glsl2: Add and use new variable mode ir_var_temporary
[mesa/nouveau-pmpeg.git] / src / glsl / ast_function.cpp
blob14c36af9116eb7980ba9f989f2cce836daaaeb3a
1 /*
2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
29 inline unsigned min(unsigned a, unsigned b)
31 return (a < b) ? a : b;
34 static ir_rvalue *
35 convert_component(ir_rvalue *src, const glsl_type *desired_type);
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
42 unsigned count = 0;
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
52 actual_parameters->push_tail(result);
53 count++;
56 return count;
60 static ir_rvalue *
61 process_call(exec_list *instructions, ir_function *f,
62 YYLTYPE *loc, exec_list *actual_parameters,
63 struct _mesa_glsl_parse_state *state)
65 void *ctx = state;
67 ir_function_signature *sig = f->matching_signature(actual_parameters);
69 /* The instructions param will be used when the FINISHMEs below are done */
70 (void) instructions;
72 if (sig != NULL) {
73 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
74 * isn't done in ir_function::matching_signature because that function
75 * cannot generate the necessary diagnostics.
77 exec_list_iterator actual_iter = actual_parameters->iterator();
78 exec_list_iterator formal_iter = sig->parameters.iterator();
80 while (actual_iter.has_next()) {
81 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
82 ir_variable *formal = (ir_variable *) formal_iter.get();
84 assert(actual != NULL);
85 assert(formal != NULL);
87 if ((formal->mode == ir_var_out)
88 || (formal->mode == ir_var_inout)) {
89 if (! actual->is_lvalue()) {
90 /* FINISHME: Log a better diagnostic here. There is no way
91 * FINISHME: to tell the user which parameter is invalid.
93 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
94 (formal->mode == ir_var_out) ? "out" : "inout");
98 if (formal->type->is_numeric() || formal->type->is_boolean()) {
99 ir_rvalue *converted = convert_component(actual, formal->type);
100 actual->replace_with(converted);
103 actual_iter.next();
104 formal_iter.next();
107 /* Always insert the call in the instruction stream, and return a deref
108 * of its return val if it returns a value, since we don't know if
109 * the rvalue is going to be assigned to anything or not.
111 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
112 if (!sig->return_type->is_void()) {
113 ir_variable *var;
114 ir_dereference_variable *deref;
116 var = new(ctx) ir_variable(sig->return_type,
117 talloc_asprintf(ctx, "%s_retval",
118 sig->function_name()),
119 ir_var_temporary);
120 instructions->push_tail(var);
122 deref = new(ctx) ir_dereference_variable(var);
123 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
124 instructions->push_tail(assign);
126 deref = new(ctx) ir_dereference_variable(var);
127 return deref;
128 } else {
129 instructions->push_tail(call);
130 return NULL;
132 } else {
133 /* FINISHME: Log a better error message here. G++ will show the types
134 * FINISHME: of the actual parameters and the set of candidate
135 * FINISHME: functions. A different error should also be logged when
136 * FINISHME: multiple functions match.
138 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
139 f->name);
140 return ir_call::get_error_instruction(ctx);
145 static ir_rvalue *
146 match_function_by_name(exec_list *instructions, const char *name,
147 YYLTYPE *loc, exec_list *actual_parameters,
148 struct _mesa_glsl_parse_state *state)
150 void *ctx = state;
151 ir_function *f = state->symbols->get_function(name);
153 if (f == NULL) {
154 _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
155 return ir_call::get_error_instruction(ctx);
158 /* Once we've determined that the function being called might exist, try
159 * to find an overload of the function that matches the parameters.
