both be signed or
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
197 if (type_a
->base_type
!= type_b
->base_type
) {
198 _mesa_glsl_error(loc
, state
,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type
;
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
211 if (type_a
->is_scalar() && type_b
->is_scalar())
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
219 if (type_a
->is_scalar()) {
220 if (!type_b
->is_scalar())
222 } else if (type_b
->is_scalar()) {
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
230 assert(!type_a
->is_scalar());
231 assert(!type_b
->is_scalar());
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
237 if (type_a
->is_vector() && type_b
->is_vector()) {
238 if (type_a
== type_b
) {
241 _mesa_glsl_error(loc
, state
,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type
;
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
253 assert(type_a
->is_matrix() || type_b
->is_matrix());
254 assert(type_a
->base_type
== GLSL_TYPE_FLOAT
);
255 assert(type_b
->base_type
== GLSL_TYPE_FLOAT
);
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
273 if (type_a
== type_b
)
276 if (type_a
->is_matrix() && type_b
->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
282 if (type_a
->row_type() == type_b
->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
288 const glsl_type
*const type
=
289 glsl_type::get_instance(type_a
->base_type
,
290 type_a
->column_type()->vector_elements
,
291 type_b
->row_type()->vector_elements
);
292 assert(type
!= glsl_type::error_type
);
296 } else if (type_a
->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
302 if (type_a
->row_type() == type_b
) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type
*const type
=
306 glsl_type::get_instance(type_a
->base_type
,
307 type_a
->column_type()->vector_elements
,
309 assert(type
!= glsl_type::error_type
);
314 assert(type_b
->is_matrix());
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
321 if (type_a
== type_b
->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type
*const type
=
325 glsl_type::get_instance(type_a
->base_type
,
326 type_b
->row_type()->vector_elements
,
328 assert(type
!= glsl_type::error_type
);
334 _mesa_glsl_error(loc
, state
, "size mismatch for matrix multiplication");
335 return glsl_type::error_type
;
339 /* "All other cases are illegal."
341 _mesa_glsl_error(loc
, state
, "type mismatch");
342 return glsl_type::error_type
;
346 static const struct glsl_type
*
347 unary_arithmetic_result_type(const struct glsl_type
*type
,
348 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
350 /* From GLSL 1.50 spec, page 57:
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
358 if (!type
->is_numeric()) {
359 _mesa_glsl_error(loc
, state
,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type
;
368 static const struct glsl_type
*
369 modulus_result_type(const struct glsl_type
*type_a
,
370 const struct glsl_type
*type_b
,
371 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
373 /* From GLSL 1.50 spec, page 56:
374 * "The operator modulus (%) operates on signed or unsigned integers or
375 * integer vectors. The operand types must both be signed or both be
378 if (!type_a
->is_integer() || !type_b
->is_integer()
379 || (type_a
->base_type
!= type_b
->base_type
)) {
380 _mesa_glsl_error(loc
, state
, "type mismatch");
381 return glsl_type::error_type
;
384 /* "The operands cannot be vectors of differing size. If one operand is
385 * a scalar and the other vector, then the scalar is applied component-
386 * wise to the vector, resulting in the same type as the vector. If both
387 * are vectors of the same size, the result is computed component-wise."
389 if (type_a
->is_vector()) {
390 if (!type_b
->is_vector()
391 || (type_a
->vector_elements
== type_b
->vector_elements
))
396 /* "The operator modulus (%) is not defined for any other data types
397 * (non-integer types)."
399 _mesa_glsl_error(loc
, state
, "type mismatch");
400 return glsl_type::error_type
;
404 static const struct glsl_type
*
405 relational_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
406 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
408 const glsl_type
*type_a
= value_a
->type
;
409 const glsl_type
*type_b
= value_b
->type
;
411 /* From GLSL 1.50 spec, page 56:
412 * "The relational operators greater than (>), less than (<), greater
413 * than or equal (>=), and less than or equal (<=) operate only on
414 * scalar integer and scalar floating-point expressions."
416 if (!type_a
->is_numeric()
417 || !type_b
->is_numeric()
418 || !type_a
->is_scalar()
419 || !type_b
->is_scalar()) {
420 _mesa_glsl_error(loc
, state
,
421 "Operands to relational operators must be scalar and "
423 return glsl_type::error_type
;
426 /* "Either the operands' types must match, or the conversions from
427 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
428 * operand, after which the types must match."
430 if (!apply_implicit_conversion(type_a
, value_b
, state
)
431 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
432 _mesa_glsl_error(loc
, state
,
433 "Could not implicitly convert operands to "
434 "relational operator");
435 return glsl_type::error_type
;
437 type_a
= value_a
->type
;
438 type_b
= value_b
->type
;
440 if (type_a
->base_type
!= type_b
->base_type
) {
441 _mesa_glsl_error(loc
, state
, "base type mismatch");
442 return glsl_type::error_type
;
445 /* "The result is scalar Boolean."
447 return glsl_type::bool_type
;
452 * Validates that a value can be assigned to a location with a specified type
454 * Validates that \c rhs can be assigned to some location. If the types are
455 * not an exact match but an automatic conversion is possible, \c rhs will be
459 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
460 * Otherwise the actual RHS to be assigned will be returned. This may be
461 * \c rhs, or it may be \c rhs after some type conversion.
464 * In addition to being used for assignments, this function is used to
465 * type-check return values.
468 validate_assignment(struct _mesa_glsl_parse_state
*state
,
469 const glsl_type
*lhs_type
, ir_rvalue
*rhs
)
471 const glsl_type
*rhs_type
= rhs
->type
;
473 /* If there is already some error in the RHS, just return it. Anything
474 * else will lead to an avalanche of error message back to the user.
476 if (rhs_type
->is_error())
479 /* If the types are identical, the assignment can trivially proceed.
481 if (rhs_type
== lhs_type
)
484 /* If the array element types are the same and the size of the LHS is zero,
485 * the assignment is okay.
487 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
488 * is handled by ir_dereference::is_lvalue.
490 if (lhs_type
->is_array() && rhs
->type
->is_array()
491 && (lhs_type
->element_type() == rhs
->type
->element_type())
492 && (lhs_type
->array_size() == 0)) {
496 /* Check for implicit conversion in GLSL 1.20 */
497 if (apply_implicit_conversion(lhs_type
, rhs
, state
)) {
498 rhs_type
= rhs
->type
;
499 if (rhs_type
== lhs_type
)
507 do_assignment(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
,
508 ir_rvalue
*lhs
, ir_rvalue
*rhs
,
512 bool error_emitted
= (lhs
->type
->is_error() || rhs
->type
->is_error());
514 if (!error_emitted
) {
515 if (!lhs
->is_lvalue()) {
516 _mesa_glsl_error(& lhs_loc
, state
, "non-lvalue in assignment");
517 error_emitted
= true;
520 if (state
->es_shader
&& lhs
->type
->is_array()) {
521 _mesa_glsl_error(&lhs_loc
, state
, "whole array assignment is not "
522 "allowed in GLSL ES 1.00.");
523 error_emitted
= true;
527 ir_rvalue
*new_rhs
= validate_assignment(state
, lhs
->type
, rhs
);
528 if (new_rhs
== NULL
) {
529 _mesa_glsl_error(& lhs_loc
, state
, "type mismatch");
533 /* If the LHS array was not declared with a size, it takes it size from
534 * the RHS. If the LHS is an l-value and a whole array, it must be a
535 * dereference of a variable. Any other case would require that the LHS
536 * is either not an l-value or not a whole array.
538 if (lhs
->type
->array_size() == 0) {
539 ir_dereference
*const d
= lhs
->as_dereference();
543 ir_variable
*const var
= d
->variable_referenced();
547 if (var
->max_array_access
>= unsigned(rhs
->type
->array_size())) {
548 /* FINISHME: This should actually log the location of the RHS. */
549 _mesa_glsl_error(& lhs_loc
, state
, "array size must be > %u due to "
551 var
->max_array_access
);
554 var
->type
= glsl_type::get_array_instance(lhs
->type
->element_type(),
555 rhs
->type
->array_size());
560 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
561 * but not post_inc) need the converted assigned value as an rvalue
562 * to handle things like:
566 * So we always just store the computed value being assigned to a
567 * temporary and return a deref of that temporary. If the rvalue
568 * ends up not being used, the temp will get copy-propagated out.
570 ir_variable
*var
= new(ctx
) ir_variable(rhs
->type
, "assignment_tmp",
572 ir_dereference_variable
*deref_var
= new(ctx
) ir_dereference_variable(var
);
573 instructions
->push_tail(var
);
574 instructions
->push_tail(new(ctx
) ir_assignment(deref_var
,
577 deref_var
= new(ctx
) ir_dereference_variable(var
);
580 instructions
->push_tail(new(ctx
) ir_assignment(lhs
, deref_var
, NULL
));
582 return new(ctx
) ir_dereference_variable(var
);
586 get_lvalue_copy(exec_list
*instructions
, ir_rvalue
*lvalue
)
588 void *ctx
= talloc_parent(lvalue
);
591 var
= new(ctx
) ir_variable(lvalue
->type
, "_post_incdec_tmp",
593 instructions
->push_tail(var
);
594 var
->mode
= ir_var_auto
;
596 instructions
->push_tail(new(ctx
) ir_assignment(new(ctx
) ir_dereference_variable(var
),
599 /* Once we've created this temporary, mark it read only so it's no
600 * longer considered an lvalue.
