2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
31 * * Symbol table management
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
52 #include "main/imports.h"
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
56 #include "glsl_types.h"
60 _mesa_ast_to_hir(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
)
62 _mesa_glsl_initialize_variables(instructions
, state
);
63 _mesa_glsl_initialize_functions(instructions
, state
);
65 state
->current_function
= NULL
;
67 foreach_list_typed (ast_node
, ast
, link
, & state
->translation_unit
)
68 ast
->hir(instructions
, state
);
73 * If a conversion is available, convert one operand to a different type
75 * The \c from \c ir_rvalue is converted "in place".
77 * \param to Type that the operand it to be converted to
78 * \param from Operand that is being converted
79 * \param state GLSL compiler state
82 * If a conversion is possible (or unnecessary), \c true is returned.
83 * Otherwise \c false is returned.
86 apply_implicit_conversion(const glsl_type
*to
, ir_rvalue
* &from
,
87 struct _mesa_glsl_parse_state
*state
)
90 if (to
->base_type
== from
->type
->base_type
)
93 /* This conversion was added in GLSL 1.20. If the compilation mode is
94 * GLSL 1.10, the conversion is skipped.
96 if (state
->language_version
< 120)
99 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
101 * "There are no implicit array or structure conversions. For
102 * example, an array of int cannot be implicitly converted to an
103 * array of float. There are no implicit conversions between
104 * signed and unsigned integers."
106 /* FINISHME: The above comment is partially a lie. There is int/uint
107 * FINISHME: conversion for immediate constants.
109 if (!to
->is_float() || !from
->type
->is_numeric())
112 /* Convert to a floating point type with the same number of components
113 * as the original type - i.e. int to float, not int to vec4.
115 to
= glsl_type::get_instance(GLSL_TYPE_FLOAT
, from
->type
->vector_elements
,
116 from
->type
->matrix_columns
);
118 switch (from
->type
->base_type
) {
120 from
= new(ctx
) ir_expression(ir_unop_i2f
, to
, from
, NULL
);
123 from
= new(ctx
) ir_expression(ir_unop_u2f
, to
, from
, NULL
);
126 from
= new(ctx
) ir_expression(ir_unop_b2f
, to
, from
, NULL
);
136 static const struct glsl_type
*
137 arithmetic_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
139 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
141 const glsl_type
*type_a
= value_a
->type
;
142 const glsl_type
*type_b
= value_b
->type
;
144 /* From GLSL 1.50 spec, page 56:
146 * "The arithmetic binary operators add (+), subtract (-),
147 * multiply (*), and divide (/) operate on integer and
148 * floating-point scalars, vectors, and matrices."
150 if (!type_a
->is_numeric() || !type_b
->is_numeric()) {
151 _mesa_glsl_error(loc
, state
,
152 "Operands to arithmetic operators must be numeric");
153 return glsl_type::error_type
;
157 /* "If one operand is floating-point based and the other is
158 * not, then the conversions from Section 4.1.10 "Implicit
159 * Conversions" are applied to the non-floating-point-based operand."
161 if (!apply_implicit_conversion(type_a
, value_b
, state
)
162 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
163 _mesa_glsl_error(loc
, state
,
164 "Could not implicitly convert operands to "
165 "arithmetic operator");
166 return glsl_type::error_type
;
168 type_a
= value_a
->type
;
169 type_b
= value_b
->type
;
171 /* "If the operands are integer types, they must both be signed or
174 * From this rule and the preceeding conversion it can be inferred that
175 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
176 * The is_numeric check above already filtered out the case where either
177 * type is not one of these, so now the base types need only be tested for
180 if (type_a
->base_type
!= type_b
->base_type
) {
181 _mesa_glsl_error(loc
, state
,
182 "base type mismatch for arithmetic operator");
183 return glsl_type::error_type
;
186 /* "All arithmetic binary operators result in the same fundamental type
187 * (signed integer, unsigned integer, or floating-point) as the
188 * operands they operate on, after operand type conversion. After
189 * conversion, the following cases are valid
191 * * The two operands are scalars. In this case the operation is
192 * applied, resulting in a scalar."
194 if (type_a
->is_scalar() && type_b
->is_scalar())
197 /* "* One operand is a scalar, and the other is a vector or matrix.
198 * In this case, the scalar operation is applied independently to each
199 * component of the vector or matrix, resulting in the same size
202 if (type_a
->is_scalar()) {
203 if (!type_b
->is_scalar())
205 } else if (type_b
->is_scalar()) {
209 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
210 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
213 assert(!type_a
->is_scalar());
214 assert(!type_b
->is_scalar());
216 /* "* The two operands are vectors of the same size. In this case, the
217 * operation is done component-wise resulting in the same size
220 if (type_a
->is_vector() && type_b
->is_vector()) {
221 if (type_a
== type_b
) {
224 _mesa_glsl_error(loc
, state
,
225 "vector size mismatch for arithmetic operator");
226 return glsl_type::error_type
;
230 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
231 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
232 * <vector, vector> have been handled. At least one of the operands must
233 * be matrix. Further, since there are no integer matrix types, the base
234 * type of both operands must be float.
236 assert(type_a
->is_matrix() || type_b
->is_matrix());
237 assert(type_a
->base_type
== GLSL_TYPE_FLOAT
);
238 assert(type_b
->base_type
== GLSL_TYPE_FLOAT
);
240 /* "* The operator is add (+), subtract (-), or divide (/), and the
241 * operands are matrices with the same number of rows and the same
242 * number of columns. In this case, the operation is done component-
243 * wise resulting in the same size matrix."
244 * * The operator is multiply (*), where both operands are matrices or
245 * one operand is a vector and the other a matrix. A right vector
246 * operand is treated as a column vector and a left vector operand as a
247 * row vector. In all these cases, it is required that the number of
248 * columns of the left operand is equal to the number of rows of the
249 * right operand. Then, the multiply (*) operation does a linear
250 * algebraic multiply, yielding an object that has the same number of
251 * rows as the left operand and the same number of columns as the right
252 * operand. Section 5.10 "Vector and Matrix Operations" explains in
253 * more detail how vectors and matrices are operated on."
256 if (type_a
== type_b
)
259 if (type_a
->is_matrix() && type_b
->is_matrix()) {
260 /* Matrix multiply. The columns of A must match the rows of B. Given
261 * the other previously tested constraints, this means the vector type
262 * of a row from A must be the same as the vector type of a column from
265 if (type_a
->row_type() == type_b
->column_type()) {
266 /* The resulting matrix has the number of columns of matrix B and
267 * the number of rows of matrix A. We get the row count of A by
268 * looking at the size of a vector that makes up a column. The
269 * transpose (size of a row) is done for B.
271 const glsl_type
*const type
=
272 glsl_type::get_instance(type_a
->base_type
,
273 type_a
->column_type()->vector_elements
,
274 type_b
->row_type()->vector_elements
);
275 assert(type
!= glsl_type::error_type
);
279 } else if (type_a
->is_matrix()) {
280 /* A is a matrix and B is a column vector. Columns of A must match
281 * rows of B. Given the other previously tested constraints, this
282 * means the vector type of a row from A must be the same as the
283 * vector the type of B.
285 if (type_a
->row_type() == type_b
)
288 assert(type_b
->is_matrix());
290 /* A is a row vector and B is a matrix. Columns of A must match rows
291 * of B. Given the other previously tested constraints, this means
292 * the type of A must be the same as the vector type of a column from
295 if (type_a
== type_b
->column_type())
299 _mesa_glsl_error(loc
, state
, "size mismatch for matrix multiplication");
300 return glsl_type::error_type
;
304 /* "All other cases are illegal."
306 _mesa_glsl_error(loc
, state
, "type mismatch");
307 return glsl_type::error_type
;
311 static const struct glsl_type
*
312 unary_arithmetic_result_type(const struct glsl_type
*type
,
313 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
315 /* From GLSL 1.50 spec, page 57:
317 * "The arithmetic unary operators negate (-), post- and pre-increment
318 * and decrement (-- and ++) operate on integer or floating-point
319 * values (including vectors and matrices). All unary operators work
320 * component-wise on their operands. These result with the same type
323 if (!type
->is_numeric()) {
324 _mesa_glsl_error(loc
, state
,
325 "Operands to arithmetic operators must be numeric");
326 return glsl_type::error_type
;
333 static const struct glsl_type
*
334 modulus_result_type(const struct glsl_type
*type_a
,
335 const struct glsl_type
*type_b
,
336 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
338 /* From GLSL 1.50 spec, page 56:
339 * "The operator modulus (%) operates on signed or unsigned integers or
340 * integer vectors. The operand types must both be signed or both be
343 if (!type_a
->is_integer() || !type_b
->is_integer()
344 || (type_a
->base_type
!= type_b
->base_type
)) {
345 _mesa_glsl_error(loc
, state
, "type mismatch");
346 return glsl_type::error_type
;
349 /* "The operands cannot be vectors of differing size. If one operand is
350 * a scalar and the other vector, then the scalar is applied component-
351 * wise to the vector, resulting in the same type as the vector. If both
352 * are vectors of the same size, the result is computed component-wise."