161 return process_call(instructions, f, loc, actual_parameters, state);
166 * Perform automatic type conversion of constructor parameters
168 static ir_rvalue *
169 convert_component(ir_rvalue *src, const glsl_type *desired_type)
171 void *ctx = talloc_parent(src);
172 const unsigned a = desired_type->base_type;
173 const unsigned b = src->type->base_type;
174 ir_expression *result = NULL;
176 if (src->type->is_error())
177 return src;
179 assert(a <= GLSL_TYPE_BOOL);
180 assert(b <= GLSL_TYPE_BOOL);
182 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
183 return src;
185 switch (a) {
186 case GLSL_TYPE_UINT:
187 case GLSL_TYPE_INT:
188 if (b == GLSL_TYPE_FLOAT)
189 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
190 else {
191 assert(b == GLSL_TYPE_BOOL);
192 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
194 break;
195 case GLSL_TYPE_FLOAT:
196 switch (b) {
197 case GLSL_TYPE_UINT:
198 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
199 break;
200 case GLSL_TYPE_INT:
201 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
202 break;
203 case GLSL_TYPE_BOOL:
204 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
205 break;
207 break;
208 case GLSL_TYPE_BOOL:
209 switch (b) {
210 case GLSL_TYPE_UINT:
211 case GLSL_TYPE_INT:
212 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
213 break;
214 case GLSL_TYPE_FLOAT:
215 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
216 break;
218 break;
221 assert(result != NULL);
223 ir_constant *const constant = result->constant_expression_value();
224 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
229 * Dereference a specific component from a scalar, vector, or matrix
231 static ir_rvalue *
232 dereference_component(ir_rvalue *src, unsigned component)
234 void *ctx = talloc_parent(src);
235 assert(component < src->type->components());
237 /* If the source is a constant, just create a new constant instead of a
238 * dereference of the existing constant.
240 ir_constant *constant = src->as_constant();
241 if (constant)
242 return new(ctx) ir_constant(constant, component);
244 if (src->type->is_scalar()) {
245 return src;
246 } else if (src->type->is_vector()) {
247 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
248 } else {
249 assert(src->type->is_matrix());
251 /* Dereference a row of the matrix, then call this function again to get
252 * a specific element from that row.
254 const int c = component / src->type->column_type()->vector_elements;
255 const int r = component % src->type->column_type()->vector_elements;
256 ir_constant *const col_index = new(ctx) ir_constant(c);
257 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
259 col->type = src->type->column_type();
261 return dereference_component(col, r);
264 assert(!"Should not get here.");
265 return NULL;
269 static ir_rvalue *
270 process_array_constructor(exec_list *instructions,
271 const glsl_type *constructor_type,
272 YYLTYPE *loc, exec_list *parameters,
273 struct _mesa_glsl_parse_state *state)
275 void *ctx = state;
276 /* Array constructors come in two forms: sized and unsized. Sized array
277 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
278 * variables. In this case the number of parameters must exactly match the
279 * specified size of the array.
281 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
282 * are vec4 variables. In this case the size of the array being constructed
283 * is determined by the number of parameters.
285 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
287 * "There must be exactly the same number of arguments as the size of
288 * the array being constructed. If no size is present in the
289 * constructor, then the array is explicitly sized to the number of
290 * arguments provided. The arguments are assigned in order, starting at
291 * element 0, to the elements of the constructed array. Each argument
292 * must be the same type as the element type of the array, or be a type
293 * that can be converted to the element type of the array according to
294 * Section 4.1.10 "Implicit Conversions.""
296 exec_list actual_parameters;
297 const unsigned parameter_count =
298 process_parameters(instructions, &actual_parameters, parameters, state);
300 if ((parameter_count == 0)
301 || ((constructor_type->length != 0)
302 && (constructor_type->length != parameter_count))) {
303 const unsigned min_param = (constructor_type->length == 0)
304 ? 1 : constructor_type->length;
306 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
307 "parameter%s",
308 (constructor_type->length != 0) ? "at least" : "exactly",
309 min_param, (min_param <= 1) ? "" : "s");
310 return ir_call::get_error_instruction(ctx);
313 if (constructor_type->length == 0) {
314 constructor_type =
315 glsl_type::get_array_instance(state,
316 constructor_type->element_type(),
317 parameter_count);
318 assert(constructor_type != NULL);
319 assert(constructor_type->length == parameter_count);
322 ir_function *f = state->symbols->get_function(constructor_type->name);
324 /* If the constructor for this type of array does not exist, generate the
325 * prototype and add it to the symbol table.