602 var
->read_only
= true;
604 return new(ctx
) ir_dereference_variable(var
);
609 ast_node::hir(exec_list
*instructions
,
610 struct _mesa_glsl_parse_state
*state
)
620 ast_expression::hir(exec_list
*instructions
,
621 struct _mesa_glsl_parse_state
*state
)
624 static const int operations
[AST_NUM_OPERATORS
] = {
625 -1, /* ast_assign doesn't convert to ir_expression. */
626 -1, /* ast_plus doesn't convert to ir_expression. */
650 /* Note: The following block of expression types actually convert
651 * to multiple IR instructions.
653 ir_binop_mul
, /* ast_mul_assign */
654 ir_binop_div
, /* ast_div_assign */
655 ir_binop_mod
, /* ast_mod_assign */
656 ir_binop_add
, /* ast_add_assign */
657 ir_binop_sub
, /* ast_sub_assign */
658 ir_binop_lshift
, /* ast_ls_assign */
659 ir_binop_rshift
, /* ast_rs_assign */
660 ir_binop_bit_and
, /* ast_and_assign */
661 ir_binop_bit_xor
, /* ast_xor_assign */
662 ir_binop_bit_or
, /* ast_or_assign */
664 -1, /* ast_conditional doesn't convert to ir_expression. */
665 ir_binop_add
, /* ast_pre_inc. */
666 ir_binop_sub
, /* ast_pre_dec. */
667 ir_binop_add
, /* ast_post_inc. */
668 ir_binop_sub
, /* ast_post_dec. */
669 -1, /* ast_field_selection doesn't conv to ir_expression. */
670 -1, /* ast_array_index doesn't convert to ir_expression. */
671 -1, /* ast_function_call doesn't conv to ir_expression. */
672 -1, /* ast_identifier doesn't convert to ir_expression. */
673 -1, /* ast_int_constant doesn't convert to ir_expression. */
674 -1, /* ast_uint_constant doesn't conv to ir_expression. */
675 -1, /* ast_float_constant doesn't conv to ir_expression. */
676 -1, /* ast_bool_constant doesn't conv to ir_expression. */
677 -1, /* ast_sequence doesn't convert to ir_expression. */
679 ir_rvalue
*result
= NULL
;
681 const struct glsl_type
*type
= glsl_type::error_type
;
682 bool error_emitted
= false;
685 loc
= this->get_location();
687 switch (this->oper
) {
689 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
690 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
692 result
= do_assignment(instructions
, state
, op
[0], op
[1],
693 this->subexpressions
[0]->get_location());
694 error_emitted
= result
->type
->is_error();
700 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
702 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
704 error_emitted
= type
->is_error();
710 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
712 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
714 error_emitted
= type
->is_error();
716 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
724 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
725 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
727 type
= arithmetic_result_type(op
[0], op
[1],
728 (this->oper
== ast_mul
),
730 error_emitted
= type
->is_error();
732 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
737 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
738 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
740 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
742 assert(operations
[this->oper
] == ir_binop_mod
);
744 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
746 error_emitted
= type
->is_error();
751 _mesa_glsl_error(& loc
, state
, "FINISHME: implement bit-shift operators");
752 error_emitted
= true;
759 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
760 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
762 type
= relational_result_type(op
[0], op
[1], state
, & loc
);
764 /* The relational operators must either generate an error or result
765 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
767 assert(type
->is_error()
768 || ((type
->base_type
== GLSL_TYPE_BOOL
)
769 && type
->is_scalar()));
771 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
773 error_emitted
= type
->is_error();
778 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
779 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
781 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
783 * "The equality operators equal (==), and not equal (!=)
784 * operate on all types. They result in a scalar Boolean. If
785 * the operand types do not match, then there must be a
786 * conversion from Section 4.1.10 "Implicit Conversions"
787 * applied to one operand that can make them match, in which
788 * case this conversion is done."
790 if ((!apply_implicit_conversion(op
[0]->type
, op
[1], state
)
791 && !apply_implicit_conversion(op
[1]->type
, op
[0], state
))
792 || (op
[0]->type
!= op
[1]->type
)) {
793 _mesa_glsl_error(& loc
, state
, "operands of `%s' must have the same "
794 "type", (this->oper
== ast_equal
) ? "==" : "!=");
795 error_emitted
= true;
796 } else if ((state
->language_version
<= 110)
797 && (op
[0]->type
->is_array() || op
[1]->type
->is_array())) {
798 _mesa_glsl_error(& loc
, state
, "array comparisons forbidden in "
800 error_emitted
= true;
803 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
805 type
= glsl_type::bool_type
;
807 assert(result
->type
== glsl_type::bool_type
);
813 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
814 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
816 if (state
->language_version
< 130) {
817 _mesa_glsl_error(&loc
, state
, "bit-wise operations require GLSL 1.30");
818 error_emitted
= true;
821 if (!op
[0]->type
->is_integer()) {
822 _mesa_glsl_error(&loc
, state
, "LHS of `%s' must be an integer",
823 operator_string(this->oper
));
824 error_emitted
= true;
827 if (!op
[1]->type
->is_integer()) {
828 _mesa_glsl_error(&loc
, state
, "RHS of `%s' must be an integer",
829 operator_string(this->oper
));
830 error_emitted
= true;
833 if (op
[0]->type
->base_type
!= op
[1]->type
->base_type
) {
834 _mesa_glsl_error(&loc
, state
, "operands of `%s' must have the same "
835 "base type", operator_string(this->oper
));
836 error_emitted
= true;
839 if (op
[0]->type
->is_vector() && op
[1]->type
->is_vector()
840 && op
[0]->type
->vector_elements
!= op
[1]->type
->vector_elements
) {
841 _mesa_glsl_error(&loc
, state
, "operands of `%s' cannot be vectors of "
842 "different sizes", operator_string(this->oper
));
843 error_emitted
= true;
846 type
= op
[0]->type
->is_scalar() ? op
[1]->type
: op
[0]->type
;
847 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
849 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
853 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
855 if (state
->language_version
< 130) {
856 _mesa_glsl_error(&loc
, state
, "bit-wise operations require GLSL 1.30");
857 error_emitted
= true;
860 if (!op
[0]->type
->is_integer()) {
861 _mesa_glsl_error(&loc
, state
, "operand of `~' must be an integer");
862 error_emitted
= true;
866 result
= new(ctx
) ir_expression(ir_unop_bit_not
, type
, op
[0], NULL
);
869 case ast_logic_and
: {
870 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
872 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
873 YYLTYPE loc
= this->subexpressions
[0]->get_location();
875 _mesa_glsl_error(& loc
, state
, "LHS of `%s' must be scalar boolean",
876 operator_string(this->oper
));
877 error_emitted
= true;
880 ir_constant
*op0_const
= op
[0]->constant_expression_value();
882 if (op0_const
->value
.b
[0]) {
883 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
885 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
886 YYLTYPE loc
= this->subexpressions
[1]->get_location();
888 _mesa_glsl_error(& loc
, state
,
889 "RHS of `%s' must be scalar boolean",
890 operator_string(this->oper
));
891 error_emitted
= true;
897 type
= glsl_type::bool_type
;
899 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
902 instructions
->push_tail(tmp
);
904 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
905 instructions
->push_tail(stmt
);
907 op
[1] = this->subexpressions
[1]->hir(&stmt
->then_instructions
, state
);
909 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
910 YYLTYPE loc
= this->subexpressions
[1]->get_location();
912 _mesa_glsl_error(& loc
, state
,
913 "RHS of `%s' must be scalar boolean",
914 operator_string(this->oper
));
915 error_emitted
= true;
918 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
919 ir_assignment
*const then_assign
=
920 new(ctx
) ir_assignment(then_deref
, op
[1], NULL
);
921 stmt
->then_instructions
.push_tail(then_assign
);
923 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
924 ir_assignment
*const else_assign
=
925 new(ctx
) ir_assignment(else_deref
, new(ctx
) ir_constant(false), NULL
);
926 stmt
->else_instructions
.push_tail(else_assign
);
928 result
= new(ctx
) ir_dereference_variable(tmp
);
935 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
937 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
938 YYLTYPE loc
= this->subexpressions
[0]->get_location();
940 _mesa_glsl_error(& loc
, state
, "LHS of `%s' must be scalar boolean",
941 operator_string(this->oper
));
942 error_emitted
= true;
945 ir_constant
*op0_const
= op
[0]->constant_expression_value();
947 if (op0_const
->value
.b
[0]) {
950 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
952 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
953 YYLTYPE loc
= this->subexpressions
[1]->get_location();
955 _mesa_glsl_error(& loc
, state
,
956 "RHS of `%s' must be scalar boolean",
957 operator_string(this->oper
));
958 error_emitted
= true;
962 type
= glsl_type::bool_type
;
964 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
967 instructions
->push_tail(tmp
);
969 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
970 instructions
->push_tail(stmt
);
972 op
[1] = this->subexpressions
[1]->hir(&stmt
->else_instructions
, state
);
974 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
975 YYLTYPE loc
= this->subexpressions
[1]->get_location();
977 _mesa_glsl_error(& loc
, state
, "RHS of `%s' must be scalar boolean",
978 operator_string(this->oper
));
979 error_emitted
= true;
982 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
983 ir_assignment
*const then_assign
=
984 new(ctx
) ir_assignment(then_deref
, new(ctx
) ir_constant(true), NULL
);
985 stmt
->then_instructions
.push_tail(then_assign
);
987 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
988 ir_assignment
*const else_assign
=
989 new(ctx
) ir_assignment(else_deref
, op
[1], NULL
);
990 stmt
->else_instructions
.push_tail(else_assign
);
992 result
= new(ctx
) ir_dereference_variable(tmp
);
999 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1000 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1003 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
1005 type
= glsl_type::bool_type
;
1009 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1011 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
1012 YYLTYPE loc
= this->subexpressions
[0]->get_location();
1014 _mesa_glsl_error(& loc
, state
,
1015 "operand of `!' must be scalar boolean");
1016 error_emitted
= true;
1019 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
1021 type
= glsl_type::bool_type
;
1024 case ast_mul_assign
:
1025 case ast_div_assign
:
1026 case ast_add_assign
:
1027 case ast_sub_assign
: {
1028 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1029 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1031 type
= arithmetic_result_type(op
[0], op
[1],
1032 (this->oper
== ast_mul_assign
),
1035 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1038 result
= do_assignment(instructions
, state
,
1039 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1040 this->subexpressions
[0]->get_location());
1041 type
= result
->type
;
1042 error_emitted
= (op
[0]->type
->is_error());
1044 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1045 * explicitly test for this because none of the binary expression
1046 * operators allow array operands either.