354 if (type_a
->is_vector()) {
355 if (!type_b
->is_vector()
356 || (type_a
->vector_elements
== type_b
->vector_elements
))
361 /* "The operator modulus (%) is not defined for any other data types
362 * (non-integer types)."
364 _mesa_glsl_error(loc
, state
, "type mismatch");
365 return glsl_type::error_type
;
369 static const struct glsl_type
*
370 relational_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
371 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
373 const glsl_type
*type_a
= value_a
->type
;
374 const glsl_type
*type_b
= value_b
->type
;
376 /* From GLSL 1.50 spec, page 56:
377 * "The relational operators greater than (>), less than (<), greater
378 * than or equal (>=), and less than or equal (<=) operate only on
379 * scalar integer and scalar floating-point expressions."
381 if (!type_a
->is_numeric()
382 || !type_b
->is_numeric()
383 || !type_a
->is_scalar()
384 || !type_b
->is_scalar()) {
385 _mesa_glsl_error(loc
, state
,
386 "Operands to relational operators must be scalar and "
388 return glsl_type::error_type
;
391 /* "Either the operands' types must match, or the conversions from
392 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
393 * operand, after which the types must match."
395 if (!apply_implicit_conversion(type_a
, value_b
, state
)
396 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
397 _mesa_glsl_error(loc
, state
,
398 "Could not implicitly convert operands to "
399 "relational operator");
400 return glsl_type::error_type
;
402 type_a
= value_a
->type
;
403 type_b
= value_b
->type
;
405 if (type_a
->base_type
!= type_b
->base_type
) {
406 _mesa_glsl_error(loc
, state
, "base type mismatch");
407 return glsl_type::error_type
;
410 /* "The result is scalar Boolean."
412 return glsl_type::bool_type
;
417 * Validates that a value can be assigned to a location with a specified type
419 * Validates that \c rhs can be assigned to some location. If the types are
420 * not an exact match but an automatic conversion is possible, \c rhs will be
424 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
425 * Otherwise the actual RHS to be assigned will be returned. This may be
426 * \c rhs, or it may be \c rhs after some type conversion.
429 * In addition to being used for assignments, this function is used to
430 * type-check return values.
433 validate_assignment(struct _mesa_glsl_parse_state
*state
,
434 const glsl_type
*lhs_type
, ir_rvalue
*rhs
)
436 const glsl_type
*rhs_type
= rhs
->type
;
438 /* If there is already some error in the RHS, just return it. Anything
439 * else will lead to an avalanche of error message back to the user.
441 if (rhs_type
->is_error())
444 /* If the types are identical, the assignment can trivially proceed.
446 if (rhs_type
== lhs_type
)
449 /* If the array element types are the same and the size of the LHS is zero,
450 * the assignment is okay.
452 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
453 * is handled by ir_dereference::is_lvalue.
455 if (lhs_type
->is_array() && rhs
->type
->is_array()
456 && (lhs_type
->element_type() == rhs
->type
->element_type())
457 && (lhs_type
->array_size() == 0)) {
461 /* Check for implicit conversion in GLSL 1.20 */
462 if (apply_implicit_conversion(lhs_type
, rhs
, state
)) {
463 rhs_type
= rhs
->type
;
464 if (rhs_type
== lhs_type
)
472 do_assignment(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
,
473 ir_rvalue
*lhs
, ir_rvalue
*rhs
,
477 bool error_emitted
= (lhs
->type
->is_error() || rhs
->type
->is_error());
479 if (!error_emitted
) {
480 /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
481 if (!lhs
->is_lvalue()) {
482 _mesa_glsl_error(& lhs_loc
, state
, "non-lvalue in assignment");
483 error_emitted
= true;
487 ir_rvalue
*new_rhs
= validate_assignment(state
, lhs
->type
, rhs
);
488 if (new_rhs
== NULL
) {
489 _mesa_glsl_error(& lhs_loc
, state
, "type mismatch");
493 /* If the LHS array was not declared with a size, it takes it size from
494 * the RHS. If the LHS is an l-value and a whole array, it must be a
495 * dereference of a variable. Any other case would require that the LHS
496 * is either not an l-value or not a whole array.
498 if (lhs
->type
->array_size() == 0) {
499 ir_dereference
*const d
= lhs
->as_dereference();
503 ir_variable
*const var
= d
->variable_referenced();
507 if (var
->max_array_access
>= unsigned(rhs
->type
->array_size())) {
508 /* FINISHME: This should actually log the location of the RHS. */
509 _mesa_glsl_error(& lhs_loc
, state
, "array size must be > %u due to "
511 var
->max_array_access
);
514 var
->type
= glsl_type::get_array_instance(state
,
515 lhs
->type
->element_type(),
516 rhs
->type
->array_size());
520 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
521 * but not post_inc) need the converted assigned value as an rvalue
522 * to handle things like:
526 * So we always just store the computed value being assigned to a
527 * temporary and return a deref of that temporary. If the rvalue
528 * ends up not being used, the temp will get copy-propagated out.
530 ir_variable
*var
= new(ctx
) ir_variable(rhs
->type
, "assignment_tmp");
531 ir_dereference_variable
*deref_var
= new(ctx
) ir_dereference_variable(var
);
532 instructions
->push_tail(var
);
533 instructions
->push_tail(new(ctx
) ir_assignment(deref_var
,
536 deref_var
= new(ctx
) ir_dereference_variable(var
);
538 instructions
->push_tail(new(ctx
) ir_assignment(lhs
,
542 return new(ctx
) ir_dereference_variable(var
);
546 get_lvalue_copy(exec_list
*instructions
, ir_rvalue
*lvalue
)
548 void *ctx
= talloc_parent(lvalue
);
551 /* FINISHME: Give unique names to the temporaries. */
552 var
= new(ctx
) ir_variable(lvalue
->type
, "_post_incdec_tmp");
553 instructions
->push_tail(var
);
554 var
->mode
= ir_var_auto
;
556 instructions
->push_tail(new(ctx
) ir_assignment(new(ctx
) ir_dereference_variable(var
),
559 /* Once we've created this temporary, mark it read only so it's no
560 * longer considered an lvalue.
562 var
->read_only
= true;
564 return new(ctx
) ir_dereference_variable(var
);
569 ast_node::hir(exec_list
*instructions
,
570 struct _mesa_glsl_parse_state
*state
)
580 ast_expression::hir(exec_list
*instructions
,
581 struct _mesa_glsl_parse_state
*state
)
584 static const int operations
[AST_NUM_OPERATORS
] = {
585 -1, /* ast_assign doesn't convert to ir_expression. */
586 -1, /* ast_plus doesn't convert to ir_expression. */
610 /* Note: The following block of expression types actually convert
611 * to multiple IR instructions.
613 ir_binop_mul
, /* ast_mul_assign */
614 ir_binop_div
, /* ast_div_assign */
615 ir_binop_mod
, /* ast_mod_assign */
616 ir_binop_add
, /* ast_add_assign */
617 ir_binop_sub
, /* ast_sub_assign */
618 ir_binop_lshift
, /* ast_ls_assign */
619 ir_binop_rshift
, /* ast_rs_assign */
620 ir_binop_bit_and
, /* ast_and_assign */
621 ir_binop_bit_xor
, /* ast_xor_assign */
622 ir_binop_bit_or
, /* ast_or_assign */
624 -1, /* ast_conditional doesn't convert to ir_expression. */
625 ir_binop_add
, /* ast_pre_inc. */
626 ir_binop_sub
, /* ast_pre_dec. */
627 ir_binop_add
, /* ast_post_inc. */
628 ir_binop_sub
, /* ast_post_dec. */
629 -1, /* ast_field_selection doesn't conv to ir_expression. */
630 -1, /* ast_array_index doesn't convert to ir_expression. */
631 -1, /* ast_function_call doesn't conv to ir_expression. */
632 -1, /* ast_identifier doesn't convert to ir_expression. */
633 -1, /* ast_int_constant doesn't convert to ir_expression. */
634 -1, /* ast_uint_constant doesn't conv to ir_expression. */
635 -1, /* ast_float_constant doesn't conv to ir_expression. */
636 -1, /* ast_bool_constant doesn't conv to ir_expression. */
637 -1, /* ast_sequence doesn't convert to ir_expression. */
639 ir_rvalue
*result
= NULL
;
641 const struct glsl_type
*type
= glsl_type::error_type
;
642 bool error_emitted
= false;
645 loc
= this->get_location();
647 switch (this->oper
) {
649 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
650 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
652 result
= do_assignment(instructions
, state
, op
[0], op
[1],
653 this->subexpressions
[0]->get_location());
654 error_emitted
= result
->type
->is_error();
660 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
662 error_emitted
= op
[0]->type
->is_error();
663 if (type
->is_error())
670 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
672 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
674 error_emitted
= type
->is_error();
676 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
684 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
685 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
687 type
= arithmetic_result_type(op
[0], op
[1],
688 (this->oper
== ast_mul
),
690 error_emitted
= type
->is_error();
692 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
697 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
698 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
700 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
702 assert(operations
[this->oper
] == ir_binop_mod
);
704 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
706 error_emitted
= type
->is_error();
711 _mesa_glsl_error(& loc
, state
, "FINISHME: implement bit-shift operators");
712 error_emitted
= true;
719 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
720 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
722 type
= relational_result_type(op
[0], op
[1], state
, & loc
);
724 /* The relational operators must either generate an error or result
725 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
727 assert(type
->is_error()
728 || ((type
->base_type
== GLSL_TYPE_BOOL
)
729 && type
->is_scalar()));
731 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
733 error_emitted
= type
->is_error();
738 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
739 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
741 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
743 * "The equality operators equal (==), and not equal (!=)
744 * operate on all types. They result in a scalar Boolean. If
745 * the operand types do not match, then there must be a
746 * conversion from Section 4.1.10 "Implicit Conversions"
747 * applied to one operand that can make them match, in which
748 * case this conversion is done."