327 if (f == NULL) {
328 f = constructor_type->generate_constructor(state->symbols);
331 ir_rvalue *const r =
332 process_call(instructions, f, loc, &actual_parameters, state);
334 assert(r != NULL);
335 assert(r->type->is_error() || (r->type == constructor_type));
337 return r;
342 * Try to convert a record constructor to a constant expression
344 static ir_constant *
345 constant_record_constructor(const glsl_type *constructor_type,
346 YYLTYPE *loc, exec_list *parameters,
347 struct _mesa_glsl_parse_state *state)
349 void *ctx = state;
350 bool all_parameters_are_constant = true;
352 exec_node *node = parameters->head;
353 for (unsigned i = 0; i < constructor_type->length; i++) {
354 ir_instruction *ir = (ir_instruction *) node;
356 if (node->is_tail_sentinal()) {
357 _mesa_glsl_error(loc, state,
358 "insufficient parameters to constructor for `%s'",
359 constructor_type->name);
360 return NULL;
363 if (ir->type != constructor_type->fields.structure[i].type) {
364 _mesa_glsl_error(loc, state,
365 "parameter type mismatch in constructor for `%s' "
366 " (%s vs %s)",
367 constructor_type->name,
368 ir->type->name,
369 constructor_type->fields.structure[i].type->name);
370 return NULL;
373 if (ir->as_constant() == NULL)
374 all_parameters_are_constant = false;
376 node = node->next;
379 if (!all_parameters_are_constant)
380 return NULL;
382 return new(ctx) ir_constant(constructor_type, parameters);
387 * Generate data for a constant matrix constructor w/a single scalar parameter
389 * Matrix constructors in GLSL can be passed a single scalar of the
390 * approriate type. In these cases, the resulting matrix is the identity
391 * matrix multipled by the specified scalar. This function generates data for
392 * that matrix.
394 * \param type Type of the desired matrix.
395 * \param initializer Scalar value used to initialize the matrix diagonal.
396 * \param data Location to store the resulting matrix.
398 void
399 generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
400 ir_constant_data *data)
402 switch (type->base_type) {
403 case GLSL_TYPE_UINT:
404 case GLSL_TYPE_INT:
405 for (unsigned i = 0; i < type->components(); i++)
406 data->u[i] = 0;
408 for (unsigned i = 0; i < type->matrix_columns; i++) {
409 /* The array offset of the ith row and column of the matrix.
411 const unsigned idx = (i * type->vector_elements) + i;
413 data->u[idx] = initializer->value.u[0];
415 break;
417 case GLSL_TYPE_FLOAT:
418 for (unsigned i = 0; i < type->components(); i++)
419 data->f[i] = 0;
421 for (unsigned i = 0; i < type->matrix_columns; i++) {
422 /* The array offset of the ith row and column of the matrix.
424 const unsigned idx = (i * type->vector_elements) + i;
426 data->f[idx] = initializer->value.f[0];
429 break;
431 default:
432 assert(!"Should not get here.");
433 break;
439 * Generate data for a constant vector constructor w/a single scalar parameter
441 * Vector constructors in GLSL can be passed a single scalar of the
442 * approriate type. In these cases, the resulting vector contains the specified
443 * value in all components. This function generates data for that vector.
445 * \param type Type of the desired vector.
446 * \param initializer Scalar value used to initialize the vector.
447 * \param data Location to store the resulting vector data.
449 void
450 generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
451 ir_constant_data *data)
453 switch (type->base_type) {
454 case GLSL_TYPE_UINT:
455 case GLSL_TYPE_INT:
456 for (unsigned i = 0; i < type->components(); i++)
457 data->u[i] = initializer->value.u[0];
459 break;
461 case GLSL_TYPE_FLOAT:
462 for (unsigned i = 0; i < type->components(); i++)
463 data->f[i] = initializer->value.f[0];
465 break;
467 case GLSL_TYPE_BOOL:
468 for (unsigned i = 0; i < type->components(); i++)
469 data->b[i] = initializer->value.b[0];
471 break;
473 default:
474 assert(!"Should not get here.");
475 break;
481 * Determine if a list consists of a single scalar r-value
483 bool
484 single_scalar_parameter(exec_list *parameters)
486 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
487 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
489 return (p->type->is_scalar() && p->next->is_tail_sentinal());
494 * Generate inline code for a vector constructor
496 * The generated constructor code will consist of a temporary variable
497 * declaration of the same type as the constructor. A sequence of assignments
498 * from constructor parameters to the temporary will follow.
