2 * Copyright © 2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
31 * * Symbol table management
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
56 #include "glsl_types.h"
60 _mesa_ast_to_hir(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
)
62 _mesa_glsl_initialize_variables(instructions
, state
);
63 _mesa_glsl_initialize_functions(instructions
, state
);
65 state
->current_function
= NULL
;
67 foreach_list_typed (ast_node
, ast
, link
, & state
->translation_unit
)
68 ast
->hir(instructions
, state
);
73 * If a conversion is available, convert one operand to a different type
75 * The \c from \c ir_rvalue is converted "in place".
77 * \param to Type that the operand it to be converted to
78 * \param from Operand that is being converted
79 * \param state GLSL compiler state
82 * If a conversion is possible (or unnecessary), \c true is returned.
83 * Otherwise \c false is returned.
86 apply_implicit_conversion(const glsl_type
*to
, ir_rvalue
* &from
,
87 struct _mesa_glsl_parse_state
*state
)
90 if (to
->base_type
== from
->type
->base_type
)
93 /* This conversion was added in GLSL 1.20. If the compilation mode is
94 * GLSL 1.10, the conversion is skipped.
96 if (state
->language_version
< 120)
99 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
101 * "There are no implicit array or structure conversions. For
102 * example, an array of int cannot be implicitly converted to an
103 * array of float. There are no implicit conversions between
104 * signed and unsigned integers."
106 /* FINISHME: The above comment is partially a lie. There is int/uint
107 * FINISHME: conversion for immediate constants.
109 if (!to
->is_float() || !from
->type
->is_numeric())
112 /* Convert to a floating point type with the same number of components
113 * as the original type - i.e. int to float, not int to vec4.
115 to
= glsl_type::get_instance(GLSL_TYPE_FLOAT
, from
->type
->vector_elements
,
116 from
->type
->matrix_columns
);
118 switch (from
->type
->base_type
) {
120 from
= new(ctx
) ir_expression(ir_unop_i2f
, to
, from
, NULL
);
123 from
= new(ctx
) ir_expression(ir_unop_u2f
, to
, from
, NULL
);
126 from
= new(ctx
) ir_expression(ir_unop_b2f
, to
, from
, NULL
);
136 static const struct glsl_type
*
137 arithmetic_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
139 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
141 const glsl_type
*type_a
= value_a
->type
;
142 const glsl_type
*type_b
= value_b
->type
;
144 /* From GLSL 1.50 spec, page 56:
146 * "The arithmetic binary operators add (+), subtract (-),
147 * multiply (*), and divide (/) operate on integer and
148 * floating-point scalars, vectors, and matrices."
150 if (!type_a
->is_numeric() || !type_b
->is_numeric()) {
151 _mesa_glsl_error(loc
, state
,
152 "Operands to arithmetic operators must be numeric");
153 return glsl_type::error_type
;
157 /* "If one operand is floating-point based and the other is
158 * not, then the conversions from Section 4.1.10 "Implicit
159 * Conversions" are applied to the non-floating-point-based operand."
161 if (!apply_implicit_conversion(type_a
, value_b
, state
)
162 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
163 _mesa_glsl_error(loc
, state
,
164 "Could not implicitly convert operands to "
165 "arithmetic operator");
166 return glsl_type::error_type
;
168 type_a
= value_a
->type
;
169 type_b
= value_b
->type
;
171 /* "If the operands are integer types, they must both be signed or
174 * From this rule and the preceeding conversion it can be inferred that
175 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
176 * The is_numeric check above already filtered out the case where either
177 * type is not one of these, so now the base types need only be tested for
180 if (type_a
->base_type
!= type_b
->base_type
) {
181 _mesa_glsl_error(loc
, state
,
182 "base type mismatch for arithmetic operator");
183 return glsl_type::error_type
;
186 /* "All arithmetic binary operators result in the same fundamental type
187 * (signed integer, unsigned integer, or floating-point) as the
188 * operands they operate on, after operand type conversion. After
189 * conversion, the following cases are valid
191 * * The two operands are scalars. In this case the operation is
192 * applied, resulting in a scalar."
194 if (type_a
->is_scalar() && type_b
->is_scalar())
197 /* "* One operand is a scalar, and the other is a vector or matrix.
198 * In this case, the scalar operation is applied independently to each
199 * component of the vector or matrix, resulting in the same size
202 if (type_a
->is_scalar()) {
203 if (!type_b
->is_scalar())
205 } else if (type_b
->is_scalar()) {
209 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
210 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
213 assert(!type_a
->is_scalar());
214 assert(!type_b
->is_scalar());
216 /* "* The two operands are vectors of the same size. In this case, the
217 * operation is done component-wise resulting in the same size
220 if (type_a
->is_vector() && type_b
->is_vector()) {
221 if (type_a
== type_b
) {
224 _mesa_glsl_error(loc
, state
,
225 "vector size mismatch for arithmetic operator");
226 return glsl_type::error_type
;
230 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
231 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
232 * <vector, vector> have been handled. At least one of the operands must
233 * be matrix. Further, since there are no integer matrix types, the base
234 * type of both operands must be float.
236 assert(type_a
->is_matrix() || type_b
->is_matrix());
237 assert(type_a
->base_type
== GLSL_TYPE_FLOAT
);
238 assert(type_b
->base_type
== GLSL_TYPE_FLOAT
);
240 /* "* The operator is add (+), subtract (-), or divide (/), and the
241 * operands are matrices with the same number of rows and the same
242 * number of columns. In this case, the operation is done component-
243 * wise resulting in the same size matrix."
244 * * The operator is multiply (*), where both operands are matrices or
245 * one operand is a vector and the other a matrix. A right vector
246 * operand is treated as a column vector and a left vector operand as a
247 * row vector. In all these cases, it is required that the number of
248 * columns of the left operand is equal to the number of rows of the
249 * right operand. Then, the multiply (*) operation does a linear
250 * algebraic multiply, yielding an object that has the same number of
251 * rows as the left operand and the same number of columns as the right
252 * operand. Section 5.10 "Vector and Matrix Operations" explains in
253 * more detail how vectors and matrices are operated on."
256 if (type_a
== type_b
)
259 if (type_a
->is_matrix() && type_b
->is_matrix()) {
260 /* Matrix multiply. The columns of A must match the rows of B. Given
261 * the other previously tested constraints, this means the vector type
262 * of a row from A must be the same as the vector type of a column from
265 if (type_a
->row_type() == type_b
->column_type()) {
266 /* The resulting matrix has the number of columns of matrix B and
267 * the number of rows of matrix A. We get the row count of A by
268 * looking at the size of a vector that makes up a column. The
269 * transpose (size of a row) is done for B.
271 const glsl_type
*const type
=
272 glsl_type::get_instance(type_a
->base_type
,
273 type_a
->column_type()->vector_elements
,
274 type_b
->row_type()->vector_elements
);
275 assert(type
!= glsl_type::error_type
);
279 } else if (type_a
->is_matrix()) {
280 /* A is a matrix and B is a column vector. Columns of A must match
281 * rows of B. Given the other previously tested constraints, this
282 * means the vector type of a row from A must be the same as the
283 * vector the type of B.
285 if (type_a
->row_type() == type_b
) {
286 /* The resulting vector has a number of elements equal to
287 * the number of rows of matrix A. */
288 const glsl_type
*const type
=
289 glsl_type::get_instance(type_a
->base_type
,
290 type_a
->column_type()->vector_elements
,
292 assert(type
!= glsl_type::error_type
);
297 assert(type_b
->is_matrix());
299 /* A is a row vector and B is a matrix. Columns of A must match rows
300 * of B. Given the other previously tested constraints, this means
301 * the type of A must be the same as the vector type of a column from
304 if (type_a
== type_b
->column_type()) {
305 /* The resulting vector has a number of elements equal to
306 * the number of columns of matrix B. */
307 const glsl_type
*const type
=
308 glsl_type::get_instance(type_a
->base_type
,
309 type_b
->row_type()->vector_elements
,
311 assert(type
!= glsl_type::error_type
);
317 _mesa_glsl_error(loc
, state
, "size mismatch for matrix multiplication");
318 return glsl_type::error_type
;
322 /* "All other cases are illegal."
324 _mesa_glsl_error(loc
, state
, "type mismatch");
325 return glsl_type::error_type
;
329 static const struct glsl_type
*
330 unary_arithmetic_result_type(const struct glsl_type
*type
,
331 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
333 /* From GLSL 1.50 spec, page 57:
335 * "The arithmetic unary operators negate (-), post- and pre-increment
336 * and decrement (-- and ++) operate on integer or floating-point
337 * values (including vectors and matrices). All unary operators work
338 * component-wise on their operands. These result with the same type
341 if (!type
->is_numeric()) {
342 _mesa_glsl_error(loc
, state
,
343 "Operands to arithmetic operators must be numeric");
344 return glsl_type::error_type
;
351 static const struct glsl_type
*
352 modulus_result_type(const struct glsl_type
*type_a
,
353 const struct glsl_type
*type_b
,
354 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
356 /* From GLSL 1.50 spec, page 56:
357 * "The operator modulus (%) operates on signed or unsigned integers or
358 * integer vectors. The operand types must both be signed or both be
361 if (!type_a
->is_integer() || !type_b
->is_integer()
362 || (type_a
->base_type
!= type_b
->base_type
)) {
363 _mesa_glsl_error(loc
, state
, "type mismatch");
364 return glsl_type::error_type
;
367 /* "The operands cannot be vectors of differing size. If one operand is
368 * a scalar and the other vector, then the scalar is applied component-
369 * wise to the vector, resulting in the same type as the vector. If both
370 * are vectors of the same size, the result is computed component-wise."