750 if ((!apply_implicit_conversion(op
[0]->type
, op
[1], state
)
751 && !apply_implicit_conversion(op
[1]->type
, op
[0], state
))
752 || (op
[0]->type
!= op
[1]->type
)) {
753 _mesa_glsl_error(& loc
, state
, "operands of `%s' must have the same "
754 "type", (this->oper
== ast_equal
) ? "==" : "!=");
755 error_emitted
= true;
756 } else if ((state
->language_version
<= 110)
757 && (op
[0]->type
->is_array() || op
[1]->type
->is_array())) {
758 _mesa_glsl_error(& loc
, state
, "array comparisons forbidden in "
760 error_emitted
= true;
763 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
765 type
= glsl_type::bool_type
;
767 assert(result
->type
== glsl_type::bool_type
);
774 _mesa_glsl_error(& loc
, state
, "FINISHME: implement bit-wise operators");
775 error_emitted
= true;
778 case ast_logic_and
: {
779 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
781 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
782 YYLTYPE loc
= this->subexpressions
[0]->get_location();
784 _mesa_glsl_error(& loc
, state
, "LHS of `%s' must be scalar boolean",
785 operator_string(this->oper
));
786 error_emitted
= true;
789 ir_constant
*op0_const
= op
[0]->constant_expression_value();
791 if (op0_const
->value
.b
[0]) {
792 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
794 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
795 YYLTYPE loc
= this->subexpressions
[1]->get_location();
797 _mesa_glsl_error(& loc
, state
,
798 "RHS of `%s' must be scalar boolean",
799 operator_string(this->oper
));
800 error_emitted
= true;
806 type
= glsl_type::bool_type
;
808 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
810 instructions
->push_tail(tmp
);
812 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
813 instructions
->push_tail(stmt
);
815 op
[1] = this->subexpressions
[1]->hir(&stmt
->then_instructions
, state
);
817 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
818 YYLTYPE loc
= this->subexpressions
[1]->get_location();
820 _mesa_glsl_error(& loc
, state
,
821 "RHS of `%s' must be scalar boolean",
822 operator_string(this->oper
));
823 error_emitted
= true;
826 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
827 ir_assignment
*const then_assign
=
828 new(ctx
) ir_assignment(then_deref
, op
[1], NULL
);
829 stmt
->then_instructions
.push_tail(then_assign
);
831 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
832 ir_assignment
*const else_assign
=
833 new(ctx
) ir_assignment(else_deref
, new(ctx
) ir_constant(false), NULL
);
834 stmt
->else_instructions
.push_tail(else_assign
);
836 result
= new(ctx
) ir_dereference_variable(tmp
);
843 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
845 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
846 YYLTYPE loc
= this->subexpressions
[0]->get_location();
848 _mesa_glsl_error(& loc
, state
, "LHS of `%s' must be scalar boolean",
849 operator_string(this->oper
));
850 error_emitted
= true;
853 ir_constant
*op0_const
= op
[0]->constant_expression_value();
855 if (op0_const
->value
.b
[0]) {
858 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
860 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
861 YYLTYPE loc
= this->subexpressions
[1]->get_location();
863 _mesa_glsl_error(& loc
, state
,
864 "RHS of `%s' must be scalar boolean",
865 operator_string(this->oper
));
866 error_emitted
= true;
870 type
= glsl_type::bool_type
;
872 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
874 instructions
->push_tail(tmp
);
876 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
877 instructions
->push_tail(stmt
);
879 op
[1] = this->subexpressions
[1]->hir(&stmt
->then_instructions
, state
);
881 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
882 YYLTYPE loc
= this->subexpressions
[1]->get_location();
884 _mesa_glsl_error(& loc
, state
, "RHS of `%s' must be scalar boolean",
885 operator_string(this->oper
));
886 error_emitted
= true;
889 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
890 ir_assignment
*const then_assign
=
891 new(ctx
) ir_assignment(then_deref
, new(ctx
) ir_constant(true), NULL
);
892 stmt
->then_instructions
.push_tail(then_assign
);
894 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
895 ir_assignment
*const else_assign
=
896 new(ctx
) ir_assignment(else_deref
, op
[1], NULL
);
897 stmt
->else_instructions
.push_tail(else_assign
);
899 result
= new(ctx
) ir_dereference_variable(tmp
);
906 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
907 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
910 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
912 type
= glsl_type::bool_type
;
916 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
918 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
919 YYLTYPE loc
= this->subexpressions
[0]->get_location();
921 _mesa_glsl_error(& loc
, state
,
922 "operand of `!' must be scalar boolean");
923 error_emitted
= true;
926 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
928 type
= glsl_type::bool_type
;
934 case ast_sub_assign
: {
935 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
936 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
938 type
= arithmetic_result_type(op
[0], op
[1],
939 (this->oper
== ast_mul_assign
),
942 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
945 result
= do_assignment(instructions
, state
,
946 op
[0]->clone(NULL
), temp_rhs
,
947 this->subexpressions
[0]->get_location());
949 error_emitted
= (op
[0]->type
->is_error());
951 /* GLSL 1.10 does not allow array assignment. However, we don't have to
952 * explicitly test for this because none of the binary expression
953 * operators allow array operands either.
959 case ast_mod_assign
: {
960 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
961 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
963 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
965 assert(operations
[this->oper
] == ir_binop_mod
);
967 struct ir_rvalue
*temp_rhs
;
968 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
971 result
= do_assignment(instructions
, state
,
972 op
[0]->clone(NULL
), temp_rhs
,
973 this->subexpressions
[0]->get_location());
975 error_emitted
= type
->is_error();
981 _mesa_glsl_error(& loc
, state
,
982 "FINISHME: implement bit-shift assignment operators");
983 error_emitted
= true;
989 _mesa_glsl_error(& loc
, state
,
990 "FINISHME: implement logic assignment operators");
991 error_emitted
= true;
994 case ast_conditional
: {
995 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
997 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
999 * "The ternary selection operator (?:). It operates on three
1000 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1001 * first expression, which must result in a scalar Boolean."
1003 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
1004 YYLTYPE loc
= this->subexpressions
[0]->get_location();
1006 _mesa_glsl_error(& loc
, state
, "?: condition must be scalar boolean");
1007 error_emitted
= true;
1010 /* The :? operator is implemented by generating an anonymous temporary
1011 * followed by an if-statement. The last instruction in each branch of
1012 * the if-statement assigns a value to the anonymous temporary. This
1013 * temporary is the r-value of the expression.