500 * \return
501 * An \c ir_dereference_variable of the temprorary generated in the constructor
502 * body.
504 ir_rvalue *
505 emit_inline_vector_constructor(const glsl_type *type,
506 exec_list *instructions,
507 exec_list *parameters,
508 void *ctx)
510 assert(!parameters->is_empty());
512 ir_variable *var = new(ctx) ir_variable(type,
513 talloc_strdup(ctx, "vec_ctor"),
514 ir_var_temporary);
515 instructions->push_tail(var);
517 /* There are two kinds of vector constructors.
519 * - Construct a vector from a single scalar by replicating that scalar to
520 * all components of the vector.
522 * - Construct a vector from an arbirary combination of vectors and
523 * scalars. The components of the constructor parameters are assigned
524 * to the vector in order until the vector is full.
526 const unsigned lhs_components = type->components();
527 if (single_scalar_parameter(parameters)) {
528 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
529 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
530 lhs_components);
531 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
533 assert(rhs->type == lhs->type);
535 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
536 instructions->push_tail(inst);
537 } else {
538 unsigned base_component = 0;
539 foreach_list(node, parameters) {
540 ir_rvalue *rhs = (ir_rvalue *) node;
541 unsigned rhs_components = rhs->type->components();
543 /* Do not try to assign more components to the vector than it has!
545 if ((rhs_components + base_component) > lhs_components) {
546 rhs_components = lhs_components - base_component;
549 /* Emit an assignment of the constructor parameter to the next set of
550 * components in the temporary variable.
552 unsigned mask[4] = { 0, 0, 0, 0 };
553 for (unsigned i = 0; i < rhs_components; i++) {
554 mask[i] = i + base_component;
558 ir_rvalue *lhs_ref = new(ctx) ir_dereference_variable(var);
559 ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, mask, rhs_components);
561 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
562 instructions->push_tail(inst);
564 /* Advance the component index by the number of components that were
565 * just assigned.
567 base_component += rhs_components;
570 return new(ctx) ir_dereference_variable(var);
575 * Generate assignment of a portion of a vector to a portion of a matrix column
577 * \param src_base First component of the source to be used in assignment
578 * \param column Column of destination to be assiged
579 * \param row_base First component of the destination column to be assigned
580 * \param count Number of components to be assigned
582 * \note
583 * \c src_base + \c count must be less than or equal to the number of components
584 * in the source vector.
586 ir_instruction *
587 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
588 ir_rvalue *src, unsigned src_base, unsigned count,
589 TALLOC_CTX *ctx)
591 const unsigned mask[8] = { 0, 1, 2, 3, 0, 0, 0, 0 };
593 ir_constant *col_idx = new(ctx) ir_constant(column);
594 ir_rvalue *column_ref = new(ctx) ir_dereference_array(var, col_idx);
596 assert(column_ref->type->components() >= (row_base + count));
597 ir_rvalue *lhs = new(ctx) ir_swizzle(column_ref, &mask[row_base], count);
599 assert(src->type->components() >= (src_base + count));
600 ir_rvalue *rhs = new(ctx) ir_swizzle(src, &mask[src_base], count);
602 return new(ctx) ir_assignment(lhs, rhs, NULL);
607 * Generate inline code for a matrix constructor
609 * The generated constructor code will consist of a temporary variable
610 * declaration of the same type as the constructor. A sequence of assignments
611 * from constructor parameters to the temporary will follow.
613 * \return
614 * An \c ir_dereference_variable of the temprorary generated in the constructor
615 * body.
617 ir_rvalue *
618 emit_inline_matrix_constructor(const glsl_type *type,
619 exec_list *instructions,
620 exec_list *parameters,
621 void *ctx)
623 assert(!parameters->is_empty());
625 ir_variable *var = new(ctx) ir_variable(type,
626 talloc_strdup(ctx, "mat_ctor"),
627 ir_var_temporary);
628 instructions->push_tail(var);
630 /* There are three kinds of matrix constructors.