372 if (type_a
->is_vector()) {
373 if (!type_b
->is_vector()
374 || (type_a
->vector_elements
== type_b
->vector_elements
))
379 /* "The operator modulus (%) is not defined for any other data types
380 * (non-integer types)."
382 _mesa_glsl_error(loc
, state
, "type mismatch");
383 return glsl_type::error_type
;
387 static const struct glsl_type
*
388 relational_result_type(ir_rvalue
* &value_a
, ir_rvalue
* &value_b
,
389 struct _mesa_glsl_parse_state
*state
, YYLTYPE
*loc
)
391 const glsl_type
*type_a
= value_a
->type
;
392 const glsl_type
*type_b
= value_b
->type
;
394 /* From GLSL 1.50 spec, page 56:
395 * "The relational operators greater than (>), less than (<), greater
396 * than or equal (>=), and less than or equal (<=) operate only on
397 * scalar integer and scalar floating-point expressions."
399 if (!type_a
->is_numeric()
400 || !type_b
->is_numeric()
401 || !type_a
->is_scalar()
402 || !type_b
->is_scalar()) {
403 _mesa_glsl_error(loc
, state
,
404 "Operands to relational operators must be scalar and "
406 return glsl_type::error_type
;
409 /* "Either the operands' types must match, or the conversions from
410 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
411 * operand, after which the types must match."
413 if (!apply_implicit_conversion(type_a
, value_b
, state
)
414 && !apply_implicit_conversion(type_b
, value_a
, state
)) {
415 _mesa_glsl_error(loc
, state
,
416 "Could not implicitly convert operands to "
417 "relational operator");
418 return glsl_type::error_type
;
420 type_a
= value_a
->type
;
421 type_b
= value_b
->type
;
423 if (type_a
->base_type
!= type_b
->base_type
) {
424 _mesa_glsl_error(loc
, state
, "base type mismatch");
425 return glsl_type::error_type
;
428 /* "The result is scalar Boolean."
430 return glsl_type::bool_type
;
435 * Validates that a value can be assigned to a location with a specified type
437 * Validates that \c rhs can be assigned to some location. If the types are
438 * not an exact match but an automatic conversion is possible, \c rhs will be
442 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
443 * Otherwise the actual RHS to be assigned will be returned. This may be
444 * \c rhs, or it may be \c rhs after some type conversion.
447 * In addition to being used for assignments, this function is used to
448 * type-check return values.
451 validate_assignment(struct _mesa_glsl_parse_state
*state
,
452 const glsl_type
*lhs_type
, ir_rvalue
*rhs
)
454 const glsl_type
*rhs_type
= rhs
->type
;
456 /* If there is already some error in the RHS, just return it. Anything
457 * else will lead to an avalanche of error message back to the user.
459 if (rhs_type
->is_error())
462 /* If the types are identical, the assignment can trivially proceed.
464 if (rhs_type
== lhs_type
)
467 /* If the array element types are the same and the size of the LHS is zero,
468 * the assignment is okay.
470 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
471 * is handled by ir_dereference::is_lvalue.
473 if (lhs_type
->is_array() && rhs
->type
->is_array()
474 && (lhs_type
->element_type() == rhs
->type
->element_type())
475 && (lhs_type
->array_size() == 0)) {
479 /* Check for implicit conversion in GLSL 1.20 */
480 if (apply_implicit_conversion(lhs_type
, rhs
, state
)) {
481 rhs_type
= rhs
->type
;
482 if (rhs_type
== lhs_type
)
490 do_assignment(exec_list
*instructions
, struct _mesa_glsl_parse_state
*state
,
491 ir_rvalue
*lhs
, ir_rvalue
*rhs
,
495 bool error_emitted
= (lhs
->type
->is_error() || rhs
->type
->is_error());
497 if (!error_emitted
) {
498 /* FINISHME: This does not handle 'foo.bar.a.b.c[5].d = 5' */
499 if (!lhs
->is_lvalue()) {
500 _mesa_glsl_error(& lhs_loc
, state
, "non-lvalue in assignment");
501 error_emitted
= true;
505 ir_rvalue
*new_rhs
= validate_assignment(state
, lhs
->type
, rhs
);
506 if (new_rhs
== NULL
) {
507 _mesa_glsl_error(& lhs_loc
, state
, "type mismatch");
511 /* If the LHS array was not declared with a size, it takes it size from
512 * the RHS. If the LHS is an l-value and a whole array, it must be a
513 * dereference of a variable. Any other case would require that the LHS
514 * is either not an l-value or not a whole array.
516 if (lhs
->type
->array_size() == 0) {
517 ir_dereference
*const d
= lhs
->as_dereference();
521 ir_variable
*const var
= d
->variable_referenced();
525 if (var
->max_array_access
>= unsigned(rhs
->type
->array_size())) {
526 /* FINISHME: This should actually log the location of the RHS. */
527 _mesa_glsl_error(& lhs_loc
, state
, "array size must be > %u due to "
529 var
->max_array_access
);
532 var
->type
= glsl_type::get_array_instance(lhs
->type
->element_type(),
533 rhs
->type
->array_size());
538 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
539 * but not post_inc) need the converted assigned value as an rvalue
540 * to handle things like:
544 * So we always just store the computed value being assigned to a
545 * temporary and return a deref of that temporary. If the rvalue
546 * ends up not being used, the temp will get copy-propagated out.
548 ir_variable
*var
= new(ctx
) ir_variable(rhs
->type
, "assignment_tmp",
550 ir_dereference_variable
*deref_var
= new(ctx
) ir_dereference_variable(var
);
551 instructions
->push_tail(var
);
552 instructions
->push_tail(new(ctx
) ir_assignment(deref_var
,
555 deref_var
= new(ctx
) ir_dereference_variable(var
);
558 instructions
->push_tail(new(ctx
) ir_assignment(lhs
, deref_var
, NULL
));
560 return new(ctx
) ir_dereference_variable(var
);
564 get_lvalue_copy(exec_list
*instructions
, ir_rvalue
*lvalue
)
566 void *ctx
= talloc_parent(lvalue
);
569 /* FINISHME: Give unique names to the temporaries. */
570 var
= new(ctx
) ir_variable(lvalue
->type
, "_post_incdec_tmp",
572 instructions
->push_tail(var
);
573 var
->mode
= ir_var_auto
;
575 instructions
->push_tail(new(ctx
) ir_assignment(new(ctx
) ir_dereference_variable(var
),
578 /* Once we've created this temporary, mark it read only so it's no
579 * longer considered an lvalue.
581 var
->read_only
= true;
583 return new(ctx
) ir_dereference_variable(var
);
588 ast_node::hir(exec_list
*instructions
,
589 struct _mesa_glsl_parse_state
*state
)
599 ast_expression::hir(exec_list
*instructions
,
600 struct _mesa_glsl_parse_state
*state
)
603 static const int operations
[AST_NUM_OPERATORS
] = {
604 -1, /* ast_assign doesn't convert to ir_expression. */
605 -1, /* ast_plus doesn't convert to ir_expression. */
629 /* Note: The following block of expression types actually convert
630 * to multiple IR instructions.
632 ir_binop_mul
, /* ast_mul_assign */
633 ir_binop_div
, /* ast_div_assign */
634 ir_binop_mod
, /* ast_mod_assign */
635 ir_binop_add
, /* ast_add_assign */
636 ir_binop_sub
, /* ast_sub_assign */
637 ir_binop_lshift
, /* ast_ls_assign */
638 ir_binop_rshift
, /* ast_rs_assign */
639 ir_binop_bit_and
, /* ast_and_assign */
640 ir_binop_bit_xor
, /* ast_xor_assign */
641 ir_binop_bit_or
, /* ast_or_assign */
643 -1, /* ast_conditional doesn't convert to ir_expression. */
644 ir_binop_add
, /* ast_pre_inc. */
645 ir_binop_sub
, /* ast_pre_dec. */
646 ir_binop_add
, /* ast_post_inc. */
647 ir_binop_sub
, /* ast_post_dec. */
648 -1, /* ast_field_selection doesn't conv to ir_expression. */
649 -1, /* ast_array_index doesn't convert to ir_expression. */
650 -1, /* ast_function_call doesn't conv to ir_expression. */
651 -1, /* ast_identifier doesn't convert to ir_expression. */
652 -1, /* ast_int_constant doesn't convert to ir_expression. */
653 -1, /* ast_uint_constant doesn't conv to ir_expression. */
654 -1, /* ast_float_constant doesn't conv to ir_expression. */
655 -1, /* ast_bool_constant doesn't conv to ir_expression. */
656 -1, /* ast_sequence doesn't convert to ir_expression. */
658 ir_rvalue
*result
= NULL
;
660 const struct glsl_type
*type
= glsl_type::error_type
;
661 bool error_emitted
= false;
664 loc
= this->get_location();
666 switch (this->oper
) {
668 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
669 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
671 result
= do_assignment(instructions
, state
, op
[0], op
[1],
672 this->subexpressions
[0]->get_location());
673 error_emitted
= result
->type
->is_error();
679 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
681 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
683 error_emitted
= type
->is_error();
689 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
691 type
= unary_arithmetic_result_type(op
[0]->type
, state
, & loc
);
693 error_emitted
= type
->is_error();
695 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
703 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
704 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
706 type
= arithmetic_result_type(op
[0], op
[1],
707 (this->oper
== ast_mul
),
709 error_emitted
= type
->is_error();
711 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
716 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
717 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
719 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
721 assert(operations
[this->oper
] == ir_binop_mod
);
723 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
725 error_emitted
= type
->is_error();
730 _mesa_glsl_error(& loc
, state
, "FINISHME: implement bit-shift operators");
731 error_emitted
= true;
738 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
739 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
741 type
= relational_result_type(op
[0], op
[1], state
, & loc
);
743 /* The relational operators must either generate an error or result
744 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
746 assert(type
->is_error()
747 || ((type
->base_type
== GLSL_TYPE_BOOL
)
748 && type
->is_scalar()));
750 result
= new(ctx
) ir_expression(operations
[this->oper
], type
,
752 error_emitted
= type
->is_error();
757 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
758 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
760 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
762 * "The equality operators equal (==), and not equal (!=)
763 * operate on all types. They result in a scalar Boolean. If
764 * the operand types do not match, then there must be a
765 * conversion from Section 4.1.10 "Implicit Conversions"
766 * applied to one operand that can make them match, in which
767 * case this conversion is done."