1015 exec_list then_instructions
;
1016 exec_list else_instructions
;
1018 op
[1] = this->subexpressions
[1]->hir(&then_instructions
, state
);
1019 op
[2] = this->subexpressions
[2]->hir(&else_instructions
, state
);
1021 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1023 * "The second and third expressions can be any type, as
1024 * long their types match, or there is a conversion in
1025 * Section 4.1.10 "Implicit Conversions" that can be applied
1026 * to one of the expressions to make their types match. This
1027 * resulting matching type is the type of the entire
1030 if ((!apply_implicit_conversion(op
[1]->type
, op
[2], state
)
1031 && !apply_implicit_conversion(op
[2]->type
, op
[1], state
))
1032 || (op
[1]->type
!= op
[2]->type
)) {
1033 YYLTYPE loc
= this->subexpressions
[1]->get_location();
1035 _mesa_glsl_error(& loc
, state
, "Second and third operands of ?: "
1036 "operator must have matching types.");
1037 error_emitted
= true;
1038 type
= glsl_type::error_type
;
1043 ir_constant
*cond_val
= op
[0]->constant_expression_value();
1044 ir_constant
*then_val
= op
[1]->constant_expression_value();
1045 ir_constant
*else_val
= op
[2]->constant_expression_value();
1047 if (then_instructions
.is_empty()
1048 && else_instructions
.is_empty()
1049 && (cond_val
!= NULL
) && (then_val
!= NULL
) && (else_val
!= NULL
)) {
1050 result
= (cond_val
->value
.b
[0]) ? then_val
: else_val
;
1052 ir_variable
*const tmp
= new(ctx
) ir_variable(type
, "conditional_tmp");
1053 instructions
->push_tail(tmp
);
1055 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1056 instructions
->push_tail(stmt
);
1058 then_instructions
.move_nodes_to(& stmt
->then_instructions
);
1059 ir_dereference
*const then_deref
=
1060 new(ctx
) ir_dereference_variable(tmp
);
1061 ir_assignment
*const then_assign
=
1062 new(ctx
) ir_assignment(then_deref
, op
[1], NULL
);
1063 stmt
->then_instructions
.push_tail(then_assign
);
1065 else_instructions
.move_nodes_to(& stmt
->else_instructions
);
1066 ir_dereference
*const else_deref
=
1067 new(ctx
) ir_dereference_variable(tmp
);
1068 ir_assignment
*const else_assign
=
1069 new(ctx
) ir_assignment(else_deref
, op
[2], NULL
);
1070 stmt
->else_instructions
.push_tail(else_assign
);
1072 result
= new(ctx
) ir_dereference_variable(tmp
);
1079 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1080 if (op
[0]->type
->base_type
== GLSL_TYPE_FLOAT
)
1081 op
[1] = new(ctx
) ir_constant(1.0f
);
1083 op
[1] = new(ctx
) ir_constant(1);
1085 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1087 struct ir_rvalue
*temp_rhs
;
1088 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1091 result
= do_assignment(instructions
, state
,
1092 op
[0]->clone(NULL
), temp_rhs
,
1093 this->subexpressions
[0]->get_location());
1094 type
= result
->type
;
1095 error_emitted
= op
[0]->type
->is_error();
1100 case ast_post_dec
: {
1101 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1102 if (op
[0]->type
->base_type
== GLSL_TYPE_FLOAT
)
1103 op
[1] = new(ctx
) ir_constant(1.0f
);
1105 op
[1] = new(ctx
) ir_constant(1);
1107 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1109 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1111 struct ir_rvalue
*temp_rhs
;
1112 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1115 /* Get a temporary of a copy of the lvalue before it's modified.
1116 * This may get thrown away later.
1118 result
= get_lvalue_copy(instructions
, op
[0]->clone(NULL
));
1120 (void)do_assignment(instructions
, state
,
1121 op
[0]->clone(NULL
), temp_rhs
,
1122 this->subexpressions
[0]->get_location());
1124 type
= result
->type
;
1125 error_emitted
= op
[0]->type
->is_error();
1129 case ast_field_selection
:
1130 result
= _mesa_ast_field_selection_to_hir(this, instructions
, state
);
1131 type
= result
->type
;
1134 case ast_array_index
: {
1135 YYLTYPE index_loc
= subexpressions
[1]->get_location();
1137 op
[0] = subexpressions
[0]->hir(instructions
, state
);
1138 op
[1] = subexpressions
[1]->hir(instructions
, state
);
1140 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1142 ir_rvalue
*const array
= op
[0];
1144 result
= new(ctx
) ir_dereference_array(op
[0], op
[1]);
1146 /* Do not use op[0] after this point. Use array.
1154 if (!array
->type
->is_array()
1155 && !array
->type
->is_matrix()
1156 && !array
->type
->is_vector()) {
1157 _mesa_glsl_error(& index_loc
, state
,
1158 "cannot dereference non-array / non-matrix / "
1160 error_emitted
= true;
1163 if (!op
[1]->type
->is_integer()) {
1164 _mesa_glsl_error(& index_loc
, state
,
1165 "array index must be integer type");
1166 error_emitted
= true;
1167 } else if (!op
[1]->type
->is_scalar()) {
1168 _mesa_glsl_error(& index_loc
, state
,
1169 "array index must be scalar");
1170 error_emitted
= true;
1173 /* If the array index is a constant expression and the array has a
1174 * declared size, ensure that the access is in-bounds. If the array
1175 * index is not a constant expression, ensure that the array has a
1178 ir_constant
*const const_index
= op
[1]->constant_expression_value();
1179 if (const_index
!= NULL
) {
1180 const int idx
= const_index
->value
.i
[0];
1181 const char *type_name
;
1184 if (array
->type
->is_matrix()) {
1185 type_name
= "matrix";
1186 } else if (array
->type
->is_vector()) {
1187 type_name
= "vector";
1189 type_name
= "array";
1192 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1194 * "It is illegal to declare an array with a size, and then
1195 * later (in the same shader) index the same array with an
1196 * integral constant expression greater than or equal to the
1197 * declared size. It is also illegal to index an array with a
1198 * negative constant expression."
1200 if (array
->type
->is_matrix()) {
1201 if (array
->type
->row_type()->vector_elements
<= idx
) {
1202 bound
= array
->type
->row_type()->vector_elements
;
1204 } else if (array
->type
->is_vector()) {
1205 if (array
->type
->vector_elements
<= idx
) {
1206 bound
= array
->type
->vector_elements
;
1209 if ((array
->type
->array_size() > 0)
1210 && (array
->type
->array_size() <= idx
)) {
1211 bound
= array
->type
->array_size();
1216 _mesa_glsl_error(& loc
, state
, "%s index must be < %u",
1218 error_emitted
= true;
1219 } else if (idx
< 0) {
1220 _mesa_glsl_error(& loc
, state
, "%s index must be >= 0",
1222 error_emitted
= true;
1225 if (array
->type
->is_array()) {
1226 /* If the array is a variable dereference, it dereferences the
1227 * whole array, by definition. Use this to get the variable.
1229 * FINISHME: Should some methods for getting / setting / testing
1230 * FINISHME: array access limits be added to ir_dereference?
1232 ir_variable
*const v
= array
->whole_variable_referenced();
1233 if ((v
!= NULL
) && (unsigned(idx
) > v
->max_array_access
))
1234 v
->max_array_access
= idx
;
1239 result
->type
= glsl_type::error_type
;
1241 type
= result
->type
;
1245 case ast_function_call
:
1246 /* Should *NEVER* get here. ast_function_call should always be handled
1247 * by ast_function_expression::hir.
1252 case ast_identifier
: {
1253 /* ast_identifier can appear several places in a full abstract syntax
1254 * tree. This particular use must be at location specified in the grammar
1255 * as 'variable_identifier'.
1258 state
->symbols
->get_variable(this->primary_expression
.identifier
);
1260 result
= new(ctx
) ir_dereference_variable(var
);
1263 type
= result
->type
;
1265 _mesa_glsl_error(& loc
, state
, "`%s' undeclared",
1266 this->primary_expression
.identifier
);
1268 error_emitted
= true;
1273 case ast_int_constant
:
1274 type
= glsl_type::int_type
;
1275 result
= new(ctx
) ir_constant(this->primary_expression
.int_constant
);
1278 case ast_uint_constant
:
1279 type
= glsl_type::uint_type
;
1280 result
= new(ctx
) ir_constant(this->primary_expression
.uint_constant
);
1283 case ast_float_constant
:
1284 type
= glsl_type::float_type
;
1285 result
= new(ctx
) ir_constant(this->primary_expression
.float_constant
);
1288 case ast_bool_constant
:
1289 type
= glsl_type::bool_type
;
1290 result
= new(ctx
) ir_constant(bool(this->primary_expression
.bool_constant
));
1293 case ast_sequence
: {
1294 /* It should not be possible to generate a sequence in the AST without
1295 * any expressions in it.
1297 assert(!this->expressions
.is_empty());
1299 /* The r-value of a sequence is the last expression in the sequence. If
1300 * the other expressions in the sequence do not have side-effects (and
1301 * therefore add instructions to the instruction list), they get dropped
1304 foreach_list_typed (ast_node
, ast
, link
, &this->expressions
)
1305 result
= ast
->hir(instructions
, state
);
1307 type
= result
->type
;
1309 /* Any errors should have already been emitted in the loop above.
1311 error_emitted
= true;
1316 if (type
->is_error() && !error_emitted
)
1317 _mesa_glsl_error(& loc
, state
, "type mismatch");
1324 ast_expression_statement::hir(exec_list
*instructions
,
1325 struct _mesa_glsl_parse_state
*state
)
1327 /* It is possible to have expression statements that don't have an
1328 * expression. This is the solitary semicolon:
1330 * for (i = 0; i < 5; i++)
1333 * In this case the expression will be NULL. Test for NULL and don't do
1334 * anything in that case.