632 * - Construct a matrix from a single scalar by replicating that scalar to
633 * along the diagonal of the matrix and setting all other components to
634 * zero.
636 * - Construct a matrix from an arbirary combination of vectors and
637 * scalars. The components of the constructor parameters are assigned
638 * to the matrix in colum-major order until the matrix is full.
640 * - Construct a matrix from a single matrix. The source matrix is copied
641 * to the upper left portion of the constructed matrix, and the remaining
642 * elements take values from the identity matrix.
644 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
645 if (single_scalar_parameter(parameters)) {
646 /* Assign the scalar to the X component of a vec4, and fill the remaining
647 * components with zero.
649 ir_variable *rhs_var =
650 new(ctx) ir_variable(glsl_type::vec4_type,
651 talloc_strdup(ctx, "mat_ctor_vec"),
652 ir_var_temporary);
653 instructions->push_tail(rhs_var);
655 ir_constant_data zero;
656 zero.f[0] = 0.0;
657 zero.f[1] = 0.0;
658 zero.f[2] = 0.0;
659 zero.f[3] = 0.0;
661 ir_instruction *inst =
662 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
663 new(ctx) ir_constant(rhs_var->type, &zero),
664 NULL);
665 instructions->push_tail(inst);
667 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
668 ir_rvalue *const x_of_rhs = new(ctx) ir_swizzle(rhs_ref, 0, 0, 0, 0, 1);
670 inst = new(ctx) ir_assignment(x_of_rhs, first_param, NULL);
671 instructions->push_tail(inst);
673 /* Assign the temporary vector to each column of the destination matrix
674 * with a swizzle that puts the X component on the diagonal of the
675 * matrix. In some cases this may mean that the X component does not
676 * get assigned into the column at all (i.e., when the matrix has more
677 * columns than rows).
679 static const unsigned rhs_swiz[4][4] = {
680 { 0, 1, 1, 1 },
681 { 1, 0, 1, 1 },
682 { 1, 1, 0, 1 },
683 { 1, 1, 1, 0 }
686 const unsigned cols_to_init = min(type->matrix_columns,
687 type->vector_elements);
688 for (unsigned i = 0; i < cols_to_init; i++) {
689 ir_constant *const col_idx = new(ctx) ir_constant(i);
690 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
692 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
693 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
694 type->vector_elements);
696 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
697 instructions->push_tail(inst);
700 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
701 ir_constant *const col_idx = new(ctx) ir_constant(i);
702 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
704 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
705 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
706 type->vector_elements);
708 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
709 instructions->push_tail(inst);
711 } else if (first_param->type->is_matrix()) {
712 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
714 * "If a matrix is constructed from a matrix, then each component
715 * (column i, row j) in the result that has a corresponding
716 * component (column i, row j) in the argument will be initialized
717 * from there. All other components will be initialized to the
718 * identity matrix. If a matrix argument is given to a matrix
719 * constructor, it is an error to have any other arguments."
721 assert(first_param->next->is_tail_sentinal());
722 ir_rvalue *const src_matrix = first_param;
724 /* If the source matrix is smaller, pre-initialize the relavent parts of
725 * the destination matrix to the identity matrix.
727 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
728 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
730 /* If the source matrix has fewer rows, every column of the destination
731 * must be initialized. Otherwise only the columns in the destination
732 * that do not exist in the source must be initialized.
734 unsigned col =
735 (src_matrix->type->vector_elements < var->type->vector_elements)
736 ? 0 : src_matrix->type->matrix_columns;
738 const glsl_type *const col_type = var->type->column_type();
739 for (/* empty */; col < var->type->matrix_columns; col++) {
740 ir_constant_data ident;
742 ident.f[0] = 0.0;
743 ident.f[1] = 0.0;
744 ident.f[2] = 0.0;
745 ident.f[3] = 0.0;
747 ident.f[col] = 1.0;
749 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
751 ir_rvalue *const lhs =
752 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
754 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
755 instructions->push_tail(inst);
759 /* Assign columns from the source matrix to the destination matrix.