769 if ((!apply_implicit_conversion(op
[0]->type
, op
[1], state
)
770 && !apply_implicit_conversion(op
[1]->type
, op
[0], state
))
771 || (op
[0]->type
!= op
[1]->type
)) {
772 _mesa_glsl_error(& loc
, state
, "operands of `%s' must have the same "
773 "type", (this->oper
== ast_equal
) ? "==" : "!=");
774 error_emitted
= true;
775 } else if ((state
->language_version
<= 110)
776 && (op
[0]->type
->is_array() || op
[1]->type
->is_array())) {
777 _mesa_glsl_error(& loc
, state
, "array comparisons forbidden in "
779 error_emitted
= true;
782 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
784 type
= glsl_type::bool_type
;
786 assert(result
->type
== glsl_type::bool_type
);
793 _mesa_glsl_error(& loc
, state
, "FINISHME: implement bit-wise operators");
794 error_emitted
= true;
797 case ast_logic_and
: {
798 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
800 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
801 YYLTYPE loc
= this->subexpressions
[0]->get_location();
803 _mesa_glsl_error(& loc
, state
, "LHS of `%s' must be scalar boolean",
804 operator_string(this->oper
));
805 error_emitted
= true;
808 ir_constant
*op0_const
= op
[0]->constant_expression_value();
810 if (op0_const
->value
.b
[0]) {
811 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
813 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
814 YYLTYPE loc
= this->subexpressions
[1]->get_location();
816 _mesa_glsl_error(& loc
, state
,
817 "RHS of `%s' must be scalar boolean",
818 operator_string(this->oper
));
819 error_emitted
= true;
825 type
= glsl_type::bool_type
;
827 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
830 instructions
->push_tail(tmp
);
832 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
833 instructions
->push_tail(stmt
);
835 op
[1] = this->subexpressions
[1]->hir(&stmt
->then_instructions
, state
);
837 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
838 YYLTYPE loc
= this->subexpressions
[1]->get_location();
840 _mesa_glsl_error(& loc
, state
,
841 "RHS of `%s' must be scalar boolean",
842 operator_string(this->oper
));
843 error_emitted
= true;
846 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
847 ir_assignment
*const then_assign
=
848 new(ctx
) ir_assignment(then_deref
, op
[1], NULL
);
849 stmt
->then_instructions
.push_tail(then_assign
);
851 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
852 ir_assignment
*const else_assign
=
853 new(ctx
) ir_assignment(else_deref
, new(ctx
) ir_constant(false), NULL
);
854 stmt
->else_instructions
.push_tail(else_assign
);
856 result
= new(ctx
) ir_dereference_variable(tmp
);
863 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
865 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
866 YYLTYPE loc
= this->subexpressions
[0]->get_location();
868 _mesa_glsl_error(& loc
, state
, "LHS of `%s' must be scalar boolean",
869 operator_string(this->oper
));
870 error_emitted
= true;
873 ir_constant
*op0_const
= op
[0]->constant_expression_value();
875 if (op0_const
->value
.b
[0]) {
878 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
880 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
881 YYLTYPE loc
= this->subexpressions
[1]->get_location();
883 _mesa_glsl_error(& loc
, state
,
884 "RHS of `%s' must be scalar boolean",
885 operator_string(this->oper
));
886 error_emitted
= true;
890 type
= glsl_type::bool_type
;
892 ir_variable
*const tmp
= new(ctx
) ir_variable(glsl_type::bool_type
,
895 instructions
->push_tail(tmp
);
897 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
898 instructions
->push_tail(stmt
);
900 op
[1] = this->subexpressions
[1]->hir(&stmt
->else_instructions
, state
);
902 if (!op
[1]->type
->is_boolean() || !op
[1]->type
->is_scalar()) {
903 YYLTYPE loc
= this->subexpressions
[1]->get_location();
905 _mesa_glsl_error(& loc
, state
, "RHS of `%s' must be scalar boolean",
906 operator_string(this->oper
));
907 error_emitted
= true;
910 ir_dereference
*const then_deref
= new(ctx
) ir_dereference_variable(tmp
);
911 ir_assignment
*const then_assign
=
912 new(ctx
) ir_assignment(then_deref
, new(ctx
) ir_constant(true), NULL
);
913 stmt
->then_instructions
.push_tail(then_assign
);
915 ir_dereference
*const else_deref
= new(ctx
) ir_dereference_variable(tmp
);
916 ir_assignment
*const else_assign
=
917 new(ctx
) ir_assignment(else_deref
, op
[1], NULL
);
918 stmt
->else_instructions
.push_tail(else_assign
);
920 result
= new(ctx
) ir_dereference_variable(tmp
);
927 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
928 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
931 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
933 type
= glsl_type::bool_type
;
937 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
939 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
940 YYLTYPE loc
= this->subexpressions
[0]->get_location();
942 _mesa_glsl_error(& loc
, state
,
943 "operand of `!' must be scalar boolean");
944 error_emitted
= true;
947 result
= new(ctx
) ir_expression(operations
[this->oper
], glsl_type::bool_type
,
949 type
= glsl_type::bool_type
;
955 case ast_sub_assign
: {
956 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
957 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
959 type
= arithmetic_result_type(op
[0], op
[1],
960 (this->oper
== ast_mul_assign
),
963 ir_rvalue
*temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
966 result
= do_assignment(instructions
, state
,
967 op
[0]->clone(ctx
, NULL
), temp_rhs
,
968 this->subexpressions
[0]->get_location());
970 error_emitted
= (op
[0]->type
->is_error());
972 /* GLSL 1.10 does not allow array assignment. However, we don't have to
973 * explicitly test for this because none of the binary expression
974 * operators allow array operands either.
980 case ast_mod_assign
: {
981 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
982 op
[1] = this->subexpressions
[1]->hir(instructions
, state
);
984 type
= modulus_result_type(op
[0]->type
, op
[1]->type
, state
, & loc
);
986 assert(operations
[this->oper
] == ir_binop_mod
);
989 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
992 result
= do_assignment(instructions
, state
,
993 op
[0]->clone(ctx
, NULL
), temp_rhs
,
994 this->subexpressions
[0]->get_location());
996 error_emitted
= type
->is_error();
1002 _mesa_glsl_error(& loc
, state
,
1003 "FINISHME: implement bit-shift assignment operators");
1004 error_emitted
= true;
1007 case ast_and_assign
:
1008 case ast_xor_assign
:
1010 _mesa_glsl_error(& loc
, state
,
1011 "FINISHME: implement logic assignment operators");
1012 error_emitted
= true;
1015 case ast_conditional
: {
1016 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1018 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1020 * "The ternary selection operator (?:). It operates on three
1021 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1022 * first expression, which must result in a scalar Boolean."
1024 if (!op
[0]->type
->is_boolean() || !op
[0]->type
->is_scalar()) {
1025 YYLTYPE loc
= this->subexpressions
[0]->get_location();
1027 _mesa_glsl_error(& loc
, state
, "?: condition must be scalar boolean");
1028 error_emitted
= true;
1031 /* The :? operator is implemented by generating an anonymous temporary
1032 * followed by an if-statement. The last instruction in each branch of
1033 * the if-statement assigns a value to the anonymous temporary. This
1034 * temporary is the r-value of the expression.