1336 if (expression
!= NULL
)
1337 expression
->hir(instructions
, state
);
1339 /* Statements do not have r-values.
1346 ast_compound_statement::hir(exec_list
*instructions
,
1347 struct _mesa_glsl_parse_state
*state
)
1350 state
->symbols
->push_scope();
1352 foreach_list_typed (ast_node
, ast
, link
, &this->statements
)
1353 ast
->hir(instructions
, state
);
1356 state
->symbols
->pop_scope();
1358 /* Compound statements do not have r-values.
1364 static const glsl_type
*
1365 process_array_type(const glsl_type
*base
, ast_node
*array_size
,
1366 struct _mesa_glsl_parse_state
*state
)
1368 unsigned length
= 0;
1370 /* FINISHME: Reject delcarations of multidimensional arrays. */
1372 if (array_size
!= NULL
) {
1373 exec_list dummy_instructions
;
1374 ir_rvalue
*const ir
= array_size
->hir(& dummy_instructions
, state
);
1375 YYLTYPE loc
= array_size
->get_location();
1377 /* FINISHME: Verify that the grammar forbids side-effects in array
1378 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1380 assert(dummy_instructions
.is_empty());
1383 if (!ir
->type
->is_integer()) {
1384 _mesa_glsl_error(& loc
, state
, "array size must be integer type");
1385 } else if (!ir
->type
->is_scalar()) {
1386 _mesa_glsl_error(& loc
, state
, "array size must be scalar type");
1388 ir_constant
*const size
= ir
->constant_expression_value();
1391 _mesa_glsl_error(& loc
, state
, "array size must be a "
1392 "constant valued expression");
1393 } else if (size
->value
.i
[0] <= 0) {
1394 _mesa_glsl_error(& loc
, state
, "array size must be > 0");
1396 assert(size
->type
== ir
->type
);
1397 length
= size
->value
.u
[0];
1403 return glsl_type::get_array_instance(state
, base
, length
);
1408 ast_type_specifier::glsl_type(const char **name
,
1409 struct _mesa_glsl_parse_state
*state
) const
1411 const struct glsl_type
*type
;
1413 if ((this->type_specifier
== ast_struct
) && (this->type_name
== NULL
)) {
1414 /* FINISHME: Handle annonymous structures. */
1417 type
= state
->symbols
->get_type(this->type_name
);
1418 *name
= this->type_name
;
1420 if (this->is_array
) {
1421 type
= process_array_type(type
, this->array_size
, state
);
1430 apply_type_qualifier_to_variable(const struct ast_type_qualifier
*qual
,
1431 struct ir_variable
*var
,
1432 struct _mesa_glsl_parse_state
*state
,
1435 if (qual
->invariant
)
1438 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1439 if (qual
->constant
|| qual
->attribute
|| qual
->uniform
1440 || (qual
->varying
&& (state
->target
== fragment_shader
)))
1446 if (qual
->attribute
&& state
->target
!= vertex_shader
) {
1447 var
->type
= glsl_type::error_type
;
1448 _mesa_glsl_error(loc
, state
,
1449 "`attribute' variables may not be declared in the "
1451 _mesa_glsl_shader_target_name(state
->target
));
1454 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1456 * "The varying qualifier can be used only with the data types
1457 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1460 if (qual
->varying
) {
1461 const glsl_type
*non_array_type
;
1463 if (var
->type
&& var
->type
->is_array())
1464 non_array_type
= var
->type
->fields
.array
;
1466 non_array_type
= var
->type
;
1468 if (non_array_type
&& non_array_type
->base_type
!= GLSL_TYPE_FLOAT
) {
1469 var
->type
= glsl_type::error_type
;
1470 _mesa_glsl_error(loc
, state
,
1471 "varying variables must be of base type float");
1475 if (qual
->in
&& qual
->out
)
1476 var
->mode
= ir_var_inout
;
1477 else if (qual
->attribute
|| qual
->in
1478 || (qual
->varying
&& (state
->target
== fragment_shader
)))
1479 var
->mode
= ir_var_in
;
1480 else if (qual
->out
|| (qual
->varying
&& (state
->target
== vertex_shader
)))
1481 var
->mode
= ir_var_out
;
1482 else if (qual
->uniform
)
1483 var
->mode
= ir_var_uniform
;
1485 var
->mode
= ir_var_auto
;
1488 var
->shader_in
= true;
1490 /* Any 'in' or 'inout' variables at global scope must be marked as being
1491 * shader inputs. Likewise, any 'out' or 'inout' variables at global scope
1492 * must be marked as being shader outputs.
1494 if (state
->current_function
== NULL
) {
1495 switch (var
->mode
) {
1497 case ir_var_uniform
:
1498 var
->shader_in
= true;
1501 var
->shader_out
= true;
1504 var
->shader_in
= true;
1505 var
->shader_out
= true;
1513 var
->interpolation
= ir_var_flat
;
1514 else if (qual
->noperspective
)
1515 var
->interpolation
= ir_var_noperspective
;
1517 var
->interpolation
= ir_var_smooth
;
1519 if (var
->type
->is_array() && (state
->language_version
>= 120)) {
1520 var
->array_lvalue
= true;
1526 ast_declarator_list::hir(exec_list
*instructions
,
1527 struct _mesa_glsl_parse_state
*state
)
1530 const struct glsl_type
*decl_type
;
1531 const char *type_name
= NULL
;
1532 ir_rvalue
*result
= NULL
;
1533 YYLTYPE loc
= this->get_location();
1535 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1537 * "To ensure that a particular output variable is invariant, it is
1538 * necessary to use the invariant qualifier. It can either be used to
1539 * qualify a previously declared variable as being invariant
1541 * invariant gl_Position; // make existing gl_Position be invariant"
1543 * In these cases the parser will set the 'invariant' flag in the declarator
1544 * list, and the type will be NULL.
1546 if (this->invariant
) {
1547 assert(this->type
== NULL
);
1549 if (state
->current_function
!= NULL
) {
1550 _mesa_glsl_error(& loc
, state
,
1551 "All uses of `invariant' keyword must be at global "
1555 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
1556 assert(!decl
->is_array
);
1557 assert(decl
->array_size
== NULL
);
1558 assert(decl
->initializer
== NULL
);
1560 ir_variable
*const earlier
=
1561 state
->symbols
->get_variable(decl
->identifier
);
1562 if (earlier
== NULL
) {
1563 _mesa_glsl_error(& loc
, state
,
1564 "Undeclared variable `%s' cannot be marked "
1565 "invariant\n", decl
->identifier
);
1566 } else if ((state
->target
== vertex_shader
)
1567 && (earlier
->mode
!= ir_var_out
)) {
1568 _mesa_glsl_error(& loc
, state
,
1569 "`%s' cannot be marked invariant, vertex shader "
1570 "outputs only\n", decl
->identifier
);
1571 } else if ((state
->target
== fragment_shader
)
1572 && (earlier
->mode
!= ir_var_in
)) {
1573 _mesa_glsl_error(& loc
, state
,
1574 "`%s' cannot be marked invariant, fragment shader "
1575 "inputs only\n", decl
->identifier
);
1577 earlier
->invariant
= true;
1581 /* Invariant redeclarations do not have r-values.
1586 assert(this->type
!= NULL
);
1587 assert(!this->invariant
);
1589 /* The type specifier may contain a structure definition. Process that
1590 * before any of the variable declarations.
1592 (void) this->type
->specifier
->hir(instructions
, state
);
1594 decl_type
= this->type
->specifier
->glsl_type(& type_name
, state
);
1595 if (this->declarations
.is_empty()) {
1596 /* The only valid case where the declaration list can be empty is when
1597 * the declaration is setting the default precision of a built-in type
1598 * (e.g., 'precision highp vec4;').
1601 if (decl_type
!= NULL
) {
1603 _mesa_glsl_error(& loc
, state
, "incomplete declaration");
1607 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
1608 const struct glsl_type
*var_type
;
1609 struct ir_variable
*var
;
1611 /* FINISHME: Emit a warning if a variable declaration shadows a
1612 * FINISHME: declaration at a higher scope.
1615 if ((decl_type
== NULL
) || decl_type
->is_void()) {
1616 if (type_name
!= NULL
) {
1617 _mesa_glsl_error(& loc
, state
,
1618 "invalid type `%s' in declaration of `%s'",
1619 type_name
, decl
->identifier
);
1621 _mesa_glsl_error(& loc
, state
,
1622 "invalid type in declaration of `%s'",
1628 if (decl
->is_array
) {
1629 var_type
= process_array_type(decl_type
, decl
->array_size
, state
);
1631 var_type
= decl_type
;
1634 var
= new(ctx
) ir_variable(var_type
, decl
->identifier
);
1636 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1638 * "Global variables can only use the qualifiers const,
1639 * attribute, uni form, or varying. Only one may be
1642 * Local variables can only use the qualifier const."