1052 case ast_mod_assign
: {
1053 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1054 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
1056 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
1058 assert(operations
[this->oper
] == ir_binop_mod
);
1060 ir_rvalue
*temp_rhs
;
1061 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1064 result
= do_assignment(instructions
, state
,
1065 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1066 this->subexpressions
[0]->get_location());
1067 type
= result
->type
;
1068 error_emitted
= type
->is_error();
1074 _mesa_glsl_error(& loc
, state
,
1075 "FINISHME: implement bit-shift assignment operators");
1076 error_emitted
= true;
1079 case ast_and_assign
:
1080 case ast_xor_assign
:
1082 _mesa_glsl_error(& loc
, state
,
1083 "FINISHME: implement logic assignment operators");
1084 error_emitted
= true;
1087 case ast_conditional
: {
1088 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1090 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1092 * "The ternary selection operator (?:). It operates on three
1093 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1094 * first expression, which must result in a scalar Boolean."
1096 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
1097 YYLTYPE loc
= this->subexpressions
[0]->get_location();
1099 _mesa_glsl_error(& loc
, state
, "?: condition must be scalar boolean");
1100 error_emitted
= true;
1103 /* The :? operator is implemented by generating an anonymous temporary
1104 * followed by an if-statement. The last instruction in each branch of
1105 * the if-statement assigns a value to the anonymous temporary. This
1106 * temporary is the r-value of the expression.
1108 exec_list then_instructions
;
1109 exec_list else_instructions
;
1111 op
[1] = this->subexpressions
[1]->hir(&then_instructions
, state
);
1112 op
[2] = this->subexpressions
[2]->hir(&else_instructions
, state
);
1114 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1116 * "The second and third expressions can be any type, as
1117 * long their types match, or there is a conversion in
1118 * Section 4.1.10 "Implicit Conversions" that can be applied
1119 * to one of the expressions to make their types match. This
1120 * resulting matching type is the type of the entire
1123 if ((!apply_implicit_conversion(op
[1]->type
, op
[2], state
)
1124 && !apply_implicit_conversion(op
[2]->type
, op
[1], state
))
1125 || (op
[1]->type
!= op
[2]->type
)) {
1126 YYLTYPE loc
= this->subexpressions
[1]->get_location();
1128 _mesa_glsl_error(& loc
, state
, "Second and third operands of ?: "
1129 "operator must have matching types.");
1130 error_emitted
= true;
1131 type
= glsl_type::error_type
;
1136 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1138 * "The second and third expressions must be the same type, but can
1139 * be of any type other than an array."
1141 if ((state
->language_version
<= 110) && type
->is_array()) {
1142 _mesa_glsl_error(& loc
, state
, "Second and third operands of ?: "
1143 "operator must not be arrays.");
1144 error_emitted
= true;
1147 ir_constant
*cond_val
= op
[0]->constant_expression_value();
1148 ir_constant
*then_val
= op
[1]->constant_expression_value();
1149 ir_constant
*else_val
= op
[2]->constant_expression_value();
1151 if (then_instructions
.is_empty()
1152 && else_instructions
.is_empty()
1153 && (cond_val
!= NULL
) && (then_val
!= NULL
) && (else_val
!= NULL
)) {
1154 result
= (cond_val
->value
.b
[0]) ? then_val
: else_val
;
1156 ir_variable
*const tmp
=
1157 new(ctx
) ir_variable(type
, "conditional_tmp", ir_var_temporary
);
1158 instructions
->push_tail(tmp
);
1160 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1161 instructions
->push_tail(stmt
);
1163 then_instructions
.move_nodes_to(& stmt
->then_instructions
);
1164 ir_dereference
*const then_deref
=
1165 new(ctx
) ir_dereference_variable(tmp
);
1166 ir_assignment
*const then_assign
=
1167 new(ctx
) ir_assignment(then_deref
, op
[1], NULL
);
1168 stmt
->then_instructions
.push_tail(then_assign
);
1170 else_instructions
.move_nodes_to(& stmt
->else_instructions
);
1171 ir_dereference
*const else_deref
=
1172 new(ctx
) ir_dereference_variable(tmp
);
1173 ir_assignment
*const else_assign
=
1174 new(ctx
) ir_assignment(else_deref
, op
[2], NULL
);
1175 stmt
->else_instructions
.push_tail(else_assign
);
1177 result
= new(ctx
) ir_dereference_variable(tmp
);
1184 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1185 if (op
[0]->type
->base_type
== GLSL_TYPE_FLOAT
)
1186 op
[1] = new(ctx
) ir_constant(1.0f
);
1188 op
[1] = new(ctx
) ir_constant(1);
1190 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1192 ir_rvalue
*temp_rhs
;
1193 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1196 result
= do_assignment(instructions
, state
,
1197 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1198 this->subexpressions
[0]->get_location());
1199 type
= result
->type
;
1200 error_emitted
= op
[0]->type
->is_error();
1205 case ast_post_dec
: {
1206 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1207 if (op
[0]->type
->base_type
== GLSL_TYPE_FLOAT
)
1208 op
[1] = new(ctx
) ir_constant(1.0f
);
1210 op
[1] = new(ctx
) ir_constant(1);
1212 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1214 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1216 ir_rvalue
*temp_rhs
;
1217 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1220 /* Get a temporary of a copy of the lvalue before it's modified.
1221 * This may get thrown away later.
1223 result
= get_lvalue_copy(instructions
, op
[0]->clone(ctx
, NULL
));
1225 (void)do_assignment(instructions
, state
,
1226 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1227 this->subexpressions
[0]->get_location());
1229 type
= result
->type
;
1230 error_emitted
= op
[0]->type
->is_error();
1234 case ast_field_selection
:
1235 result
= _mesa_ast_field_selection_to_hir(this, instructions
, state
);
1236 type
= result
->type
;
1239 case ast_array_index
: {
1240 YYLTYPE index_loc
= subexpressions
[1]->get_location();
1242 op
[0] = subexpressions
[0]->hir(instructions
, state
);
1243 op
[1] = subexpressions
[1]->hir(instructions
, state
);
1245 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1247 ir_rvalue
*const array
= op
[0];
1249 result
= new(ctx
) ir_dereference_array(op
[0], op
[1]);
1251 /* Do not use op[0] after this point. Use array.
1259 if (!array
->type
->is_array()
1260 && !array
->type
->is_matrix()
1261 && !array
->type
->is_vector()) {
1262 _mesa_glsl_error(& index_loc
, state
,
1263 "cannot dereference non-array / non-matrix / "
1265 error_emitted
= true;
1268 if (!op
[1]->type
->is_integer()) {
1269 _mesa_glsl_error(& index_loc
, state
,
1270 "array index must be integer type");
1271 error_emitted
= true;
1272 } else if (!op
[1]->type
->is_scalar()) {
1273 _mesa_glsl_error(& index_loc
, state
,
1274 "array index must be scalar");
1275 error_emitted
= true;
1278 /* If the array index is a constant expression and the array has a
1279 * declared size, ensure that the access is in-bounds. If the array
1280 * index is not a constant expression, ensure that the array has a
1283 ir_constant
*const const_index
= op
[1]->constant_expression_value();
1284 if (const_index
!= NULL
) {
1285 const int idx
= const_index
->value
.i
[0];
1286 const char *type_name
;
1289 if (array
->type
->is_matrix()) {
1290 type_name
= "matrix";
1291 } else if (array
->type
->is_vector()) {
1292 type_name
= "vector";
1294 type_name
= "array";
1297 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1299 * "It is illegal to declare an array with a size, and then
1300 * later (in the same shader) index the same array with an
1301 * integral constant expression greater than or equal to the
1302 * declared size. It is also illegal to index an array with a
1303 * negative constant expression."