1036 exec_list then_instructions
;
1037 exec_list else_instructions
;
1039 op
[1] = this->subexpressions
[1]->hir(&then_instructions
, state
);
1040 op
[2] = this->subexpressions
[2]->hir(&else_instructions
, state
);
1042 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1044 * "The second and third expressions can be any type, as
1045 * long their types match, or there is a conversion in
1046 * Section 4.1.10 "Implicit Conversions" that can be applied
1047 * to one of the expressions to make their types match. This
1048 * resulting matching type is the type of the entire
1051 if ((!apply_implicit_conversion(op
[1]->type
, op
[2], state
)
1052 && !apply_implicit_conversion(op
[2]->type
, op
[1], state
))
1053 || (op
[1]->type
!= op
[2]->type
)) {
1054 YYLTYPE loc
= this->subexpressions
[1]->get_location();
1056 _mesa_glsl_error(& loc
, state
, "Second and third operands of ?: "
1057 "operator must have matching types.");
1058 error_emitted
= true;
1059 type
= glsl_type::error_type
;
1064 ir_constant
*cond_val
= op
[0]->constant_expression_value();
1065 ir_constant
*then_val
= op
[1]->constant_expression_value();
1066 ir_constant
*else_val
= op
[2]->constant_expression_value();
1068 if (then_instructions
.is_empty()
1069 && else_instructions
.is_empty()
1070 && (cond_val
!= NULL
) && (then_val
!= NULL
) && (else_val
!= NULL
)) {
1071 result
= (cond_val
->value
.b
[0]) ? then_val
: else_val
;
1073 ir_variable
*const tmp
=
1074 new(ctx
) ir_variable(type
, "conditional_tmp", ir_var_temporary
);
1075 instructions
->push_tail(tmp
);
1077 ir_if
*const stmt
= new(ctx
) ir_if(op
[0]);
1078 instructions
->push_tail(stmt
);
1080 then_instructions
.move_nodes_to(& stmt
->then_instructions
);
1081 ir_dereference
*const then_deref
=
1082 new(ctx
) ir_dereference_variable(tmp
);
1083 ir_assignment
*const then_assign
=
1084 new(ctx
) ir_assignment(then_deref
, op
[1], NULL
);
1085 stmt
->then_instructions
.push_tail(then_assign
);
1087 else_instructions
.move_nodes_to(& stmt
->else_instructions
);
1088 ir_dereference
*const else_deref
=
1089 new(ctx
) ir_dereference_variable(tmp
);
1090 ir_assignment
*const else_assign
=
1091 new(ctx
) ir_assignment(else_deref
, op
[2], NULL
);
1092 stmt
->else_instructions
.push_tail(else_assign
);
1094 result
= new(ctx
) ir_dereference_variable(tmp
);
1101 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1102 if (op
[0]->type
->base_type
== GLSL_TYPE_FLOAT
)
1103 op
[1] = new(ctx
) ir_constant(1.0f
);
1105 op
[1] = new(ctx
) ir_constant(1);
1107 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1109 ir_rvalue
*temp_rhs
;
1110 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1113 result
= do_assignment(instructions
, state
,
1114 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1115 this->subexpressions
[0]->get_location());
1116 type
= result
->type
;
1117 error_emitted
= op
[0]->type
->is_error();
1122 case ast_post_dec
: {
1123 op
[0] = this->subexpressions
[0]->hir(instructions
, state
);
1124 if (op
[0]->type
->base_type
== GLSL_TYPE_FLOAT
)
1125 op
[1] = new(ctx
) ir_constant(1.0f
);
1127 op
[1] = new(ctx
) ir_constant(1);
1129 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1131 type
= arithmetic_result_type(op
[0], op
[1], false, state
, & loc
);
1133 ir_rvalue
*temp_rhs
;
1134 temp_rhs
= new(ctx
) ir_expression(operations
[this->oper
], type
,
1137 /* Get a temporary of a copy of the lvalue before it's modified.
1138 * This may get thrown away later.
1140 result
= get_lvalue_copy(instructions
, op
[0]->clone(ctx
, NULL
));
1142 (void)do_assignment(instructions
, state
,
1143 op
[0]->clone(ctx
, NULL
), temp_rhs
,
1144 this->subexpressions
[0]->get_location());
1146 type
= result
->type
;
1147 error_emitted
= op
[0]->type
->is_error();
1151 case ast_field_selection
:
1152 result
= _mesa_ast_field_selection_to_hir(this, instructions
, state
);
1153 type
= result
->type
;
1156 case ast_array_index
: {
1157 YYLTYPE index_loc
= subexpressions
[1]->get_location();
1159 op
[0] = subexpressions
[0]->hir(instructions
, state
);
1160 op
[1] = subexpressions
[1]->hir(instructions
, state
);
1162 error_emitted
= op
[0]->type
->is_error() || op
[1]->type
->is_error();
1164 ir_rvalue
*const array
= op
[0];
1166 result
= new(ctx
) ir_dereference_array(op
[0], op
[1]);
1168 /* Do not use op[0] after this point. Use array.
1176 if (!array
->type
->is_array()
1177 && !array
->type
->is_matrix()
1178 && !array
->type
->is_vector()) {
1179 _mesa_glsl_error(& index_loc
, state
,
1180 "cannot dereference non-array / non-matrix / "
1182 error_emitted
= true;
1185 if (!op
[1]->type
->is_integer()) {
1186 _mesa_glsl_error(& index_loc
, state
,
1187 "array index must be integer type");
1188 error_emitted
= true;
1189 } else if (!op
[1]->type
->is_scalar()) {
1190 _mesa_glsl_error(& index_loc
, state
,
1191 "array index must be scalar");
1192 error_emitted
= true;
1195 /* If the array index is a constant expression and the array has a
1196 * declared size, ensure that the access is in-bounds. If the array
1197 * index is not a constant expression, ensure that the array has a
1200 ir_constant
*const const_index
= op
[1]->constant_expression_value();
1201 if (const_index
!= NULL
) {
1202 const int idx
= const_index
->value
.i
[0];
1203 const char *type_name
;
1206 if (array
->type
->is_matrix()) {
1207 type_name
= "matrix";
1208 } else if (array
->type
->is_vector()) {
1209 type_name
= "vector";
1211 type_name
= "array";
1214 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1216 * "It is illegal to declare an array with a size, and then
1217 * later (in the same shader) index the same array with an
1218 * integral constant expression greater than or equal to the
1219 * declared size. It is also illegal to index an array with a
1220 * negative constant expression."
1222 if (array
->type
->is_matrix()) {
1223 if (array
->type
->row_type()->vector_elements
<= idx
) {
1224 bound
= array
->type
->row_type()->vector_elements
;
1226 } else if (array
->type
->is_vector()) {
1227 if (array
->type
->vector_elements
<= idx
) {
1228 bound
= array
->type
->vector_elements
;
1231 if ((array
->type
->array_size() > 0)
1232 && (array
->type
->array_size() <= idx
)) {
1233 bound
= array
->type
->array_size();
1238 _mesa_glsl_error(& loc
, state
, "%s index must be < %u",
1240 error_emitted
= true;
1241 } else if (idx
< 0) {
1242 _mesa_glsl_error(& loc
, state
, "%s index must be >= 0",
1244 error_emitted
= true;
1247 if (array
->type
->is_array()) {
1248 /* If the array is a variable dereference, it dereferences the
1249 * whole array, by definition. Use this to get the variable.
1251 * FINISHME: Should some methods for getting / setting / testing
1252 * FINISHME: array access limits be added to ir_dereference?
1254 ir_variable
*const v
= array
->whole_variable_referenced();
1255 if ((v
!= NULL
) && (unsigned(idx
) > v
->max_array_access
))
1256 v
->max_array_access
= idx
;
1258 } else if (array
->type
->array_size() == 0) {
1259 _mesa_glsl_error(&loc
, state
, "unsized array index must be constant");
1261 if (array
->type
->is_array()) {
1262 /* whole_variable_referenced can return NULL if the array is a
1263 * member of a structure. In this case it is safe to not update
1264 * the max_array_access field because it is never used for fields
1267 ir_variable
*v
= array
->whole_variable_referenced();
1269 v
->max_array_access
= array
->type
->array_size();
1274 result
->type
= glsl_type::error_type
;
1276 type
= result
->type
;
1280 case ast_function_call
:
1281 /* Should *NEVER* get here. ast_function_call should always be handled
1282 * by ast_function_expression::hir.
1287 case ast_identifier
: {
1288 /* ast_identifier can appear several places in a full abstract syntax
1289 * tree. This particular use must be at location specified in the grammar
1290 * as 'variable_identifier'.
1293 state
->symbols
->get_variable(this->primary_expression
.identifier
);
1295 result
= new(ctx
) ir_dereference_variable(var
);
1298 type
= result
->type
;
1300 _mesa_glsl_error(& loc
, state
, "`%s' undeclared",
1301 this->primary_expression
.identifier
);
1303 error_emitted
= true;
1308 case ast_int_constant
:
1309 type
= glsl_type::int_type
;
1310 result
= new(ctx
) ir_constant(this->primary_expression
.int_constant
);
1313 case ast_uint_constant
:
1314 type
= glsl_type::uint_type
;
1315 result
= new(ctx
) ir_constant(this->primary_expression
.uint_constant
);
1318 case ast_float_constant
:
1319 type
= glsl_type::float_type
;
1320 result
= new(ctx
) ir_constant(this->primary_expression
.float_constant
);
1323 case ast_bool_constant
:
1324 type
= glsl_type::bool_type
;
1325 result
= new(ctx
) ir_constant(bool(this->primary_expression
.bool_constant
));
1328 case ast_sequence
: {
1329 /* It should not be possible to generate a sequence in the AST without
1330 * any expressions in it.
1332 assert(!this->expressions
.is_empty());
1334 /* The r-value of a sequence is the last expression in the sequence. If
1335 * the other expressions in the sequence do not have side-effects (and
1336 * therefore add instructions to the instruction list), they get dropped
1339 foreach_list_typed (ast_node
, ast
, link
, &this->expressions
)
1340 result
= ast
->hir(instructions
, state
);
1342 type
= result
->type
;
1344 /* Any errors should have already been emitted in the loop above.