1644 * This is relaxed in GLSL 1.30.
1646 if (state
->language_version
< 120) {
1647 if (this->type
->qualifier
.out
) {
1648 _mesa_glsl_error(& loc
, state
,
1649 "`out' qualifier in declaration of `%s' "
1650 "only valid for function parameters in GLSL 1.10.",
1653 if (this->type
->qualifier
.in
) {
1654 _mesa_glsl_error(& loc
, state
,
1655 "`in' qualifier in declaration of `%s' "
1656 "only valid for function parameters in GLSL 1.10.",
1659 /* FINISHME: Test for other invalid qualifiers. */
1662 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
,
1665 if (this->type
->qualifier
.invariant
) {
1666 if ((state
->target
== vertex_shader
) && !var
->shader_out
) {
1667 _mesa_glsl_error(& loc
, state
,
1668 "`%s' cannot be marked invariant, vertex shader "
1669 "outputs only\n", var
->name
);
1670 } else if ((state
->target
== fragment_shader
) && !var
->shader_in
) {
1671 _mesa_glsl_error(& loc
, state
,
1672 "`%s' cannot be marked invariant, fragment shader "
1673 "inputs only\n", var
->name
);
1677 if (state
->current_function
!= NULL
) {
1678 const char *mode
= NULL
;
1679 const char *extra
= "";
1681 /* There is no need to check for 'inout' here because the parser will
1682 * only allow that in function parameter lists.
1684 if (this->type
->qualifier
.attribute
) {
1686 } else if (this->type
->qualifier
.uniform
) {
1688 } else if (this->type
->qualifier
.varying
) {
1690 } else if (this->type
->qualifier
.in
) {
1692 extra
= " or in function parameter list";
1693 } else if (this->type
->qualifier
.out
) {
1695 extra
= " or in function parameter list";
1699 _mesa_glsl_error(& loc
, state
,
1700 "%s variable `%s' must be declared at "
1702 mode
, var
->name
, extra
);
1704 } else if (var
->mode
== ir_var_in
) {
1705 if (state
->target
== vertex_shader
) {
1706 bool error_emitted
= false;
1708 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1710 * "Vertex shader inputs can only be float, floating-point
1711 * vectors, matrices, signed and unsigned integers and integer
1712 * vectors. Vertex shader inputs can also form arrays of these
1713 * types, but not structures."
1715 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1717 * "Vertex shader inputs can only be float, floating-point
1718 * vectors, matrices, signed and unsigned integers and integer
1719 * vectors. They cannot be arrays or structures."
1721 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1723 * "The attribute qualifier can be used only with float,
1724 * floating-point vectors, and matrices. Attribute variables
1725 * cannot be declared as arrays or structures."
1727 const glsl_type
*check_type
= var
->type
->is_array()
1728 ? var
->type
->fields
.array
: var
->type
;
1730 switch (check_type
->base_type
) {
1731 case GLSL_TYPE_FLOAT
:
1733 case GLSL_TYPE_UINT
:
1735 if (state
->language_version
> 120)
1739 _mesa_glsl_error(& loc
, state
,
1740 "vertex shader input / attribute cannot have "
1742 var
->type
->is_array() ? "array of " : "",
1744 error_emitted
= true;
1747 if (!error_emitted
&& (state
->language_version
<= 130)
1748 && var
->type
->is_array()) {
1749 _mesa_glsl_error(& loc
, state
,
1750 "vertex shader input / attribute cannot have "
1752 error_emitted
= true;
1757 /* Process the initializer and add its instructions to a temporary
1758 * list. This list will be added to the instruction stream (below) after
1759 * the declaration is added. This is done because in some cases (such as
1760 * redeclarations) the declaration may not actually be added to the
1761 * instruction stream.
1763 exec_list intializer_instructions
;
1764 if (decl
->initializer
!= NULL
) {
1765 YYLTYPE initializer_loc
= decl
->initializer
->get_location();
1767 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1769 * "All uniform variables are read-only and are initialized either
1770 * directly by an application via API commands, or indirectly by
1773 if ((state
->language_version
<= 110)
1774 && (var
->mode
== ir_var_uniform
)) {
1775 _mesa_glsl_error(& initializer_loc
, state
,
1776 "cannot initialize uniforms in GLSL 1.10");
1779 if (var
->type
->is_sampler()) {
1780 _mesa_glsl_error(& initializer_loc
, state
,
1781 "cannot initialize samplers");
1784 if ((var
->mode
== ir_var_in
) && (state
->current_function
== NULL
)) {
1785 _mesa_glsl_error(& initializer_loc
, state
,
1786 "cannot initialize %s shader input / %s",
1787 _mesa_glsl_shader_target_name(state
->target
),
1788 (state
->target
== vertex_shader
)
1789 ? "attribute" : "varying");
1792 ir_dereference
*const lhs
= new(ctx
) ir_dereference_variable(var
);
1793 ir_rvalue
*rhs
= decl
->initializer
->hir(&intializer_instructions
,
1796 /* Calculate the constant value if this is a const or uniform
1799 if (this->type
->qualifier
.constant
|| this->type
->qualifier
.uniform
) {
1800 ir_constant
*constant_value
= rhs
->constant_expression_value();
1801 if (!constant_value
) {
1802 _mesa_glsl_error(& initializer_loc
, state
,
1803 "initializer of %s variable `%s' must be a "
1804 "constant expression",
1805 (this->type
->qualifier
.constant
)
1806 ? "const" : "uniform",
1809 rhs
= constant_value
;
1810 var
->constant_value
= constant_value
;
1814 if (rhs
&& !rhs
->type
->is_error()) {
1815 bool temp
= var
->read_only
;
1816 if (this->type
->qualifier
.constant
)
1817 var
->read_only
= false;
1819 /* Never emit code to initialize a uniform.
1821 if (!this->type
->qualifier
.uniform
)
1822 result
= do_assignment(&intializer_instructions
, state
, lhs
, rhs
,
1823 this->get_location());
1824 var
->read_only
= temp
;
1828 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1830 * "It is an error to write to a const variable outside of
1831 * its declaration, so they must be initialized when
1834 if (this->type
->qualifier
.constant
&& decl
->initializer
== NULL
) {
1835 _mesa_glsl_error(& loc
, state
,
1836 "const declaration of `%s' must be initialized");
1839 /* Attempt to add the variable to the symbol table. If this fails, it
1840 * means the variable has already been declared at this scope. Arrays
1841 * fudge this rule a little bit.
1843 * From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1845 * "It is legal to declare an array without a size and then
1846 * later re-declare the same name as an array of the same
1847 * type and specify a size."
1849 if (state
->symbols
->name_declared_this_scope(decl
->identifier
)) {
1850 ir_variable
*const earlier
=
1851 state
->symbols
->get_variable(decl
->identifier
);
1853 if ((earlier
!= NULL
)
1854 && (earlier
->type
->array_size() == 0)
1855 && var
->type
->is_array()
1856 && (var
->type
->element_type() == earlier
->type
->element_type())) {
1857 /* FINISHME: This doesn't match the qualifiers on the two
1858 * FINISHME: declarations. It's not 100% clear whether this is
1859 * FINISHME: required or not.
1862 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1864 * "The size [of gl_TexCoord] can be at most
1865 * gl_MaxTextureCoords."
1867 const unsigned size
= unsigned(var
->type
->array_size());
1868 if ((strcmp("gl_TexCoord", var
->name
) == 0)
1869 && (size
> state
->Const
.MaxTextureCoords
)) {
1870 YYLTYPE loc
= this->get_location();
1872 _mesa_glsl_error(& loc
, state
, "`gl_TexCoord' array size cannot "
1873 "be larger than gl_MaxTextureCoords (%u)\n",
1874 state
->Const
.MaxTextureCoords
);
1875 } else if ((size
> 0) && (size
<= earlier
->max_array_access
)) {
1876 YYLTYPE loc
= this->get_location();
1878 _mesa_glsl_error(& loc
, state
, "array size must be > %u due to "
1880 earlier
->max_array_access
);
1883 earlier
->type
= var
->type
;
1887 YYLTYPE loc
= this->get_location();
1889 _mesa_glsl_error(& loc
, state
, "`%s' redeclared",
1896 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
1898 * "Identifiers starting with "gl_" are reserved for use by
1899 * OpenGL, and may not be declared in a shader as either a
1900 * variable or a function."
1902 if (strncmp(decl
->identifier
, "gl_", 3) == 0) {
1903 /* FINISHME: This should only trigger if we're not redefining
1904 * FINISHME: a builtin (to add a qualifier, for example).
1906 _mesa_glsl_error(& loc
, state
,
1907 "identifier `%s' uses reserved `gl_' prefix",
1911 instructions
->push_tail(var
);
1912 instructions
->append_list(&intializer_instructions
);
1914 /* Add the variable to the symbol table after processing the initializer.