1305 if (array
->type
->is_matrix()) {
1306 if (array
->type
->row_type()->vector_elements
<= idx
) {
1307 bound
= array
->type
->row_type()->vector_elements
;
1309 } else if (array
->type
->is_vector()) {
1310 if (array
->type
->vector_elements
<= idx
) {
1311 bound
= array
->type
->vector_elements
;
1314 if ((array
->type
->array_size() > 0)
1315 && (array
->type
->array_size() <= idx
)) {
1316 bound
= array
->type
->array_size();
1321 _mesa_glsl_error(& loc
, state
, "%s index must be < %u",
1323 error_emitted
= true;
1324 } else if (idx
< 0) {
1325 _mesa_glsl_error(& loc
, state
, "%s index must be >= 0",
1327 error_emitted
= true;
1330 if (array
->type
->is_array()) {
1331 /* If the array is a variable dereference, it dereferences the
1332 * whole array, by definition. Use this to get the variable.
1334 * FINISHME: Should some methods for getting / setting / testing
1335 * FINISHME: array access limits be added to ir_dereference?
1337 ir_variable
*const v
= array
->whole_variable_referenced();
1338 if ((v
!= NULL
) && (unsigned(idx
) > v
->max_array_access
))
1339 v
->max_array_access
= idx
;
1341 } else if (array
->type
->array_size() == 0) {
1342 _mesa_glsl_error(&loc
, state
, "unsized array index must be constant");
1344 if (array
->type
->is_array()) {
1345 /* whole_variable_referenced can return NULL if the array is a
1346 * member of a structure. In this case it is safe to not update
1347 * the max_array_access field because it is never used for fields
1350 ir_variable
*v
= array
->whole_variable_referenced();
1352 v
->max_array_access
= array
->type
->array_size();
1357 result
->type
= glsl_type::error_type
;
1359 type
= result
->type
;
1363 case ast_function_call
:
1364 /* Should *NEVER* get here. ast_function_call should always be handled
1365 * by ast_function_expression::hir.
1370 case ast_identifier
: {
1371 /* ast_identifier can appear several places in a full abstract syntax
1372 * tree. This particular use must be at location specified in the grammar
1373 * as 'variable_identifier'.
1376 state
->symbols
->get_variable(this->primary_expression
.identifier
);
1378 result
= new(ctx
) ir_dereference_variable(var
);
1381 type
= result
->type
;
1383 _mesa_glsl_error(& loc
, state
, "`%s' undeclared",
1384 this->primary_expression
.identifier
);
1386 error_emitted
= true;
1391 case ast_int_constant
:
1392 type
= glsl_type::int_type
;
1393 result
= new(ctx
) ir_constant(this->primary_expression
.int_constant
);
1396 case ast_uint_constant
:
1397 type
= glsl_type::uint_type
;
1398 result
= new(ctx
) ir_constant(this->primary_expression
.uint_constant
);
1401 case ast_float_constant
:
1402 type
= glsl_type::float_type
;
1403 result
= new(ctx
) ir_constant(this->primary_expression
.float_constant
);
1406 case ast_bool_constant
:
1407 type
= glsl_type::bool_type
;
1408 result
= new(ctx
) ir_constant(bool(this->primary_expression
.bool_constant
));
1411 case ast_sequence
: {
1412 /* It should not be possible to generate a sequence in the AST without
1413 * any expressions in it.
1415 assert(!this->expressions
.is_empty());
1417 /* The r-value of a sequence is the last expression in the sequence. If
1418 * the other expressions in the sequence do not have side-effects (and
1419 * therefore add instructions to the instruction list), they get dropped
1422 foreach_list_typed (ast_node
, ast
, link
, &this->expressions
)
1423 result
= ast
->hir(instructions
, state
);
1425 type
= result
->type
;
1427 /* Any errors should have already been emitted in the loop above.
1429 error_emitted
= true;
1434 if (type
->is_error() && !error_emitted
)
1435 _mesa_glsl_error(& loc
, state
, "type mismatch");
1442 ast_expression_statement::hir(exec_list
*instructions
,
1443 struct _mesa_glsl_parse_state
*state
)
1445 /* It is possible to have expression statements that don't have an
1446 * expression. This is the solitary semicolon:
1448 * for (i = 0; i < 5; i++)
1451 * In this case the expression will be NULL. Test for NULL and don't do
1452 * anything in that case.
1454 if (expression
!= NULL
)
1455 expression
->hir(instructions
, state
);
1457 /* Statements do not have r-values.
1464 ast_compound_statement::hir(exec_list
*instructions
,
1465 struct _mesa_glsl_parse_state
*state
)
1468 state
->symbols
->push_scope();
1470 foreach_list_typed (ast_node
, ast
, link
, &this->statements
)
1471 ast
->hir(instructions
, state
);
1474 state
->symbols
->pop_scope();
1476 /* Compound statements do not have r-values.
1482 static const glsl_type
*
1483 process_array_type(YYLTYPE
*loc
, const glsl_type
*base
, ast_node
*array_size
,
1484 struct _mesa_glsl_parse_state
*state
)
1486 unsigned length
= 0;
1488 /* FINISHME: Reject delcarations of multidimensional arrays. */
1490 if (array_size
!= NULL
) {
1491 exec_list dummy_instructions
;
1492 ir_rvalue
*const ir
= array_size
->hir(& dummy_instructions
, state
);
1493 YYLTYPE loc
= array_size
->get_location();
1495 /* FINISHME: Verify that the grammar forbids side-effects in array
1496 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1498 assert(dummy_instructions
.is_empty());
1501 if (!ir
->type
->is_integer()) {
1502 _mesa_glsl_error(& loc
, state
, "array size must be integer type");
1503 } else if (!ir
->type
->is_scalar()) {
1504 _mesa_glsl_error(& loc
, state
, "array size must be scalar type");
1506 ir_constant
*const size
= ir
->constant_expression_value();
1509 _mesa_glsl_error(& loc
, state
, "array size must be a "
1510 "constant valued expression");
1511 } else if (size
->value
.i
[0] <= 0) {
1512 _mesa_glsl_error(& loc
, state
, "array size must be > 0");
1514 assert(size
->type
== ir
->type
);
1515 length
= size
->value
.u
[0];
1519 } else if (state
->es_shader
) {
1520 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1521 * array declarations have been removed from the language.
1523 _mesa_glsl_error(loc
, state
, "unsized array declarations are not "
1524 "allowed in GLSL ES 1.00.");
1527 return glsl_type::get_array_instance(base
, length
);
1532 ast_type_specifier::glsl_type(const char **name
,
1533 struct _mesa_glsl_parse_state
*state
) const
1535 const struct glsl_type
*type
;
1537 type
= state
->symbols
->get_type(this->type_name
);
1538 *name
= this->type_name
;
1540 if (this->is_array
) {
1541 YYLTYPE loc
= this->get_location();
1542 type
= process_array_type(&loc
, type
, this->array_size
, state
);
1550 apply_type_qualifier_to_variable(const struct ast_type_qualifier
*qual
,
1552 struct _mesa_glsl_parse_state
*state
,
1555 if (qual
->invariant
)
1558 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1559 if (qual
->constant
|| qual
->attribute
|| qual
->uniform
1560 || (qual
->varying
&& (state
->target
== fragment_shader
)))
1566 if (qual
->attribute
&& state
->target
!= vertex_shader
) {
1567 var
->type
= glsl_type::error_type
;
1568 _mesa_glsl_error(loc
, state
,
1569 "`attribute' variables may not be declared in the "
1571 _mesa_glsl_shader_target_name(state
->target
));
1574 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1576 * "The varying qualifier can be used only with the data types
1577 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1580 if (qual
->varying
) {
1581 const glsl_type
*non_array_type
;
1583 if (var
->type
&& var
->type
->is_array())
1584 non_array_type
= var
->type
->fields
.array
;
1586 non_array_type
= var
->type
;
1588 if (non_array_type
&& non_array_type
->base_type
!= GLSL_TYPE_FLOAT
) {
1589 var
->type
= glsl_type::error_type
;
1590 _mesa_glsl_error(loc
, state
,
1591 "varying variables must be of base type float");
1595 /* If there is no qualifier that changes the mode of the variable, leave
1596 * the setting alone.