1346 error_emitted
= true;
1351 if (type
->is_error() && !error_emitted
)
1352 _mesa_glsl_error(& loc
, state
, "type mismatch");
1359 ast_expression_statement::hir(exec_list
*instructions
,
1360 struct _mesa_glsl_parse_state
*state
)
1362 /* It is possible to have expression statements that don't have an
1363 * expression. This is the solitary semicolon:
1365 * for (i = 0; i < 5; i++)
1368 * In this case the expression will be NULL. Test for NULL and don't do
1369 * anything in that case.
1371 if (expression
!= NULL
)
1372 expression
->hir(instructions
, state
);
1374 /* Statements do not have r-values.
1381 ast_compound_statement::hir(exec_list
*instructions
,
1382 struct _mesa_glsl_parse_state
*state
)
1385 state
->symbols
->push_scope();
1387 foreach_list_typed (ast_node
, ast
, link
, &this->statements
)
1388 ast
->hir(instructions
, state
);
1391 state
->symbols
->pop_scope();
1393 /* Compound statements do not have r-values.
1399 static const glsl_type
*
1400 process_array_type(const glsl_type
*base
, ast_node
*array_size
,
1401 struct _mesa_glsl_parse_state
*state
)
1403 unsigned length
= 0;
1405 /* FINISHME: Reject delcarations of multidimensional arrays. */
1407 if (array_size
!= NULL
) {
1408 exec_list dummy_instructions
;
1409 ir_rvalue
*const ir
= array_size
->hir(& dummy_instructions
, state
);
1410 YYLTYPE loc
= array_size
->get_location();
1412 /* FINISHME: Verify that the grammar forbids side-effects in array
1413 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1415 assert(dummy_instructions
.is_empty());
1418 if (!ir
->type
->is_integer()) {
1419 _mesa_glsl_error(& loc
, state
, "array size must be integer type");
1420 } else if (!ir
->type
->is_scalar()) {
1421 _mesa_glsl_error(& loc
, state
, "array size must be scalar type");
1423 ir_constant
*const size
= ir
->constant_expression_value();
1426 _mesa_glsl_error(& loc
, state
, "array size must be a "
1427 "constant valued expression");
1428 } else if (size
->value
.i
[0] <= 0) {
1429 _mesa_glsl_error(& loc
, state
, "array size must be > 0");
1431 assert(size
->type
== ir
->type
);
1432 length
= size
->value
.u
[0];
1438 return glsl_type::get_array_instance(base
, length
);
1443 ast_type_specifier::glsl_type(const char **name
,
1444 struct _mesa_glsl_parse_state
*state
) const
1446 const struct glsl_type
*type
;
1448 if ((this->type_specifier
== ast_struct
) && (this->type_name
== NULL
)) {
1449 /* FINISHME: Handle annonymous structures. */
1452 type
= state
->symbols
->get_type(this->type_name
);
1453 *name
= this->type_name
;
1455 if (this->is_array
) {
1456 type
= process_array_type(type
, this->array_size
, state
);
1465 apply_type_qualifier_to_variable(const struct ast_type_qualifier
*qual
,
1467 struct _mesa_glsl_parse_state
*state
,
1470 if (qual
->invariant
)
1473 /* FINISHME: Mark 'in' variables at global scope as read-only. */
1474 if (qual
->constant
|| qual
->attribute
|| qual
->uniform
1475 || (qual
->varying
&& (state
->target
== fragment_shader
)))
1481 if (qual
->attribute
&& state
->target
!= vertex_shader
) {
1482 var
->type
= glsl_type::error_type
;
1483 _mesa_glsl_error(loc
, state
,
1484 "`attribute' variables may not be declared in the "
1486 _mesa_glsl_shader_target_name(state
->target
));
1489 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1491 * "The varying qualifier can be used only with the data types
1492 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1495 if (qual
->varying
) {
1496 const glsl_type
*non_array_type
;
1498 if (var
->type
&& var
->type
->is_array())
1499 non_array_type
= var
->type
->fields
.array
;
1501 non_array_type
= var
->type
;
1503 if (non_array_type
&& non_array_type
->base_type
!= GLSL_TYPE_FLOAT
) {
1504 var
->type
= glsl_type::error_type
;
1505 _mesa_glsl_error(loc
, state
,
1506 "varying variables must be of base type float");
1510 /* If there is no qualifier that changes the mode of the variable, leave
1511 * the setting alone.
1513 if (qual
->in
&& qual
->out
)
1514 var
->mode
= ir_var_inout
;
1515 else if (qual
->attribute
|| qual
->in
1516 || (qual
->varying
&& (state
->target
== fragment_shader
)))
1517 var
->mode
= ir_var_in
;
1518 else if (qual
->out
|| (qual
->varying
&& (state
->target
== vertex_shader
)))
1519 var
->mode
= ir_var_out
;
1520 else if (qual
->uniform
)
1521 var
->mode
= ir_var_uniform
;
1524 var
->interpolation
= ir_var_flat
;
1525 else if (qual
->noperspective
)
1526 var
->interpolation
= ir_var_noperspective
;
1528 var
->interpolation
= ir_var_smooth
;
1530 var
->pixel_center_integer
= qual
->pixel_center_integer
;
1531 var
->origin_upper_left
= qual
->origin_upper_left
;
1532 if ((qual
->origin_upper_left
|| qual
->pixel_center_integer
)
1533 && (strcmp(var
->name
, "gl_FragCoord") != 0)) {
1534 const char *const qual_string
= (qual
->origin_upper_left
)
1535 ? "origin_upper_left" : "pixel_center_integer";
1537 _mesa_glsl_error(loc
, state
,
1538 "layout qualifier `%s' can only be applied to "
1539 "fragment shader input `gl_FragCoord'",
1543 if (var
->type
->is_array() && (state
->language_version
>= 120)) {
1544 var
->array_lvalue
= true;
1550 ast_declarator_list::hir(exec_list
*instructions
,
1551 struct _mesa_glsl_parse_state
*state
)
1554 const struct glsl_type
*decl_type
;
1555 const char *type_name
= NULL
;
1556 ir_rvalue
*result
= NULL
;
1557 YYLTYPE loc
= this->get_location();
1559 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
1561 * "To ensure that a particular output variable is invariant, it is
1562 * necessary to use the invariant qualifier. It can either be used to
1563 * qualify a previously declared variable as being invariant
1565 * invariant gl_Position; // make existing gl_Position be invariant"
1567 * In these cases the parser will set the 'invariant' flag in the declarator
1568 * list, and the type will be NULL.
1570 if (this->invariant
) {
1571 assert(this->type
== NULL
);
1573 if (state
->current_function
!= NULL
) {
1574 _mesa_glsl_error(& loc
, state
,
1575 "All uses of `invariant' keyword must be at global "
1579 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
1580 assert(!decl
->is_array
);
1581 assert(decl
->array_size
== NULL
);
1582 assert(decl
->initializer
== NULL
);
1584 ir_variable
*const earlier
=
1585 state
->symbols
->get_variable(decl
->identifier
);
1586 if (earlier
== NULL
) {
1587 _mesa_glsl_error(& loc
, state
,
1588 "Undeclared variable `%s' cannot be marked "
1589 "invariant\n", decl
->identifier
);
1590 } else if ((state
->target
== vertex_shader
)
1591 && (earlier
->mode
!= ir_var_out
)) {
1592 _mesa_glsl_error(& loc
, state
,
1593 "`%s' cannot be marked invariant, vertex shader "
1594 "outputs only\n", decl
->identifier
);
1595 } else if ((state
->target
== fragment_shader
)
1596 && (earlier
->mode
!= ir_var_in
)) {
1597 _mesa_glsl_error(& loc
, state
,
1598 "`%s' cannot be marked invariant, fragment shader "
1599 "inputs only\n", decl
->identifier
);
1601 earlier
->invariant
= true;
1605 /* Invariant redeclarations do not have r-values.
1610 assert(this->type
!= NULL
);
1611 assert(!this->invariant
);
1613 /* The type specifier may contain a structure definition. Process that
1614 * before any of the variable declarations.
1616 (void) this->type
->specifier
->hir(instructions
, state
);
1618 decl_type
= this->type
->specifier
->glsl_type(& type_name
, state
);
1619 if (this->declarations
.is_empty()) {
1620 /* The only valid case where the declaration list can be empty is when
1621 * the declaration is setting the default precision of a built-in type
1622 * (e.g., 'precision highp vec4;').
1625 if (decl_type
!= NULL
) {
1627 _mesa_glsl_error(& loc
, state
, "incomplete declaration");
1631 foreach_list_typed (ast_declaration
, decl
, link
, &this->declarations
) {
1632 const struct glsl_type
*var_type
;
1635 /* FINISHME: Emit a warning if a variable declaration shadows a
1636 * FINISHME: declaration at a higher scope.