761 * Since the parameter will be used in the RHS of multiple assignments,
762 * generate a temporary and copy the paramter there.
764 ir_variable *const rhs_var =
765 new(ctx) ir_variable(first_param->type,
766 talloc_strdup(ctx, "mat_ctor_mat"),
767 ir_var_temporary);
768 instructions->push_tail(rhs_var);
770 ir_dereference *const rhs_var_ref =
771 new(ctx) ir_dereference_variable(rhs_var);
772 ir_instruction *const inst =
773 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
774 instructions->push_tail(inst);
777 const unsigned swiz[4] = { 0, 1, 2, 3 };
778 const unsigned last_col = min(src_matrix->type->matrix_columns,
779 var->type->matrix_columns);
780 for (unsigned i = 0; i < last_col; i++) {
781 ir_rvalue *const lhs_col =
782 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
783 ir_rvalue *const rhs_col =
784 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
786 /* If one matrix has columns that are smaller than the columns of the
787 * other matrix, wrap the column access of the larger with a swizzle
788 * so that the LHS and RHS of the assignment have the same size (and
789 * therefore have the same type).
791 * It would be perfectly valid to unconditionally generate the
792 * swizzles, this this will typically result in a more compact IR tree.
794 ir_rvalue *lhs;
795 ir_rvalue *rhs;
796 if (lhs_col->type->vector_elements < rhs_col->type->vector_elements) {
797 lhs = lhs_col;
799 rhs = new(ctx) ir_swizzle(rhs_col, swiz,
800 lhs_col->type->vector_elements);
801 } else if (lhs_col->type->vector_elements
802 > rhs_col->type->vector_elements) {
803 lhs = new(ctx) ir_swizzle(lhs_col, swiz,
804 rhs_col->type->vector_elements);
805 rhs = rhs_col;
806 } else {
807 lhs = lhs_col;
808 rhs = rhs_col;
811 assert(lhs->type == rhs->type);
813 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
814 instructions->push_tail(inst);
816 } else {
817 const unsigned rows = type->matrix_columns;
818 const unsigned cols = type->vector_elements;
819 unsigned col_idx = 0;
820 unsigned row_idx = 0;
822 foreach_list (node, parameters) {
823 ir_rvalue *const rhs = (ir_rvalue *) node;
824 const unsigned components_remaining_this_column = rows - row_idx;
825 unsigned rhs_components = rhs->type->components();
826 unsigned rhs_base = 0;
828 /* Since the parameter might be used in the RHS of two assignments,
829 * generate a temporary and copy the paramter there.
831 ir_variable *rhs_var =
832 new(ctx) ir_variable(rhs->type,
833 talloc_strdup(ctx, "mat_ctor_vec"),
834 ir_var_temporary);
835 instructions->push_tail(rhs_var);
837 ir_dereference *rhs_var_ref =
838 new(ctx) ir_dereference_variable(rhs_var);
839 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
840 instructions->push_tail(inst);
842 /* Assign the current parameter to as many components of the matrix
843 * as it will fill.
845 * NOTE: A single vector parameter can span two matrix columns. A
846 * single vec4, for example, can completely fill a mat2.
848 if (rhs_components >= components_remaining_this_column) {
849 const unsigned count = min(rhs_components,
850 components_remaining_this_column);
852 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
854 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
855 row_idx,
856 rhs_var_ref, 0,
857 count, ctx);
858 instructions->push_tail(inst);
860 rhs_base = count;
862 col_idx++;
863 row_idx = 0;
866 /* If there is data left in the parameter and components left to be
867 * set in the destination, emit another assignment. It is possible
868 * that the assignment could be of a vec4 to the last element of the
869 * matrix. In this case col_idx==cols, but there is still data
870 * left in the source parameter. Obviously, don't emit an assignment
871 * to data outside the destination matrix.