1598 if (qual
->in
&& qual
->out
)
1599 var
->mode
= ir_var_inout
;
1600 else if (qual
->attribute
|| qual
->in
1601 || (qual
->varying
&& (state
->target
== fragment_shader
)))
1602 var
->mode
= ir_var_in
;
1603 else if (qual
->out
|| (qual
->varying
&& (state
->target
== vertex_shader
)))
1604 var
->mode
= ir_var_out
;
1605 else if (qual
->uniform
)
1606 var
->mode
= ir_var_uniform
;
1609 var
->interpolation
= ir_var_flat
;
1610 else if (qual
->noperspective
)
1611 var
->interpolation
= ir_var_noperspective
;
1613 var
->interpolation
= ir_var_smooth
;
1615 var
->pixel_center_integer
= qual
->pixel_center_integer
;
1616 var
->origin_upper_left
= qual
->origin_upper_left
;
1617 if ((qual
->origin_upper_left
|| qual
->pixel_center_integer
)
1618 && (strcmp(var
->name
, "gl_FragCoord") != 0)) {
1619 const char *const qual_string
= (qual
->origin_upper_left
)
1620 ? "origin_upper_left" : "pixel_center_integer";
1622 _mesa_glsl_error(loc
, state
,
1623 "layout qualifier `%s' can only be applied to "
1624 "fragment shader input `gl_FragCoord'",
1628 if (var
->type
->is_array() && state
->language_version
!= 110) {
1629 var
->array_lvalue
= true;
1635 ast_declarator_list::hir(exec_list
*instructions
,
1636 struct _mesa_glsl_parse_state
*state
)
1639 const struct glsl_type
*decl_type
;
1640 const char *type_name
= NULL
;
1641 ir_rvalue
*result
= NULL
;
1642 YYLTYPE loc
= this->get_location();
1644 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1646 * "To ensure that a particular output variable is invariant, it is
1647 * necessary to use the invariant qualifier. It can either be used to
1648 * qualify a previously declared variable as being invariant
1650 * invariant gl_Position; // make existing gl_Position be invariant"
1652 * In these cases the parser will set the 'invariant' flag in the declarator
1653 * list, and the type will be NULL.
1655 if (this->invariant
) {
1656 assert(this->type
== NULL
);
1658 if (state
->current_function
!= NULL
) {
1659 _mesa_glsl_error(& loc
, state
,
1660 "All uses of `invariant' keyword must be at global "
1664 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
1665 assert(!decl
->is_array
);
1666 assert(decl
->array_size
== NULL
);
1667 assert(decl
->initializer
== NULL
);
1669 ir_variable
*const earlier
=
1670 state
->symbols
->get_variable(decl
->identifier
);
1671 if (earlier
== NULL
) {
1672 _mesa_glsl_error(& loc
, state
,
1673 "Undeclared variable `%s' cannot be marked "
1674 "invariant\n", decl
->identifier
);
1675 } else if ((state
->target
== vertex_shader
)
1676 && (earlier
->mode
!= ir_var_out
)) {
1677 _mesa_glsl_error(& loc
, state
,
1678 "`%s' cannot be marked invariant, vertex shader "
1679 "outputs only\n", decl
->identifier
);
1680 } else if ((state
->target
== fragment_shader
)
1681 && (earlier
->mode
!= ir_var_in
)) {
1682 _mesa_glsl_error(& loc
, state
,
1683 "`%s' cannot be marked invariant, fragment shader "
1684 "inputs only\n", decl
->identifier
);
1686 earlier
->invariant
= true;
1690 /* Invariant redeclarations do not have r-values.
1695 assert(this->type
!= NULL
);
1696 assert(!this->invariant
);
1698 /* The type specifier may contain a structure definition. Process that
1699 * before any of the variable declarations.
1701 (void) this->type
->specifier
->hir(instructions
, state
);
1703 decl_type
= this->type
->specifier
->glsl_type(& type_name
, state
);
1704 if (this->declarations
.is_empty()) {
1705 /* The only valid case where the declaration list can be empty is when
1706 * the declaration is setting the default precision of a built-in type
1707 * (e.g., 'precision highp vec4;').
1710 if (decl_type
!= NULL
) {
1712 _mesa_glsl_error(& loc
, state
, "incomplete declaration");
1716 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
1717 const struct glsl_type
*var_type
;
1720 /* FINISHME: Emit a warning if a variable declaration shadows a
1721 * FINISHME: declaration at a higher scope.
1724 if ((decl_type
== NULL
) || decl_type
->is_void()) {
1725 if (type_name
!= NULL
) {
1726 _mesa_glsl_error(& loc
, state
,
1727 "invalid type `%s' in declaration of `%s'",
1728 type_name
, decl
->identifier
);
1730 _mesa_glsl_error(& loc
, state
,
1731 "invalid type in declaration of `%s'",
1737 if (decl
->is_array
) {
1738 var_type
= process_array_type(&loc
, decl_type
, decl
->array_size
,
1741 var_type
= decl_type
;
1744 var
= new(ctx
) ir_variable(var_type
, decl
->identifier
, ir_var_auto
);
1746 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1748 * "Global variables can only use the qualifiers const,
1749 * attribute, uni form, or varying. Only one may be
1752 * Local variables can only use the qualifier const."
1754 * This is relaxed in GLSL 1.30.
1756 if (state
->language_version
< 120) {
1757 if (this->type
->qualifier
.out
) {
1758 _mesa_glsl_error(& loc
, state
,
1759 "`out' qualifier in declaration of `%s' "
1760 "only valid for function parameters in GLSL 1.10.",
1763 if (this->type
->qualifier
.in
) {
1764 _mesa_glsl_error(& loc
, state
,
1765 "`in' qualifier in declaration of `%s' "
1766 "only valid for function parameters in GLSL 1.10.",
1769 /* FINISHME: Test for other invalid qualifiers. */
1772 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
,
1775 if (this->type
->qualifier
.invariant
) {
1776 if ((state
->target
== vertex_shader
) && !(var
->mode
== ir_var_out
||
1777 var
->mode
== ir_var_inout
)) {
1778 /* FINISHME: Note that this doesn't work for invariant on
1779 * a function signature outval
1781 _mesa_glsl_error(& loc
, state
,
1782 "`%s' cannot be marked invariant, vertex shader "
1783 "outputs only\n", var
->name
);
1784 } else if ((state
->target
== fragment_shader
) &&
1785 !(var
->mode
== ir_var_in
|| var
->mode
== ir_var_inout
)) {
1786 /* FINISHME: Note that this doesn't work for invariant on
1787 * a function signature inval
1789 _mesa_glsl_error(& loc
, state
,
1790 "`%s' cannot be marked invariant, fragment shader "
1791 "inputs only\n", var
->name
);
1795 if (state
->current_function
!= NULL
) {
1796 const char *mode
= NULL
;
1797 const char *extra
= "";
1799 /* There is no need to check for 'inout' here because the parser will
1800 * only allow that in function parameter lists.
1802 if (this->type
->qualifier
.attribute
) {
1804 } else if (this->type
->qualifier
.uniform
) {
1806 } else if (this->type
->qualifier
.varying
) {
1808 } else if (this->type
->qualifier
.in
) {
1810 extra
= " or in function parameter list";
1811 } else if (this->type
->qualifier
.out
) {
1813 extra
= " or in function parameter list";
1817 _mesa_glsl_error(& loc
, state
,
1818 "%s variable `%s' must be declared at "
1820 mode
, var
->name
, extra
);
1822 } else if (var
->mode
== ir_var_in
) {
1823 if (state
->target
== vertex_shader
) {
1824 bool error_emitted
= false;
1826 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1828 * "Vertex shader inputs can only be float, floating-point
1829 * vectors, matrices, signed and unsigned integers and integer
1830 * vectors. Vertex shader inputs can also form arrays of these
1831 * types, but not structures."
1833 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1835 * "Vertex shader inputs can only be float, floating-point
1836 * vectors, matrices, signed and unsigned integers and integer
1837 * vectors. They cannot be arrays or structures."
1839 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1841 * "The attribute qualifier can be used only with float,
1842 * floating-point vectors, and matrices. Attribute variables
1843 * cannot be declared as arrays or structures."
1845 const glsl_type
*check_type
= var
->type
->is_array()
1846 ? var
->type
->fields
.array
: var
->type
;
1848 switch (check_type
->base_type
) {
1849 case GLSL_TYPE_FLOAT
:
1851 case GLSL_TYPE_UINT
:
1853 if (state
->language_version
> 120)
1857 _mesa_glsl_error(& loc
, state
,
1858 "vertex shader input / attribute cannot have "
1860 var
->type
->is_array() ? "array of " : "",
1862 error_emitted
= true;
1865 if (!error_emitted
&& (state
->language_version
<= 130)
1866 && var
->type
->is_array()) {
1867 _mesa_glsl_error(& loc
, state
,
1868 "vertex shader input / attribute cannot have "
1870 error_emitted
= true;
1875 /* Process the initializer and add its instructions to a temporary
1876 * list. This list will be added to the instruction stream (below) after
1877 * the declaration is added. This is done because in some cases (such as
1878 * redeclarations) the declaration may not actually be added to the
1879 * instruction stream.