1639 if ((decl_type
== NULL
) || decl_type
->is_void()) {
1640 if (type_name
!= NULL
) {
1641 _mesa_glsl_error(& loc
, state
,
1642 "invalid type `%s' in declaration of `%s'",
1643 type_name
, decl
->identifier
);
1645 _mesa_glsl_error(& loc
, state
,
1646 "invalid type in declaration of `%s'",
1652 if (decl
->is_array
) {
1653 var_type
= process_array_type(decl_type
, decl
->array_size
, state
);
1655 var_type
= decl_type
;
1658 var
= new(ctx
) ir_variable(var_type
, decl
->identifier
, ir_var_auto
);
1660 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
1662 * "Global variables can only use the qualifiers const,
1663 * attribute, uni form, or varying. Only one may be
1666 * Local variables can only use the qualifier const."
1668 * This is relaxed in GLSL 1.30.
1670 if (state
->language_version
< 120) {
1671 if (this->type
->qualifier
.out
) {
1672 _mesa_glsl_error(& loc
, state
,
1673 "`out' qualifier in declaration of `%s' "
1674 "only valid for function parameters in GLSL 1.10.",
1677 if (this->type
->qualifier
.in
) {
1678 _mesa_glsl_error(& loc
, state
,
1679 "`in' qualifier in declaration of `%s' "
1680 "only valid for function parameters in GLSL 1.10.",
1683 /* FINISHME: Test for other invalid qualifiers. */
1686 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
,
1689 if (this->type
->qualifier
.invariant
) {
1690 if ((state
->target
== vertex_shader
) && !(var
->mode
== ir_var_out
||
1691 var
->mode
== ir_var_inout
)) {
1692 /* FINISHME: Note that this doesn't work for invariant on
1693 * a function signature outval
1695 _mesa_glsl_error(& loc
, state
,
1696 "`%s' cannot be marked invariant, vertex shader "
1697 "outputs only\n", var
->name
);
1698 } else if ((state
->target
== fragment_shader
) &&
1699 !(var
->mode
== ir_var_in
|| var
->mode
== ir_var_inout
)) {
1700 /* FINISHME: Note that this doesn't work for invariant on
1701 * a function signature inval
1703 _mesa_glsl_error(& loc
, state
,
1704 "`%s' cannot be marked invariant, fragment shader "
1705 "inputs only\n", var
->name
);
1709 if (state
->current_function
!= NULL
) {
1710 const char *mode
= NULL
;
1711 const char *extra
= "";
1713 /* There is no need to check for 'inout' here because the parser will
1714 * only allow that in function parameter lists.
1716 if (this->type
->qualifier
.attribute
) {
1718 } else if (this->type
->qualifier
.uniform
) {
1720 } else if (this->type
->qualifier
.varying
) {
1722 } else if (this->type
->qualifier
.in
) {
1724 extra
= " or in function parameter list";
1725 } else if (this->type
->qualifier
.out
) {
1727 extra
= " or in function parameter list";
1731 _mesa_glsl_error(& loc
, state
,
1732 "%s variable `%s' must be declared at "
1734 mode
, var
->name
, extra
);
1736 } else if (var
->mode
== ir_var_in
) {
1737 if (state
->target
== vertex_shader
) {
1738 bool error_emitted
= false;
1740 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
1742 * "Vertex shader inputs can only be float, floating-point
1743 * vectors, matrices, signed and unsigned integers and integer
1744 * vectors. Vertex shader inputs can also form arrays of these
1745 * types, but not structures."
1747 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
1749 * "Vertex shader inputs can only be float, floating-point
1750 * vectors, matrices, signed and unsigned integers and integer
1751 * vectors. They cannot be arrays or structures."
1753 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
1755 * "The attribute qualifier can be used only with float,
1756 * floating-point vectors, and matrices. Attribute variables
1757 * cannot be declared as arrays or structures."
1759 const glsl_type
*check_type
= var
->type
->is_array()
1760 ? var
->type
->fields
.array
: var
->type
;
1762 switch (check_type
->base_type
) {
1763 case GLSL_TYPE_FLOAT
:
1765 case GLSL_TYPE_UINT
:
1767 if (state
->language_version
> 120)
1771 _mesa_glsl_error(& loc
, state
,
1772 "vertex shader input / attribute cannot have "
1774 var
->type
->is_array() ? "array of " : "",
1776 error_emitted
= true;
1779 if (!error_emitted
&& (state
->language_version
<= 130)
1780 && var
->type
->is_array()) {
1781 _mesa_glsl_error(& loc
, state
,
1782 "vertex shader input / attribute cannot have "
1784 error_emitted
= true;
1789 /* Process the initializer and add its instructions to a temporary
1790 * list. This list will be added to the instruction stream (below) after
1791 * the declaration is added. This is done because in some cases (such as
1792 * redeclarations) the declaration may not actually be added to the
1793 * instruction stream.
1795 exec_list initializer_instructions
;
1796 if (decl
->initializer
!= NULL
) {
1797 YYLTYPE initializer_loc
= decl
->initializer
->get_location();
1799 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
1801 * "All uniform variables are read-only and are initialized either
1802 * directly by an application via API commands, or indirectly by
1805 if ((state
->language_version
<= 110)
1806 && (var
->mode
== ir_var_uniform
)) {
1807 _mesa_glsl_error(& initializer_loc
, state
,
1808 "cannot initialize uniforms in GLSL 1.10");
1811 if (var
->type
->is_sampler()) {
1812 _mesa_glsl_error(& initializer_loc
, state
,
1813 "cannot initialize samplers");
1816 if ((var
->mode
== ir_var_in
) && (state
->current_function
== NULL
)) {
1817 _mesa_glsl_error(& initializer_loc
, state
,
1818 "cannot initialize %s shader input / %s",
1819 _mesa_glsl_shader_target_name(state
->target
),
1820 (state
->target
== vertex_shader
)
1821 ? "attribute" : "varying");
1824 ir_dereference
*const lhs
= new(ctx
) ir_dereference_variable(var
);
1825 ir_rvalue
*rhs
= decl
->initializer
->hir(&initializer_instructions
,
1828 /* Calculate the constant value if this is a const or uniform
1831 if (this->type
->qualifier
.constant
|| this->type
->qualifier
.uniform
) {
1832 ir_rvalue
*new_rhs
= validate_assignment(state
, var
->type
, rhs
);
1833 if (new_rhs
!= NULL
) {
1836 ir_constant
*constant_value
= rhs
->constant_expression_value();
1837 if (!constant_value
) {
1838 _mesa_glsl_error(& initializer_loc
, state
,
1839 "initializer of %s variable `%s' must be a "
1840 "constant expression",
1841 (this->type
->qualifier
.constant
)
1842 ? "const" : "uniform",
1844 if (var
->type
->is_numeric()) {
1845 /* Reduce cascading errors. */
1846 var
->constant_value
= ir_constant::zero(ctx
, var
->type
);
1849 rhs
= constant_value
;
1850 var
->constant_value
= constant_value
;
1853 _mesa_glsl_error(&initializer_loc
, state
,
1854 "initializer of type %s cannot be assigned to "
1855 "variable of type %s",
1856 rhs
->type
->name
, var
->type
->name
);
1857 if (var
->type
->is_numeric()) {
1858 /* Reduce cascading errors. */
1859 var
->constant_value
= ir_constant::zero(ctx
, var
->type
);
1864 if (rhs
&& !rhs
->type
->is_error()) {
1865 bool temp
= var
->read_only
;
1866 if (this->type
->qualifier
.constant
)
1867 var
->read_only
= false;
1869 /* Never emit code to initialize a uniform.
1871 if (!this->type
->qualifier
.uniform
)
1872 result
= do_assignment(&initializer_instructions
, state
,
1874 this->get_location());
1875 var
->read_only
= temp
;
1879 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
1881 * "It is an error to write to a const variable outside of
1882 * its declaration, so they must be initialized when
1885 if (this->type
->qualifier
.constant
&& decl
->initializer
== NULL
) {
1886 _mesa_glsl_error(& loc
, state
,
1887 "const declaration of `%s' must be initialized");
1890 /* Attempt to add the variable to the symbol table. If this fails, it
1891 * means the variable has already been declared at this scope. Arrays
1892 * fudge this rule a little bit.
1894 * From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
1896 * "It is legal to declare an array without a size and then
1897 * later re-declare the same name as an array of the same
1898 * type and specify a size."
1900 if (state
->symbols
->name_declared_this_scope(decl
->identifier
)) {
1901 ir_variable
*const earlier
=
1902 state
->symbols
->get_variable(decl
->identifier
);
1904 if ((earlier
!= NULL
)
1905 && (earlier
->type
->array_size() == 0)
1906 && var
->type
->is_array()
1907 && (var
->type
->element_type() == earlier
->type
->element_type())) {
1908 /* FINISHME: This doesn't match the qualifiers on the two
1909 * FINISHME: declarations. It's not 100% clear whether this is
1910 * FINISHME: required or not.
1913 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1915 * "The size [of gl_TexCoord] can be at most
1916 * gl_MaxTextureCoords."