873 if ((col_idx < cols) && (rhs_base < rhs_components)) {
874 const unsigned count = rhs_components - rhs_base;
876 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
878 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
879 row_idx,
880 rhs_var_ref,
881 rhs_base,
882 count, ctx);
883 instructions->push_tail(inst);
885 row_idx += count;
890 return new(ctx) ir_dereference_variable(var);
894 ir_rvalue *
895 ast_function_expression::hir(exec_list *instructions,
896 struct _mesa_glsl_parse_state *state)
898 void *ctx = state;
899 /* There are three sorts of function calls.
901 * 1. constructors - The first subexpression is an ast_type_specifier.
902 * 2. methods - Only the .length() method of array types.
903 * 3. functions - Calls to regular old functions.
905 * Method calls are actually detected when the ast_field_selection
906 * expression is handled.
908 if (is_constructor()) {
909 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
910 YYLTYPE loc = type->get_location();
911 const char *name;
913 const glsl_type *const constructor_type = type->glsl_type(& name, state);
916 /* Constructors for samplers are illegal.
918 if (constructor_type->is_sampler()) {
919 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
920 constructor_type->name);
921 return ir_call::get_error_instruction(ctx);
924 if (constructor_type->is_array()) {
925 if (state->language_version <= 110) {
926 _mesa_glsl_error(& loc, state,
927 "array constructors forbidden in GLSL 1.10");
928 return ir_call::get_error_instruction(ctx);
931 return process_array_constructor(instructions, constructor_type,
932 & loc, &this->expressions, state);
935 /* There are two kinds of constructor call. Constructors for built-in
936 * language types, such as mat4 and vec2, are free form. The only
937 * requirement is that the parameters must provide enough values of the
938 * correct scalar type. Constructors for arrays and structures must
939 * have the exact number of parameters with matching types in the
940 * correct order. These constructors follow essentially the same type
941 * matching rules as functions.
943 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
944 return ir_call::get_error_instruction(ctx);
946 /* Total number of components of the type being constructed. */
947 const unsigned type_components = constructor_type->components();
949 /* Number of components from parameters that have actually been
950 * consumed. This is used to perform several kinds of error checking.
952 unsigned components_used = 0;
954 unsigned matrix_parameters = 0;
955 unsigned nonmatrix_parameters = 0;
956 exec_list actual_parameters;
958 foreach_list (n, &this->expressions) {
959 ast_node *ast = exec_node_data(ast_node, n, link);
960 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
962 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
964 * "It is an error to provide extra arguments beyond this
965 * last used argument."
967 if (components_used >= type_components) {
968 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
969 "constructor",
970 constructor_type->name);
971 return ir_call::get_error_instruction(ctx);
974 if (!result->type->is_numeric() && !result->type->is_boolean()) {
975 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
976 "non-numeric data type",
977 constructor_type->name);
978 return ir_call::get_error_instruction(ctx);
981 /* Count the number of matrix and nonmatrix parameters. This
982 * is used below to enforce some of the constructor rules.
984 if (result->type->is_matrix())
985 matrix_parameters++;
986 else
987 nonmatrix_parameters++;
989 actual_parameters.push_tail(result);
990 components_used += result->type->components();
993 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
995 * "It is an error to construct matrices from other matrices. This
996 * is reserved for future use."
998 if ((state->language_version <= 110) && (matrix_parameters > 0)
999 && constructor_type->is_matrix()) {
1000 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1001 "matrix in GLSL 1.10",
1002 constructor_type->name);
1003 return ir_call::get_error_instruction(ctx);
1006 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1008 * "If a matrix argument is given to a matrix constructor, it is
1009 * an error to have any other arguments."
1011 if ((matrix_parameters > 0)
1012 && ((matrix_parameters + nonmatrix_parameters) > 1)
1013 && constructor_type->is_matrix()) {
1014 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1015 "matrix must be only parameter",
1016 constructor_type->name);
1017 return ir_call::get_error_instruction(ctx);
1020 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1022 * "In these cases, there must be enough components provided in the
1023 * arguments to provide an initializer for every component in the
1024 * constructed value."
1026 if ((components_used < type_components) && (components_used != 1)) {
1027 _mesa_glsl_error(& loc, state, "too few components to construct "
1028 "`%s'",
1029 constructor_type->name);
1030 return ir_call::get_error_instruction(ctx);
1033 /* Later, we cast each parameter to the same base type as the
1034 * constructor. Since there are no non-floating point matrices, we
1035 * need to break them up into a series of column vectors.