1881 exec_list initializer_instructions
;
1882 if (decl
->initializer
!= NULL
) {
1883 YYLTYPE initializer_loc
= decl
->initializer
->get_location();
1885 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1887 * "All uniform variables are read-only and are initialized either
1888 * directly by an application via API commands, or indirectly by
1891 if ((state
->language_version
<= 110)
1892 && (var
->mode
== ir_var_uniform
)) {
1893 _mesa_glsl_error(& initializer_loc
, state
,
1894 "cannot initialize uniforms in GLSL 1.10");
1897 if (var
->type
->is_sampler()) {
1898 _mesa_glsl_error(& initializer_loc
, state
,
1899 "cannot initialize samplers");
1902 if ((var
->mode
== ir_var_in
) && (state
->current_function
== NULL
)) {
1903 _mesa_glsl_error(& initializer_loc
, state
,
1904 "cannot initialize %s shader input / %s",
1905 _mesa_glsl_shader_target_name(state
->target
),
1906 (state
->target
== vertex_shader
)
1907 ? "attribute" : "varying");
1910 ir_dereference
*const lhs
= new(ctx
) ir_dereference_variable(var
);
1911 ir_rvalue
*rhs
= decl
->initializer
->hir(&initializer_instructions
,
1914 /* Calculate the constant value if this is a const or uniform
1917 if (this->type
->qualifier
.constant
|| this->type
->qualifier
.uniform
) {
1918 ir_rvalue
*new_rhs
= validate_assignment(state
, var
->type
, rhs
);
1919 if (new_rhs
!= NULL
) {
1922 ir_constant
*constant_value
= rhs
->constant_expression_value();
1923 if (!constant_value
) {
1924 _mesa_glsl_error(& initializer_loc
, state
,
1925 "initializer of %s variable `%s' must be a "
1926 "constant expression",
1927 (this->type
->qualifier
.constant
)
1928 ? "const" : "uniform",
1930 if (var
->type
->is_numeric()) {
1931 /* Reduce cascading errors. */
1932 var
->constant_value
= ir_constant::zero(ctx
, var
->type
);
1935 rhs
= constant_value
;
1936 var
->constant_value
= constant_value
;
1939 _mesa_glsl_error(&initializer_loc
, state
,
1940 "initializer of type %s cannot be assigned to "
1941 "variable of type %s",
1942 rhs
->type
->name
, var
->type
->name
);
1943 if (var
->type
->is_numeric()) {
1944 /* Reduce cascading errors. */
1945 var
->constant_value
= ir_constant::zero(ctx
, var
->type
);
1950 if (rhs
&& !rhs
->type
->is_error()) {
1951 bool temp
= var
->read_only
;
1952 if (this->type
->qualifier
.constant
)
1953 var
->read_only
= false;
1955 /* Never emit code to initialize a uniform.
1957 if (!this->type
->qualifier
.uniform
)
1958 result
= do_assignment(&initializer_instructions
, state
,
1960 this->get_location());
1961 var
->read_only
= temp
;
1965 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1967 * "It is an error to write to a const variable outside of
1968 * its declaration, so they must be initialized when
1971 if (this->type
->qualifier
.constant
&& decl
->initializer
== NULL
) {
1972 _mesa_glsl_error(& loc
, state
,
1973 "const declaration of `%s' must be initialized");
1976 /* Check if this declaration is actually a re-declaration, either to
1977 * resize an array or add qualifiers to an existing variable.
1979 * This is allowed for variables in the current scope, or when at
1980 * global scope (for built-ins in the implicit outer scope).
1982 ir_variable
*earlier
= state
->symbols
->get_variable(decl
->identifier
);
1983 if (earlier
!= NULL
&& (state
->current_function
== NULL
||
1984 state
->symbols
->name_declared_this_scope(decl
->identifier
))) {
1986 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1988 * "It is legal to declare an array without a size and then
1989 * later re-declare the same name as an array of the same
1990 * type and specify a size."
1992 if ((earlier
->type
->array_size() == 0)
1993 && var
->type
->is_array()
1994 && (var
->type
->element_type() == earlier
->type
->element_type())) {
1995 /* FINISHME: This doesn't match the qualifiers on the two
1996 * FINISHME: declarations. It's not 100% clear whether this is
1997 * FINISHME: required or not.
2000 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2002 * "The size [of gl_TexCoord] can be at most
2003 * gl_MaxTextureCoords."
2005 const unsigned size
= unsigned(var
->type
->array_size());
2006 if ((strcmp("gl_TexCoord", var
->name
) == 0)
2007 && (size
> state
->Const
.MaxTextureCoords
)) {
2008 YYLTYPE loc
= this->get_location();
2010 _mesa_glsl_error(& loc
, state
, "`gl_TexCoord' array size cannot "
2011 "be larger than gl_MaxTextureCoords (%u)\n",
2012 state
->Const
.MaxTextureCoords
);
2013 } else if ((size
> 0) && (size
<= earlier
->max_array_access
)) {
2014 YYLTYPE loc
= this->get_location();
2016 _mesa_glsl_error(& loc
, state
, "array size must be > %u due to "
2018 earlier
->max_array_access
);
2021 earlier
->type
= var
->type
;
2024 } else if (state
->extensions
->ARB_fragment_coord_conventions
2025 && strcmp(var
->name
, "gl_FragCoord") == 0
2026 && earlier
->type
== var
->type
2027 && earlier
->mode
== var
->mode
) {
2028 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2031 earlier
->origin_upper_left
= var
->origin_upper_left
;
2032 earlier
->pixel_center_integer
= var
->pixel_center_integer
;
2034 YYLTYPE loc
= this->get_location();
2035 _mesa_glsl_error(&loc
, state
, "`%s' redeclared", decl
->identifier
);
2041 /* By now, we know it's a new variable declaration (we didn't hit the
2042 * above "continue").
2044 * From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2046 * "Identifiers starting with "gl_" are reserved for use by
2047 * OpenGL, and may not be declared in a shader as either a
2048 * variable or a function."
2050 if (strncmp(decl
->identifier
, "gl_", 3) == 0)
2051 _mesa_glsl_error(& loc
, state
,
2052 "identifier `%s' uses reserved `gl_' prefix",
2055 /* Add the variable to the symbol table. Note that the initializer's
2056 * IR was already processed earlier (though it hasn't been emitted yet),
2057 * without the variable in scope.
2059 * This differs from most C-like languages, but it follows the GLSL
2060 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2063 * "Within a declaration, the scope of a name starts immediately
2064 * after the initializer if present or immediately after the name
2065 * being declared if not."
2067 if (!state
->symbols
->add_variable(var
->name
, var
)) {
2068 YYLTYPE loc
= this->get_location();
2069 _mesa_glsl_error(&loc
, state
, "name `%s' already taken in the "
2070 "current scope", decl
->identifier
);
2074 /* Push the variable declaration to the top. It means that all
2075 * the variable declarations will appear in a funny
2076 * last-to-first order, but otherwise we run into trouble if a
2077 * function is prototyped, a global var is decled, then the
2078 * function is defined with usage of the global var. See
2079 * glslparsertest's CorrectModule.frag.
2081 instructions
->push_head(var
);
2082 instructions
->append_list(&initializer_instructions
);
2086 /* Generally, variable declarations do not have r-values. However,
2087 * one is used for the declaration in
2089 * while (bool b = some_condition()) {
2093 * so we return the rvalue from the last seen declaration here.
2100 ast_parameter_declarator::hir(exec_list
*instructions
,
2101 struct _mesa_glsl_parse_state
*state
)
2104 const struct glsl_type
*type
;
2105 const char *name
= NULL
;
2106 YYLTYPE loc
= this->get_location();
2108 type
= this->type
->specifier
->glsl_type(& name
, state
);
2112 _mesa_glsl_error(& loc
, state
,
2113 "invalid type `%s' in declaration of `%s'",
2114 name
, this->identifier
);
2116 _mesa_glsl_error(& loc
, state
,
2117 "invalid type in declaration of `%s'",
2121 type
= glsl_type::error_type
;
2124 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2126 * "Functions that accept no input arguments need not use void in the
2127 * argument list because prototypes (or definitions) are required and
2128 * therefore there is no ambiguity when an empty argument list "( )" is
2129 * declared. The idiom "(void)" as a parameter list is provided for
2132 * Placing this check here prevents a void parameter being set up
2133 * for a function, which avoids tripping up checks for main taking
2134 * parameters and lookups of an unnamed symbol.
2136 if (type
->is_void()) {
2137 if (this->identifier
!= NULL
)
2138 _mesa_glsl_error(& loc
, state
,
2139 "named parameter cannot have type `void'");
2145 if (formal_parameter
&& (this->identifier
== NULL
)) {
2146 _mesa_glsl_error(& loc
, state
, "formal parameter lacks a name");
2150 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2151 * call already handled the "vec4[..] foo" case.
2153 if (this->is_array
) {
2154 type
= process_array_type(&loc
, type
, this->array_size
, state
);
2157 if (type
->array_size() == 0) {
2158 _mesa_glsl_error(&loc
, state
, "arrays passed as parameters must have "
2159 "a declared size.");
2160 type
= glsl_type::error_type
;
2164 ir_variable
*var
= new(ctx
) ir_variable(type
, this->identifier
, ir_var_in
);
2166 /* Apply any specified qualifiers to the parameter declaration. Note that
2167 * for function parameters the default mode is 'in'.