1918 const unsigned size
= unsigned(var
->type
->array_size());
1919 if ((strcmp("gl_TexCoord", var
->name
) == 0)
1920 && (size
> state
->Const
.MaxTextureCoords
)) {
1921 YYLTYPE loc
= this->get_location();
1923 _mesa_glsl_error(& loc
, state
, "`gl_TexCoord' array size cannot "
1924 "be larger than gl_MaxTextureCoords (%u)\n",
1925 state
->Const
.MaxTextureCoords
);
1926 } else if ((size
> 0) && (size
<= earlier
->max_array_access
)) {
1927 YYLTYPE loc
= this->get_location();
1929 _mesa_glsl_error(& loc
, state
, "array size must be > %u due to "
1931 earlier
->max_array_access
);
1934 earlier
->type
= var
->type
;
1937 } else if (state
->extensions
->ARB_fragment_coord_conventions
&&
1938 (earlier
!= NULL
) &&
1939 (strcmp(var
->name
, "gl_FragCoord") == 0) &&
1940 earlier
->type
== var
->type
&&
1941 earlier
->mode
== var
->mode
) {
1942 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
1945 earlier
->origin_upper_left
= var
->origin_upper_left
;
1946 earlier
->pixel_center_integer
= var
->pixel_center_integer
;
1948 YYLTYPE loc
= this->get_location();
1950 _mesa_glsl_error(& loc
, state
, "`%s' redeclared",
1957 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
1959 * "Identifiers starting with "gl_" are reserved for use by
1960 * OpenGL, and may not be declared in a shader as either a
1961 * variable or a function."
1963 if (strncmp(decl
->identifier
, "gl_", 3) == 0) {
1964 /* FINISHME: This should only trigger if we're not redefining
1965 * FINISHME: a builtin (to add a qualifier, for example).
1967 _mesa_glsl_error(& loc
, state
,
1968 "identifier `%s' uses reserved `gl_' prefix",
1972 /* Push the variable declaration to the top. It means that all
1973 * the variable declarations will appear in a funny
1974 * last-to-first order, but otherwise we run into trouble if a
1975 * function is prototyped, a global var is decled, then the
1976 * function is defined with usage of the global var. See
1977 * glslparsertest's CorrectModule.frag.
1979 instructions
->push_head(var
);
1980 instructions
->append_list(&initializer_instructions
);
1982 /* Add the variable to the symbol table after processing the initializer.
1983 * This differs from most C-like languages, but it follows the GLSL
1984 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
1987 * "Within a declaration, the scope of a name starts immediately
1988 * after the initializer if present or immediately after the name
1989 * being declared if not."
1991 const bool added_variable
=
1992 state
->symbols
->add_variable(var
->name
, var
);
1993 assert(added_variable
);
1994 (void) added_variable
;
1998 /* Generally, variable declarations do not have r-values. However,
1999 * one is used for the declaration in
2001 * while (bool b = some_condition()) {
2005 * so we return the rvalue from the last seen declaration here.
2012 ast_parameter_declarator::hir(exec_list
*instructions
,
2013 struct _mesa_glsl_parse_state
*state
)
2016 const struct glsl_type
*type
;
2017 const char *name
= NULL
;
2018 YYLTYPE loc
= this->get_location();
2020 type
= this->type
->specifier
->glsl_type(& name
, state
);
2024 _mesa_glsl_error(& loc
, state
,
2025 "invalid type `%s' in declaration of `%s'",
2026 name
, this->identifier
);
2028 _mesa_glsl_error(& loc
, state
,
2029 "invalid type in declaration of `%s'",
2033 type
= glsl_type::error_type
;
2036 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2038 * "Functions that accept no input arguments need not use void in the
2039 * argument list because prototypes (or definitions) are required and
2040 * therefore there is no ambiguity when an empty argument list "( )" is
2041 * declared. The idiom "(void)" as a parameter list is provided for
2044 * Placing this check here prevents a void parameter being set up
2045 * for a function, which avoids tripping up checks for main taking
2046 * parameters and lookups of an unnamed symbol.
2048 if (type
->is_void()) {
2049 if (this->identifier
!= NULL
)
2050 _mesa_glsl_error(& loc
, state
,
2051 "named parameter cannot have type `void'");
2057 if (formal_parameter
&& (this->identifier
== NULL
)) {
2058 _mesa_glsl_error(& loc
, state
, "formal parameter lacks a name");
2062 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2063 * call already handled the "vec4[..] foo" case.
2065 if (this->is_array
) {
2066 type
= process_array_type(type
, this->array_size
, state
);
2069 if (type
->array_size() == 0) {
2070 _mesa_glsl_error(&loc
, state
, "arrays passed as parameters must have "
2071 "a declared size.");
2072 type
= glsl_type::error_type
;
2076 ir_variable
*var
= new(ctx
) ir_variable(type
, this->identifier
, ir_var_in
);
2078 /* Apply any specified qualifiers to the parameter declaration. Note that
2079 * for function parameters the default mode is 'in'.
2081 apply_type_qualifier_to_variable(& this->type
->qualifier
, var
, state
, & loc
);
2083 instructions
->push_tail(var
);
2085 /* Parameter declarations do not have r-values.
2092 ast_parameter_declarator::parameters_to_hir(exec_list
*ast_parameters
,
2094 exec_list
*ir_parameters
,
2095 _mesa_glsl_parse_state
*state
)
2097 ast_parameter_declarator
*void_param
= NULL
;
2100 foreach_list_typed (ast_parameter_declarator
, param
, link
, ast_parameters
) {
2101 param
->formal_parameter
= formal
;
2102 param
->hir(ir_parameters
, state
);
2110 if ((void_param
!= NULL
) && (count
> 1)) {
2111 YYLTYPE loc
= void_param
->get_location();
2113 _mesa_glsl_error(& loc
, state
,
2114 "`void' parameter must be only parameter");
2120 ast_function::hir(exec_list
*instructions
,
2121 struct _mesa_glsl_parse_state
*state
)
2124 ir_function
*f
= NULL
;
2125 ir_function_signature
*sig
= NULL
;
2126 exec_list hir_parameters
;
2128 const char *const name
= identifier
;
2130 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2132 * "Identifiers starting with "gl_" are reserved for use by
2133 * OpenGL, and may not be declared in a shader as either a
2134 * variable or a function."
2136 if (strncmp(name
, "gl_", 3) == 0) {
2137 YYLTYPE loc
= this->get_location();
2138 _mesa_glsl_error(&loc
, state
,
2139 "identifier `%s' uses reserved `gl_' prefix", name
);
2142 /* Convert the list of function parameters to HIR now so that they can be
2143 * used below to compare this function's signature with previously seen
2144 * signatures for functions with the same name.
2146 ast_parameter_declarator::parameters_to_hir(& this->parameters
,
2148 & hir_parameters
, state
);
2150 const char *return_type_name
;
2151 const glsl_type
*return_type
=
2152 this->return_type
->specifier
->glsl_type(& return_type_name
, state
);
2155 YYLTYPE loc
= this->get_location();
2156 _mesa_glsl_error(&loc
, state
,
2157 "function `%s' has undeclared return type `%s'",
2158 name
, return_type_name
);
2159 return_type
= glsl_type::error_type
;
2162 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2163 * "No qualifier is allowed on the return type of a function."
2165 if (this->return_type
->has_qualifiers()) {
2166 YYLTYPE loc
= this->get_location();
2167 _mesa_glsl_error(& loc
, state
,
2168 "function `%s' return type has qualifiers", name
);
2171 /* Verify that this function's signature either doesn't match a previously
2172 * seen signature for a function with the same name, or, if a match is found,
2173 * that the previously seen signature does not have an associated definition.
2175 f
= state
->symbols
->get_function(name
, false);
2177 sig
= f
->exact_matching_signature(&hir_parameters
);
2179 const char *badvar
= sig
->qualifiers_match(&hir_parameters
);
2180 if (badvar
!= NULL
) {
2181 YYLTYPE loc
= this->get_location();
2183 _mesa_glsl_error(&loc
, state
, "function `%s' parameter `%s' "
2184 "qualifiers don't match prototype", name
, badvar
);
2187 if (sig
->return_type
!= return_type
) {
2188 YYLTYPE loc
= this->get_location();
2190 _mesa_glsl_error(&loc
, state
, "function `%s' return type doesn't "
2191 "match prototype", name
);
2194 if (is_definition
&& sig
->is_defined
) {
2195 YYLTYPE loc
= this->get_location();
2197 _mesa_glsl_error(& loc
, state
, "function `%s' redefined", name
);
2201 f
= new(ctx
) ir_function(name
);
2202 if (!state
->symbols
->add_function(f
->name
, f
)) {
2203 /* This function name shadows a non-function use of the same name. */
2204 YYLTYPE loc
= this->get_location();
2206 _mesa_glsl_error(&loc
, state
, "function name `%s' conflicts with "
2207 "non-function", name
);
2211 /* Emit the new function header */
2212 instructions
->push_tail(f
);
2215 /* Verify the return type of main() */
2216 if (strcmp(name
, "main") == 0) {
2217 if (! return_type
->is_void()) {
2218 YYLTYPE loc
= this->get_location();
2220 _mesa_glsl_error(& loc
, state
, "main() must return void");
2223 if (!hir_parameters
.is_empty()) {
2224 YYLTYPE loc
= this->get_location();
2226 _mesa_glsl_error(& loc
, state
, "main() must not take any parameters");
2230 /* Finish storing the information about this new function in its signature.
2233 sig
= new(ctx
) ir_function_signature(return_type
);
2234 f
->add_signature(sig
);
2237 sig
->replace_parameters(&hir_parameters
);
2240 /* Function declarations (prototypes) do not have r-values.