1915 * This differs from most C-like languages, but it follows the GLSL
1916 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
1919 * "Within a declaration, the scope of a name starts immediately
1920 * after the initializer if present or immediately after the name
1921 * being declared if not."
1923 const bool added_variable
=
1924 state
->symbols
->add_variable(var
->name
, var
);
1925 assert(added_variable
);
1929 /* Generally, variable declarations do not have r-values. However,
1930 * one is used for the declaration in
1932 * while (bool b = some_condition()) {
1936 * so we return the rvalue from the last seen declaration here.
1943 ast_parameter_declarator::hir(exec_list
*instructions
,
1944 struct _mesa_glsl_parse_state
*state
)
1947 const struct glsl_type
*type
;
1948 const char *name
= NULL
;
1949 YYLTYPE loc
= this->get_location();
1951 type
= this->type
->specifier
->glsl_type(& name
, state
);
1955 _mesa_glsl_error(& loc
, state
,
1956 "invalid type `%s' in declaration of `%s'",
1957 name
, this->identifier
);
1959 _mesa_glsl_error(& loc
, state
,
1960 "invalid type in declaration of `%s'",
1964 type
= glsl_type::error_type
;
1967 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
1969 * "Functions that accept no input arguments need not use void in the
1970 * argument list because prototypes (or definitions) are required and
1971 * therefore there is no ambiguity when an empty argument list "( )" is
1972 * declared. The idiom "(void)" as a parameter list is provided for
1975 * Placing this check here prevents a void parameter being set up
1976 * for a function, which avoids tripping up checks for main taking
1977 * parameters and lookups of an unnamed symbol.
1979 if (type
->is_void()) {
1980 if (this->identifier
!= NULL
)
1981 _mesa_glsl_error(& loc
, state
,
1982 "named parameter cannot have type `void'");
1988 if (formal_parameter
&& (this->identifier
== NULL
)) {
1989 _mesa_glsl_error(& loc
, state
, "formal parameter lacks a name");
1994 ir_variable
*var
= new(ctx
) ir_variable(type
, this->identifier
);
1996 /* FINISHME: Handle array declarations. Note that this requires
1997 * FINISHME: complete handling of constant expressions.
2000 /* Apply any specified qualifiers to the parameter declaration. Note that
2001 * for function parameters the default mode is 'in'.
2003 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
, & loc
);
2004 if (var
->mode
== ir_var_auto
)
2005 var
->mode
= ir_var_in
;
2007 instructions
->push_tail(var
);
2009 /* Parameter declarations do not have r-values.
2016 ast_parameter_declarator::parameters_to_hir(exec_list
*ast_parameters
,
2018 exec_list
*ir_parameters
,
2019 _mesa_glsl_parse_state
*state
)
2021 ast_parameter_declarator
*void_param
= NULL
;
2024 foreach_list_typed (ast_parameter_declarator
, param
, link
, ast_parameters
) {
2025 param
->formal_parameter
= formal
;
2026 param
->hir(ir_parameters
, state
);
2034 if ((void_param
!= NULL
) && (count
> 1)) {
2035 YYLTYPE loc
= void_param
->get_location();
2037 _mesa_glsl_error(& loc
, state
,
2038 "`void' parameter must be only parameter");
2044 ast_function::hir(exec_list
*instructions
,
2045 struct _mesa_glsl_parse_state
*state
)
2048 ir_function
*f
= NULL
;
2049 ir_function_signature
*sig
= NULL
;
2050 exec_list hir_parameters
;
2052 const char *const name
= identifier
;
2054 /* Convert the list of function parameters to HIR now so that they can be
2055 * used below to compare this function's signature with previously seen
2056 * signatures for functions with the same name.
2058 ast_parameter_declarator::parameters_to_hir(& this->parameters
,
2060 & hir_parameters
, state
);
2062 const char *return_type_name
;
2063 const glsl_type
*return_type
=
2064 this->return_type
->specifier
->glsl_type(& return_type_name
, state
);
2066 assert(return_type
!= NULL
);
2068 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2069 * "No qualifier is allowed on the return type of a function."
2071 if (this->return_type
->has_qualifiers()) {
2072 YYLTYPE loc
= this->get_location();
2073 _mesa_glsl_error(& loc
, state
,
2074 "function `%s' return type has qualifiers", name
);
2077 /* Verify that this function's signature either doesn't match a previously
2078 * seen signature for a function with the same name, or, if a match is found,
2079 * that the previously seen signature does not have an associated definition.
2081 f
= state
->symbols
->get_function(name
);
2083 ir_function_signature
*sig
= f
->exact_matching_signature(&hir_parameters
);
2085 const char *badvar
= sig
->qualifiers_match(&hir_parameters
);
2086 if (badvar
!= NULL
) {
2087 YYLTYPE loc
= this->get_location();
2089 _mesa_glsl_error(&loc
, state
, "function `%s' parameter `%s' "
2090 "qualifiers don't match prototype", name
, badvar
);
2093 if (sig
->return_type
!= return_type
) {
2094 YYLTYPE loc
= this->get_location();
2096 _mesa_glsl_error(&loc
, state
, "function `%s' return type doesn't "
2097 "match prototype", name
);
2100 if (is_definition
&& sig
->is_defined
) {
2101 YYLTYPE loc
= this->get_location();
2103 _mesa_glsl_error(& loc
, state
, "function `%s' redefined", name
);
2107 } else if (state
->symbols
->name_declared_this_scope(name
)) {
2108 /* This function name shadows a non-function use of the same name.
2110 YYLTYPE loc
= this->get_location();
2112 _mesa_glsl_error(& loc
, state
, "function name `%s' conflicts with "
2113 "non-function", name
);
2116 f
= new(ctx
) ir_function(name
);
2117 state
->symbols
->add_function(f
->name
, f
);
2119 /* Emit the new function header */
2120 instructions
->push_tail(f
);
2123 /* Verify the return type of main() */
2124 if (strcmp(name
, "main") == 0) {
2125 if (! return_type
->is_void()) {
2126 YYLTYPE loc
= this->get_location();
2128 _mesa_glsl_error(& loc
, state
, "main() must return void");
2131 if (!hir_parameters
.is_empty()) {
2132 YYLTYPE loc
= this->get_location();
2134 _mesa_glsl_error(& loc
, state
, "main() must not take any parameters");
2138 /* Finish storing the information about this new function in its signature.
2141 sig
= new(ctx
) ir_function_signature(return_type
);
2142 f
->add_signature(sig
);
2145 sig
->replace_parameters(&hir_parameters
);
2148 /* Function declarations (prototypes) do not have r-values.
2155 ast_function_definition::hir(exec_list
*instructions
,
2156 struct _mesa_glsl_parse_state
*state
)
2158 prototype
->is_definition
= true;
2159 prototype
->hir(instructions
, state
);
2161 ir_function_signature
*signature
= prototype
->signature
;
2163 assert(state
->current_function
== NULL
);
2164 state
->current_function
= signature
;
2165 state
->found_return
= false;
2167 /* Duplicate parameters declared in the prototype as concrete variables.
2168 * Add these to the symbol table.
2170 state
->symbols
->push_scope();
2171 foreach_iter(exec_list_iterator
, iter
, signature
->parameters
) {
2172 ir_variable
*const var
= ((ir_instruction
*) iter
.get())->as_variable();
2174 assert(var
!= NULL
);
2176 /* The only way a parameter would "exist" is if two parameters have
2179 if (state
->symbols
->name_declared_this_scope(var
->name
)) {
2180 YYLTYPE loc
= this->get_location();
2182 _mesa_glsl_error(& loc
, state
, "parameter `%s' redeclared", var
->name
);
2184 state
->symbols
->add_variable(var
->name
, var
);
2188 /* Convert the body of the function to HIR. */
2189 this->body
->hir(&signature
->body
, state
);
2190 signature
->is_defined
= true;
2192 state
->symbols
->pop_scope();
2194 assert(state
->current_function
== signature
);
2195 state
->current_function
= NULL
;
2197 if (!signature
->return_type
->is_void() && !state
->found_return
) {
2198 YYLTYPE loc
= this->get_location();
2199 _mesa_glsl_error(& loc
, state
, "function `%s' has non-void return type "
2200 "%s, but no return statement",
2201 signature
->function_name(),
2202 signature
->return_type
->name
);
2205 /* Function definitions do not have r-values.