2169 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
, & loc
);
2171 instructions
->push_tail(var
);
2173 /* Parameter declarations do not have r-values.
2180 ast_parameter_declarator::parameters_to_hir(exec_list
*ast_parameters
,
2182 exec_list
*ir_parameters
,
2183 _mesa_glsl_parse_state
*state
)
2185 ast_parameter_declarator
*void_param
= NULL
;
2188 foreach_list_typed (ast_parameter_declarator
, param
, link
, ast_parameters
) {
2189 param
->formal_parameter
= formal
;
2190 param
->hir(ir_parameters
, state
);
2198 if ((void_param
!= NULL
) && (count
> 1)) {
2199 YYLTYPE loc
= void_param
->get_location();
2201 _mesa_glsl_error(& loc
, state
,
2202 "`void' parameter must be only parameter");
2208 ast_function::hir(exec_list
*instructions
,
2209 struct _mesa_glsl_parse_state
*state
)
2212 ir_function
*f
= NULL
;
2213 ir_function_signature
*sig
= NULL
;
2214 exec_list hir_parameters
;
2216 const char *const name
= identifier
;
2218 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2220 * "Function declarations (prototypes) cannot occur inside of functions;
2221 * they must be at global scope, or for the built-in functions, outside
2222 * the global scope."
2224 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2226 * "User defined functions may only be defined within the global scope."
2228 * Note that this language does not appear in GLSL 1.10.
2230 if ((state
->current_function
!= NULL
) && (state
->language_version
!= 110)) {
2231 YYLTYPE loc
= this->get_location();
2232 _mesa_glsl_error(&loc
, state
,
2233 "declaration of function `%s' not allowed within "
2234 "function body", name
);
2237 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2239 * "Identifiers starting with "gl_" are reserved for use by
2240 * OpenGL, and may not be declared in a shader as either a
2241 * variable or a function."
2243 if (strncmp(name
, "gl_", 3) == 0) {
2244 YYLTYPE loc
= this->get_location();
2245 _mesa_glsl_error(&loc
, state
,
2246 "identifier `%s' uses reserved `gl_' prefix", name
);
2249 /* Convert the list of function parameters to HIR now so that they can be
2250 * used below to compare this function's signature with previously seen
2251 * signatures for functions with the same name.
2253 ast_parameter_declarator::parameters_to_hir(& this->parameters
,
2255 & hir_parameters
, state
);
2257 const char *return_type_name
;
2258 const glsl_type
*return_type
=
2259 this->return_type
->specifier
->glsl_type(& return_type_name
, state
);
2262 YYLTYPE loc
= this->get_location();
2263 _mesa_glsl_error(&loc
, state
,
2264 "function `%s' has undeclared return type `%s'",
2265 name
, return_type_name
);
2266 return_type
= glsl_type::error_type
;
2269 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2270 * "No qualifier is allowed on the return type of a function."
2272 if (this->return_type
->has_qualifiers()) {
2273 YYLTYPE loc
= this->get_location();
2274 _mesa_glsl_error(& loc
, state
,
2275 "function `%s' return type has qualifiers", name
);
2278 /* Verify that this function's signature either doesn't match a previously
2279 * seen signature for a function with the same name, or, if a match is found,
2280 * that the previously seen signature does not have an associated definition.
2282 f
= state
->symbols
->get_function(name
);
2283 if (f
!= NULL
&& (state
->es_shader
|| f
->has_user_signature())) {
2284 sig
= f
->exact_matching_signature(&hir_parameters
);
2286 const char *badvar
= sig
->qualifiers_match(&hir_parameters
);
2287 if (badvar
!= NULL
) {
2288 YYLTYPE loc
= this->get_location();
2290 _mesa_glsl_error(&loc
, state
, "function `%s' parameter `%s' "
2291 "qualifiers don't match prototype", name
, badvar
);
2294 if (sig
->return_type
!= return_type
) {
2295 YYLTYPE loc
= this->get_location();
2297 _mesa_glsl_error(&loc
, state
, "function `%s' return type doesn't "
2298 "match prototype", name
);
2301 if (is_definition
&& sig
->is_defined
) {
2302 YYLTYPE loc
= this->get_location();
2304 _mesa_glsl_error(& loc
, state
, "function `%s' redefined", name
);
2308 f
= new(ctx
) ir_function(name
);
2309 if (!state
->symbols
->add_function(f
->name
, f
)) {
2310 /* This function name shadows a non-function use of the same name. */
2311 YYLTYPE loc
= this->get_location();
2313 _mesa_glsl_error(&loc
, state
, "function name `%s' conflicts with "
2314 "non-function", name
);
2318 /* Emit the new function header */
2319 if (state
->current_function
== NULL
)
2320 instructions
->push_tail(f
);
2322 /* IR invariants disallow function declarations or definitions nested
2323 * within other function definitions. Insert the new ir_function
2324 * block in the instruction sequence before the ir_function block
2325 * containing the current ir_function_signature.
2327 * This can only happen in a GLSL 1.10 shader. In all other GLSL
2328 * versions this nesting is disallowed. There is a check for this at
2329 * the top of this function.
2331 ir_function
*const curr
=
2332 const_cast<ir_function
*>(state
->current_function
->function());
2334 curr
->insert_before(f
);
2338 /* Verify the return type of main() */
2339 if (strcmp(name
, "main") == 0) {
2340 if (! return_type
->is_void()) {
2341 YYLTYPE loc
= this->get_location();
2343 _mesa_glsl_error(& loc
, state
, "main() must return void");
2346 if (!hir_parameters
.is_empty()) {
2347 YYLTYPE loc
= this->get_location();
2349 _mesa_glsl_error(& loc
, state
, "main() must not take any parameters");
2353 /* Finish storing the information about this new function in its signature.
2356 sig
= new(ctx
) ir_function_signature(return_type
);
2357 f
->add_signature(sig
);
2360 sig
->replace_parameters(&hir_parameters
);
2363 /* Function declarations (prototypes) do not have r-values.
2370 ast_function_definition::hir(exec_list
*instructions
,
2371 struct _mesa_glsl_parse_state
*state
)
2373 prototype
->is_definition
= true;
2374 prototype
->hir(instructions
, state
);
2376 ir_function_signature
*signature
= prototype
->signature
;
2377 if (signature
== NULL
)
2380 assert(state
->current_function
== NULL
);
2381 state
->current_function
= signature
;
2382 state
->found_return
= false;
2384 /* Duplicate parameters declared in the prototype as concrete variables.
2385 * Add these to the symbol table.
2387 state
->symbols
->push_scope();
2388 foreach_iter(exec_list_iterator
, iter
, signature
->parameters
) {
2389 ir_variable
*const var
= ((ir_instruction
*) iter
.get())->as_variable();
2391 assert(var
!= NULL
);
2393 /* The only way a parameter would "exist" is if two parameters have
2396 if (state
->symbols
->name_declared_this_scope(var
->name
)) {
2397 YYLTYPE loc
= this->get_location();
2399 _mesa_glsl_error(& loc
, state
, "parameter `%s' redeclared", var
->name
);
2401 state
->symbols
->add_variable(var
->name
, var
);
2405 /* Convert the body of the function to HIR. */
2406 this->body
->hir(&signature
->body
, state
);
2407 signature
->is_defined
= true;
2409 state
->symbols
->pop_scope();
2411 assert(state
->current_function
== signature
);
2412 state
->current_function
= NULL
;
2414 if (!signature
->return_type
->is_void() && !state
->found_return
) {
2415 YYLTYPE loc
= this->get_location();
2416 _mesa_glsl_error(& loc
, state
, "function `%s' has non-void return type "
2417 "%s, but no return statement",
2418 signature
->function_name(),
2419 signature
->return_type
->name
);
2422 /* Function definitions do not have r-values.
2429 ast_jump_statement::hir(exec_list
*instructions
,
2430 struct _mesa_glsl_parse_state
*state
)
2437 assert(state
->current_function
);
2439 if (opt_return_value
) {
2440 if (state
->current_function
->return_type
->base_type
==
2442 YYLTYPE loc
= this->get_location();
2444 _mesa_glsl_error(& loc
, state
,
2445 "`return` with a value, in function `%s' "
2447 state
->current_function
->function_name());
2450 ir_expression
*const ret
= (ir_expression
*)
2451 opt_return_value
->hir(instructions
, state
);
2452 assert(ret
!= NULL
);
2454 /* Implicit conversions are not allowed for return values. */
2455 if (state
->current_function
->return_type
!= ret
->type
) {
2456 YYLTYPE loc
= this->get_location();
2458 _mesa_glsl_error(& loc
, state
,
2459 "`return' with wrong type %s, in function `%s' "
2462 state
->current_function
->function_name(),
2463 state
->current_function
->return_type
->name
);
2466 inst
= new(ctx
) ir_return(ret
);
2468 if (state
->current_function
->return_type
->base_type
!=
2470 YYLTYPE loc
= this->get_location();
2472 _mesa_glsl_error(& loc
, state
,
2473 "`return' with no value, in function %s returning "
2475 state
->current_function
->function_name());
2477 inst
= new(ctx
) ir_return
;
2480 state
->found_return
= true;
2481 instructions
->push_tail(inst
);
2486 if (state
->target
!= fragment_shader
) {
2487 YYLTYPE loc
= this->get_location();
2489 _mesa_glsl_error(& loc
, state
,
2490 "`discard' may only appear in a fragment shader");
2492 instructions
->push_tail(new(ctx
) ir_discard
);
2497 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2498 * FINISHME: and they use a different IR instruction for 'break'.