1037 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1038 foreach_list_safe(n, &actual_parameters) {
1039 ir_rvalue *matrix = (ir_rvalue *) n;
1041 if (!matrix->type->is_matrix())
1042 continue;
1044 /* Create a temporary containing the matrix. */
1045 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1046 ir_var_temporary);
1047 instructions->push_tail(var);
1048 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1049 ir_dereference_variable(var), matrix, NULL));
1050 var->constant_value = matrix->constant_expression_value();
1052 /* Replace the matrix with dereferences of its columns. */
1053 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1054 matrix->insert_before(new (ctx) ir_dereference_array(var,
1055 new(ctx) ir_constant(i)));
1057 matrix->remove();
1061 bool all_parameters_are_constant = true;
1063 /* Type cast each parameter and, if possible, fold constants.*/
1064 foreach_list_safe(n, &actual_parameters) {
1065 ir_rvalue *ir = (ir_rvalue *) n;
1067 const glsl_type *desired_type =
1068 glsl_type::get_instance(constructor_type->base_type,
1069 ir->type->vector_elements,
1070 ir->type->matrix_columns);
1071 ir_rvalue *result = convert_component(ir, desired_type);
1073 /* Attempt to convert the parameter to a constant valued expression.
1074 * After doing so, track whether or not all the parameters to the
1075 * constructor are trivially constant valued expressions.
1077 ir_rvalue *const constant = result->constant_expression_value();
1079 if (constant != NULL)
1080 result = constant;
1081 else
1082 all_parameters_are_constant = false;
1084 if (result != ir) {
1085 ir->insert_before(result);
1086 ir->remove();
1090 /* If all of the parameters are trivially constant, create a
1091 * constant representing the complete collection of parameters.
1093 if (all_parameters_are_constant) {
1094 if (components_used >= type_components)
1095 return new(ctx) ir_constant(constructor_type,
1096 & actual_parameters);
1098 /* The above case must handle all scalar constructors.
1100 assert(constructor_type->is_vector()
1101 || constructor_type->is_matrix());
1103 /* Constructors with exactly one component are special for
1104 * vectors and matrices. For vectors it causes all elements of
1105 * the vector to be filled with the value. For matrices it
1106 * causes the matrix to be filled with 0 and the diagonal to be
1107 * filled with the value.
1109 ir_constant_data data;
1110 ir_constant *const initializer =
1111 (ir_constant *) actual_parameters.head;
1112 if (constructor_type->is_matrix())
1113 generate_constructor_matrix(constructor_type, initializer,
1114 &data);
1115 else
1116 generate_constructor_vector(constructor_type, initializer,
1117 &data);
1119 return new(ctx) ir_constant(constructor_type, &data);
1120 } else if (constructor_type->is_scalar()) {
1121 return dereference_component((ir_rvalue *) actual_parameters.head,
1123 } else if (constructor_type->is_vector()) {
1124 return emit_inline_vector_constructor(constructor_type,
1125 instructions,
1126 &actual_parameters,
1127 ctx);
1128 } else {
1129 assert(constructor_type->is_matrix());
1130 return emit_inline_matrix_constructor(constructor_type,
1131 instructions,
1132 &actual_parameters,
1133 ctx);
1135 } else {
1136 const ast_expression *id = subexpressions[0];
1137 YYLTYPE loc = id->get_location();
1138 exec_list actual_parameters;
1140 process_parameters(instructions, &actual_parameters, &this->expressions,
1141 state);
1143 const glsl_type *const type =
1144 state->symbols->get_type(id->primary_expression.identifier);
1146 if ((type != NULL) && type->is_record()) {
1147 ir_constant *constant =
1148 constant_record_constructor(type, &loc, &actual_parameters, state);
1150 if (constant != NULL)
1151 return constant;
1154 return match_function_by_name(instructions,
1155 id->primary_expression.identifier, & loc,
1156 &actual_parameters, state);
1159 return ir_call::get_error_instruction(ctx);