2212 ast_jump_statement::hir(exec_list
*instructions
,
2213 struct _mesa_glsl_parse_state
*state
)
2220 assert(state
->current_function
);
2222 if (opt_return_value
) {
2223 if (state
->current_function
->return_type
->base_type
==
2225 YYLTYPE loc
= this->get_location();
2227 _mesa_glsl_error(& loc
, state
,
2228 "`return` with a value, in function `%s' "
2230 state
->current_function
->function_name());
2233 ir_expression
*const ret
= (ir_expression
*)
2234 opt_return_value
->hir(instructions
, state
);
2235 assert(ret
!= NULL
);
2237 /* Implicit conversions are not allowed for return values. */
2238 if (state
->current_function
->return_type
!= ret
->type
) {
2239 YYLTYPE loc
= this->get_location();
2241 _mesa_glsl_error(& loc
, state
,
2242 "`return' with wrong type %s, in function `%s' "
2245 state
->current_function
->function_name(),
2246 state
->current_function
->return_type
->name
);
2249 inst
= new(ctx
) ir_return(ret
);
2251 if (state
->current_function
->return_type
->base_type
!=
2253 YYLTYPE loc
= this->get_location();
2255 _mesa_glsl_error(& loc
, state
,
2256 "`return' with no value, in function %s returning "
2258 state
->current_function
->function_name());
2260 inst
= new(ctx
) ir_return
;
2263 state
->found_return
= true;
2264 instructions
->push_tail(inst
);
2269 if (state
->target
!= fragment_shader
) {
2270 YYLTYPE loc
= this->get_location();
2272 _mesa_glsl_error(& loc
, state
,
2273 "`discard' may only appear in a fragment shader");
2275 instructions
->push_tail(new(ctx
) ir_discard
);
2280 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2281 * FINISHME: and they use a different IR instruction for 'break'.
2283 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2284 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2287 if (state
->loop_or_switch_nesting
== NULL
) {
2288 YYLTYPE loc
= this->get_location();
2290 _mesa_glsl_error(& loc
, state
,
2291 "`%s' may only appear in a loop",
2292 (mode
== ast_break
) ? "break" : "continue");
2294 ir_loop
*const loop
= state
->loop_or_switch_nesting
->as_loop();
2297 ir_loop_jump
*const jump
=
2298 new(ctx
) ir_loop_jump((mode
== ast_break
)
2299 ? ir_loop_jump::jump_break
2300 : ir_loop_jump::jump_continue
);
2301 instructions
->push_tail(jump
);
2308 /* Jump instructions do not have r-values.
2315 ast_selection_statement::hir(exec_list
*instructions
,
2316 struct _mesa_glsl_parse_state
*state
)
2320 ir_rvalue
*const condition
= this->condition
->hir(instructions
, state
);
2322 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2324 * "Any expression whose type evaluates to a Boolean can be used as the
2325 * conditional expression bool-expression. Vector types are not accepted
2326 * as the expression to if."
2328 * The checks are separated so that higher quality diagnostics can be
2329 * generated for cases where both rules are violated.
2331 if (!condition
->type
->is_boolean() || !condition
->type
->is_scalar()) {
2332 YYLTYPE loc
= this->condition
->get_location();
2334 _mesa_glsl_error(& loc
, state
, "if-statement condition must be scalar "
2338 ir_if
*const stmt
= new(ctx
) ir_if(condition
);
2340 if (then_statement
!= NULL
)
2341 then_statement
->hir(& stmt
->then_instructions
, state
);
2343 if (else_statement
!= NULL
)
2344 else_statement
->hir(& stmt
->else_instructions
, state
);
2346 instructions
->push_tail(stmt
);
2348 /* if-statements do not have r-values.
2355 ast_iteration_statement::condition_to_hir(ir_loop
*stmt
,
2356 struct _mesa_glsl_parse_state
*state
)
2360 if (condition
!= NULL
) {
2361 ir_rvalue
*const cond
=
2362 condition
->hir(& stmt
->body_instructions
, state
);
2365 || !cond
->type
->is_boolean() || !cond
->type
->is_scalar()) {
2366 YYLTYPE loc
= condition
->get_location();
2368 _mesa_glsl_error(& loc
, state
,
2369 "loop condition must be scalar boolean");
2371 /* As the first code in the loop body, generate a block that looks
2372 * like 'if (!condition) break;' as the loop termination condition.
2374 ir_rvalue
*const not_cond
=
2375 new(ctx
) ir_expression(ir_unop_logic_not
, glsl_type::bool_type
, cond
,
2378 ir_if
*const if_stmt
= new(ctx
) ir_if(not_cond
);
2380 ir_jump
*const break_stmt
=
2381 new(ctx
) ir_loop_jump(ir_loop_jump::jump_break
);
2383 if_stmt
->then_instructions
.push_tail(break_stmt
);
2384 stmt
->body_instructions
.push_tail(if_stmt
);
2391 ast_iteration_statement::hir(exec_list
*instructions
,
2392 struct _mesa_glsl_parse_state
*state
)
2396 /* For-loops and while-loops start a new scope, but do-while loops do not.
2398 if (mode
!= ast_do_while
)
2399 state
->symbols
->push_scope();
2401 if (init_statement
!= NULL
)
2402 init_statement
->hir(instructions
, state
);
2404 ir_loop
*const stmt
= new(ctx
) ir_loop();
2405 instructions
->push_tail(stmt
);
2407 /* Track the current loop and / or switch-statement nesting.
2409 ir_instruction
*const nesting
= state
->loop_or_switch_nesting
;
2410 state
->loop_or_switch_nesting
= stmt
;
2412 if (mode
!= ast_do_while
)
2413 condition_to_hir(stmt
, state
);
2416 body
->hir(& stmt
->body_instructions
, state
);
2418 if (rest_expression
!= NULL
)
2419 rest_expression
->hir(& stmt
->body_instructions
, state
);
2421 if (mode
== ast_do_while
)
2422 condition_to_hir(stmt
, state
);
2424 if (mode
!= ast_do_while
)
2425 state
->symbols
->pop_scope();
2427 /* Restore previous nesting before returning.
2429 state
->loop_or_switch_nesting
= nesting
;
2431 /* Loops do not have r-values.
2438 ast_type_specifier::hir(exec_list
*instructions
,
2439 struct _mesa_glsl_parse_state
*state
)
2441 if (this->structure
!= NULL
)
2442 return this->structure
->hir(instructions
, state
);
2449 ast_struct_specifier::hir(exec_list
*instructions
,
2450 struct _mesa_glsl_parse_state
*state
)
2452 unsigned decl_count
= 0;
2454 /* Make an initial pass over the list of structure fields to determine how
2455 * many there are. Each element in this list is an ast_declarator_list.
2456 * This means that we actually need to count the number of elements in the
2457 * 'declarations' list in each of the elements.
2459 foreach_list_typed (ast_declarator_list
, decl_list
, link
,
2460 &this->declarations
) {
2461 foreach_list_const (decl_ptr
, & decl_list
->declarations
) {
2467 /* Allocate storage for the structure fields and process the field
2468 * declarations. As the declarations are processed, try to also convert
2469 * the types to HIR. This ensures that structure definitions embedded in
2470 * other structure definitions are processed.
2472 glsl_struct_field
*const fields
= (glsl_struct_field
*)
2473 malloc(sizeof(*fields
) * decl_count
);
2476 foreach_list_typed (ast_declarator_list
, decl_list
, link
,
2477 &this->declarations
) {
2478 const char *type_name
;
2480 decl_list
->type
->specifier
->hir(instructions
, state
);
2482 const glsl_type
*decl_type
=
2483 decl_list
->type
->specifier
->glsl_type(& type_name
, state
);
2485 foreach_list_typed (ast_declaration
, decl
, link
,
2486 &decl_list
->declarations
) {
2487 const struct glsl_type
*const field_type
=
2489 ? process_array_type(decl_type
, decl
->array_size
, state
)
2492 fields
[i
].type
= (field_type
!= NULL
)
2493 ? field_type
: glsl_type::error_type
;
2494 fields
[i
].name
= decl
->identifier
;
2499 assert(i
== decl_count
);
2502 if (this->name
== NULL
) {
2503 static unsigned anon_count
= 1;
2506 snprintf(buf
, sizeof(buf
), "#anon_struct_%04x", anon_count
);
2514 const glsl_type
*t
=
2515 glsl_type::get_record_instance(fields
, decl_count
, name
);
2517 YYLTYPE loc
= this->get_location();
2518 if (!state
->symbols
->add_type(name
, t
)) {
2519 _mesa_glsl_error(& loc
, state
, "struct `%s' previously defined", name
);
2521 /* This logic is a bit tricky. It is an error to declare a structure at
2522 * global scope if there is also a function with the same name.
2524 if ((state
->current_function
== NULL
)
2525 && (state
->symbols
->get_function(name
) != NULL
)) {
2526 _mesa_glsl_error(& loc
, state
, "name `%s' previously defined", name
);
2528 t
->generate_constructor(state
->symbols
);
2531 const glsl_type
**s
= (const glsl_type
**)
2532 realloc(state
->user_structures
,
2533 sizeof(state
->user_structures
[0]) *
2534 (state
->num_user_structures
+ 1));
2536 s
[state
->num_user_structures
] = t
;
2537 state
->user_structures
= s
;
2538 state
->num_user_structures
++;
2542 /* Structure type definitions do not have r-values.