2500 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2501 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2504 if (state
->loop_or_switch_nesting
== NULL
) {
2505 YYLTYPE loc
= this->get_location();
2507 _mesa_glsl_error(& loc
, state
,
2508 "`%s' may only appear in a loop",
2509 (mode
== ast_break
) ? "break" : "continue");
2511 ir_loop
*const loop
= state
->loop_or_switch_nesting
->as_loop();
2513 /* Inline the for loop expression again, since we don't know
2514 * where near the end of the loop body the normal copy of it
2515 * is going to be placed.
2517 if (mode
== ast_continue
&&
2518 state
->loop_or_switch_nesting_ast
->rest_expression
) {
2519 state
->loop_or_switch_nesting_ast
->rest_expression
->hir(instructions
,
2524 ir_loop_jump
*const jump
=
2525 new(ctx
) ir_loop_jump((mode
== ast_break
)
2526 ? ir_loop_jump::jump_break
2527 : ir_loop_jump::jump_continue
);
2528 instructions
->push_tail(jump
);
2535 /* Jump instructions do not have r-values.
2542 ast_selection_statement::hir(exec_list
*instructions
,
2543 struct _mesa_glsl_parse_state
*state
)
2547 ir_rvalue
*const condition
= this->condition
->hir(instructions
, state
);
2549 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2551 * "Any expression whose type evaluates to a Boolean can be used as the
2552 * conditional expression bool-expression. Vector types are not accepted
2553 * as the expression to if."
2555 * The checks are separated so that higher quality diagnostics can be
2556 * generated for cases where both rules are violated.
2558 if (!condition
->type
->is_boolean() || !condition
->type
->is_scalar()) {
2559 YYLTYPE loc
= this->condition
->get_location();
2561 _mesa_glsl_error(& loc
, state
, "if-statement condition must be scalar "
2565 ir_if
*const stmt
= new(ctx
) ir_if(condition
);
2567 if (then_statement
!= NULL
) {
2568 state
->symbols
->push_scope();
2569 then_statement
->hir(& stmt
->then_instructions
, state
);
2570 state
->symbols
->pop_scope();
2573 if (else_statement
!= NULL
) {
2574 state
->symbols
->push_scope();
2575 else_statement
->hir(& stmt
->else_instructions
, state
);
2576 state
->symbols
->pop_scope();
2579 instructions
->push_tail(stmt
);
2581 /* if-statements do not have r-values.
2588 ast_iteration_statement::condition_to_hir(ir_loop
*stmt
,
2589 struct _mesa_glsl_parse_state
*state
)
2593 if (condition
!= NULL
) {
2594 ir_rvalue
*const cond
=
2595 condition
->hir(& stmt
->body_instructions
, state
);
2598 || !cond
->type
->is_boolean() || !cond
->type
->is_scalar()) {
2599 YYLTYPE loc
= condition
->get_location();
2601 _mesa_glsl_error(& loc
, state
,
2602 "loop condition must be scalar boolean");
2604 /* As the first code in the loop body, generate a block that looks
2605 * like 'if (!condition) break;' as the loop termination condition.
2607 ir_rvalue
*const not_cond
=
2608 new(ctx
) ir_expression(ir_unop_logic_not
, glsl_type::bool_type
, cond
,
2611 ir_if
*const if_stmt
= new(ctx
) ir_if(not_cond
);
2613 ir_jump
*const break_stmt
=
2614 new(ctx
) ir_loop_jump(ir_loop_jump::jump_break
);
2616 if_stmt
->then_instructions
.push_tail(break_stmt
);
2617 stmt
->body_instructions
.push_tail(if_stmt
);
2624 ast_iteration_statement::hir(exec_list
*instructions
,
2625 struct _mesa_glsl_parse_state
*state
)
2629 /* For-loops and while-loops start a new scope, but do-while loops do not.
2631 if (mode
!= ast_do_while
)
2632 state
->symbols
->push_scope();
2634 if (init_statement
!= NULL
)
2635 init_statement
->hir(instructions
, state
);
2637 ir_loop
*const stmt
= new(ctx
) ir_loop();
2638 instructions
->push_tail(stmt
);
2640 /* Track the current loop and / or switch-statement nesting.
2642 ir_instruction
*const nesting
= state
->loop_or_switch_nesting
;
2643 ast_iteration_statement
*nesting_ast
= state
->loop_or_switch_nesting_ast
;
2645 state
->loop_or_switch_nesting
= stmt
;
2646 state
->loop_or_switch_nesting_ast
= this;
2648 if (mode
!= ast_do_while
)
2649 condition_to_hir(stmt
, state
);
2652 body
->hir(& stmt
->body_instructions
, state
);
2654 if (rest_expression
!= NULL
)
2655 rest_expression
->hir(& stmt
->body_instructions
, state
);
2657 if (mode
== ast_do_while
)
2658 condition_to_hir(stmt
, state
);
2660 if (mode
!= ast_do_while
)
2661 state
->symbols
->pop_scope();
2663 /* Restore previous nesting before returning.
2665 state
->loop_or_switch_nesting
= nesting
;
2666 state
->loop_or_switch_nesting_ast
= nesting_ast
;
2668 /* Loops do not have r-values.
2675 ast_type_specifier::hir(exec_list
*instructions
,
2676 struct _mesa_glsl_parse_state
*state
)
2678 if (this->structure
!= NULL
)
2679 return this->structure
->hir(instructions
, state
);
2686 ast_struct_specifier::hir(exec_list
*instructions
,
2687 struct _mesa_glsl_parse_state
*state
)
2689 unsigned decl_count
= 0;
2691 /* Make an initial pass over the list of structure fields to determine how
2692 * many there are. Each element in this list is an ast_declarator_list.
2693 * This means that we actually need to count the number of elements in the
2694 * 'declarations' list in each of the elements.
2696 foreach_list_typed (ast_declarator_list
, decl_list
, link
,
2697 &this->declarations
) {
2698 foreach_list_const (decl_ptr
, & decl_list
->declarations
) {
2703 /* Allocate storage for the structure fields and process the field
2704 * declarations. As the declarations are processed, try to also convert
2705 * the types to HIR. This ensures that structure definitions embedded in
2706 * other structure definitions are processed.
2708 glsl_struct_field
*const fields
= talloc_array(state
, glsl_struct_field
,
2712 foreach_list_typed (ast_declarator_list
, decl_list
, link
,
2713 &this->declarations
) {
2714 const char *type_name
;
2716 decl_list
->type
->specifier
->hir(instructions
, state
);
2718 /* Section 10.9 of the GLSL ES 1.00 specification states that
2719 * embedded structure definitions have been removed from the language.
2721 if (state
->es_shader
&& decl_list
->type
->specifier
->structure
!= NULL
) {
2722 YYLTYPE loc
= this->get_location();
2723 _mesa_glsl_error(&loc
, state
, "Embedded structure definitions are "
2724 "not allowed in GLSL ES 1.00.");
2727 const glsl_type
*decl_type
=
2728 decl_list
->type
->specifier
->glsl_type(& type_name
, state
);
2730 foreach_list_typed (ast_declaration
, decl
, link
,
2731 &decl_list
->declarations
) {
2732 const struct glsl_type
*field_type
= decl_type
;
2733 if (decl
->is_array
) {
2734 YYLTYPE loc
= decl
->get_location();
2735 field_type
= process_array_type(&loc
, decl_type
, decl
->array_size
,
2738 fields
[i
].type
= (field_type
!= NULL
)
2739 ? field_type
: glsl_type::error_type
;
2740 fields
[i
].name
= decl
->identifier
;
2745 assert(i
== decl_count
);
2747 const glsl_type
*t
=
2748 glsl_type::get_record_instance(fields
, decl_count
, this->name
);
2750 YYLTYPE loc
= this->get_location();
2751 if (!state
->symbols
->add_type(name
, t
)) {
2752 _mesa_glsl_error(& loc
, state
, "struct `%s' previously defined", name
);
2755 const glsl_type
**s
= (const glsl_type
**)
2756 realloc(state
->user_structures
,
2757 sizeof(state
->user_structures
[0]) *
2758 (state
->num_user_structures
+ 1));
2760 s
[state
->num_user_structures
] = t
;
2761 state
->user_structures
= s
;
2762 state
->num_user_structures
++;
2766 /* Structure type definitions do not have r-values.