2247 ast_function_definition::hir(exec_list
*instructions
,
2248 struct _mesa_glsl_parse_state
*state
)
2250 prototype
->is_definition
= true;
2251 prototype
->hir(instructions
, state
);
2253 ir_function_signature
*signature
= prototype
->signature
;
2254 if (signature
== NULL
)
2257 assert(state
->current_function
== NULL
);
2258 state
->current_function
= signature
;
2259 state
->found_return
= false;
2261 /* Duplicate parameters declared in the prototype as concrete variables.
2262 * Add these to the symbol table.
2264 state
->symbols
->push_scope();
2265 foreach_iter(exec_list_iterator
, iter
, signature
->parameters
) {
2266 ir_variable
*const var
= ((ir_instruction
*) iter
.get())->as_variable();
2268 assert(var
!= NULL
);
2270 /* The only way a parameter would "exist" is if two parameters have
2273 if (state
->symbols
->name_declared_this_scope(var
->name
)) {
2274 YYLTYPE loc
= this->get_location();
2276 _mesa_glsl_error(& loc
, state
, "parameter `%s' redeclared", var
->name
);
2278 state
->symbols
->add_variable(var
->name
, var
);
2282 /* Convert the body of the function to HIR. */
2283 this->body
->hir(&signature
->body
, state
);
2284 signature
->is_defined
= true;
2286 state
->symbols
->pop_scope();
2288 assert(state
->current_function
== signature
);
2289 state
->current_function
= NULL
;
2291 if (!signature
->return_type
->is_void() && !state
->found_return
) {
2292 YYLTYPE loc
= this->get_location();
2293 _mesa_glsl_error(& loc
, state
, "function `%s' has non-void return type "
2294 "%s, but no return statement",
2295 signature
->function_name(),
2296 signature
->return_type
->name
);
2299 /* Function definitions do not have r-values.
2306 ast_jump_statement::hir(exec_list
*instructions
,
2307 struct _mesa_glsl_parse_state
*state
)
2314 assert(state
->current_function
);
2316 if (opt_return_value
) {
2317 if (state
->current_function
->return_type
->base_type
==
2319 YYLTYPE loc
= this->get_location();
2321 _mesa_glsl_error(& loc
, state
,
2322 "`return` with a value, in function `%s' "
2324 state
->current_function
->function_name());
2327 ir_expression
*const ret
= (ir_expression
*)
2328 opt_return_value
->hir(instructions
, state
);
2329 assert(ret
!= NULL
);
2331 /* Implicit conversions are not allowed for return values. */
2332 if (state
->current_function
->return_type
!= ret
->type
) {
2333 YYLTYPE loc
= this->get_location();
2335 _mesa_glsl_error(& loc
, state
,
2336 "`return' with wrong type %s, in function `%s' "
2339 state
->current_function
->function_name(),
2340 state
->current_function
->return_type
->name
);
2343 inst
= new(ctx
) ir_return(ret
);
2345 if (state
->current_function
->return_type
->base_type
!=
2347 YYLTYPE loc
= this->get_location();
2349 _mesa_glsl_error(& loc
, state
,
2350 "`return' with no value, in function %s returning "
2352 state
->current_function
->function_name());
2354 inst
= new(ctx
) ir_return
;
2357 state
->found_return
= true;
2358 instructions
->push_tail(inst
);
2363 if (state
->target
!= fragment_shader
) {
2364 YYLTYPE loc
= this->get_location();
2366 _mesa_glsl_error(& loc
, state
,
2367 "`discard' may only appear in a fragment shader");
2369 instructions
->push_tail(new(ctx
) ir_discard
);
2374 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
2375 * FINISHME: and they use a different IR instruction for 'break'.
2377 /* FINISHME: Correctly handle the nesting. If a switch-statement is
2378 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
2381 if (state
->loop_or_switch_nesting
== NULL
) {
2382 YYLTYPE loc
= this->get_location();
2384 _mesa_glsl_error(& loc
, state
,
2385 "`%s' may only appear in a loop",
2386 (mode
== ast_break
) ? "break" : "continue");
2388 ir_loop
*const loop
= state
->loop_or_switch_nesting
->as_loop();
2390 /* Inline the for loop expression again, since we don't know
2391 * where near the end of the loop body the normal copy of it
2392 * is going to be placed.
2394 if (mode
== ast_continue
&&
2395 state
->loop_or_switch_nesting_ast
->rest_expression
) {
2396 state
->loop_or_switch_nesting_ast
->rest_expression
->hir(instructions
,
2401 ir_loop_jump
*const jump
=
2402 new(ctx
) ir_loop_jump((mode
== ast_break
)
2403 ? ir_loop_jump::jump_break
2404 : ir_loop_jump::jump_continue
);
2405 instructions
->push_tail(jump
);
2412 /* Jump instructions do not have r-values.
2419 ast_selection_statement::hir(exec_list
*instructions
,
2420 struct _mesa_glsl_parse_state
*state
)
2424 ir_rvalue
*const condition
= this->condition
->hir(instructions
, state
);
2426 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
2428 * "Any expression whose type evaluates to a Boolean can be used as the
2429 * conditional expression bool-expression. Vector types are not accepted
2430 * as the expression to if."
2432 * The checks are separated so that higher quality diagnostics can be
2433 * generated for cases where both rules are violated.
2435 if (!condition
->type
->is_boolean() || !condition
->type
->is_scalar()) {
2436 YYLTYPE loc
= this->condition
->get_location();
2438 _mesa_glsl_error(& loc
, state
, "if-statement condition must be scalar "
2442 ir_if
*const stmt
= new(ctx
) ir_if(condition
);
2444 if (then_statement
!= NULL
) {
2445 state
->symbols
->push_scope();
2446 then_statement
->hir(& stmt
->then_instructions
, state
);
2447 state
->symbols
->pop_scope();
2450 if (else_statement
!= NULL
) {
2451 state
->symbols
->push_scope();
2452 else_statement
->hir(& stmt
->else_instructions
, state
);
2453 state
->symbols
->pop_scope();
2456 instructions
->push_tail(stmt
);
2458 /* if-statements do not have r-values.
2465 ast_iteration_statement::condition_to_hir(ir_loop
*stmt
,
2466 struct _mesa_glsl_parse_state
*state
)
2470 if (condition
!= NULL
) {
2471 ir_rvalue
*const cond
=
2472 condition
->hir(& stmt
->body_instructions
, state
);
2475 || !cond
->type
->is_boolean() || !cond
->type
->is_scalar()) {
2476 YYLTYPE loc
= condition
->get_location();
2478 _mesa_glsl_error(& loc
, state
,
2479 "loop condition must be scalar boolean");
2481 /* As the first code in the loop body, generate a block that looks
2482 * like 'if (!condition) break;' as the loop termination condition.
2484 ir_rvalue
*const not_cond
=
2485 new(ctx
) ir_expression(ir_unop_logic_not
, glsl_type::bool_type
, cond
,
2488 ir_if
*const if_stmt
= new(ctx
) ir_if(not_cond
);
2490 ir_jump
*const break_stmt
=
2491 new(ctx
) ir_loop_jump(ir_loop_jump::jump_break
);
2493 if_stmt
->then_instructions
.push_tail(break_stmt
);
2494 stmt
->body_instructions
.push_tail(if_stmt
);
2501 ast_iteration_statement::hir(exec_list
*instructions
,
2502 struct _mesa_glsl_parse_state
*state
)
2506 /* For-loops and while-loops start a new scope, but do-while loops do not.
2508 if (mode
!= ast_do_while
)
2509 state
->symbols
->push_scope();
2511 if (init_statement
!= NULL
)
2512 init_statement
->hir(instructions
, state
);
2514 ir_loop
*const stmt
= new(ctx
) ir_loop();
2515 instructions
->push_tail(stmt
);
2517 /* Track the current loop and / or switch-statement nesting.
2519 ir_instruction
*const nesting
= state
->loop_or_switch_nesting
;
2520 ast_iteration_statement
*nesting_ast
= state
->loop_or_switch_nesting_ast
;
2522 state
->loop_or_switch_nesting
= stmt
;
2523 state
->loop_or_switch_nesting_ast
= this;
2525 if (mode
!= ast_do_while
)
2526 condition_to_hir(stmt
, state
);
2529 body
->hir(& stmt
->body_instructions
, state
);
2531 if (rest_expression
!= NULL
)
2532 rest_expression
->hir(& stmt
->body_instructions
, state
);
2534 if (mode
== ast_do_while
)
2535 condition_to_hir(stmt
, state
);
2537 if (mode
!= ast_do_while
)
2538 state
->symbols
->pop_scope();
2540 /* Restore previous nesting before returning.
2542 state
->loop_or_switch_nesting
= nesting
;
2543 state
->loop_or_switch_nesting_ast
= nesting_ast
;
2545 /* Loops do not have r-values.
2552 ast_type_specifier::hir(exec_list
*instructions
,
2553 struct _mesa_glsl_parse_state
*state
)
2555 if (this->structure
!= NULL
)
2556 return this->structure
->hir(instructions
, state
);
2563 ast_struct_specifier::hir(exec_list
*instructions
,
2564 struct _mesa_glsl_parse_state
*state
)
2566 unsigned decl_count
= 0;
2568 /* Make an initial pass over the list of structure fields to determine how
2569 * many there are. Each element in this list is an ast_declarator_list.
2570 * This means that we actually need to count the number of elements in the
2571 * 'declarations' list in each of the elements.
2573 foreach_list_typed (ast_declarator_list
, decl_list
, link
,
2574 &this->declarations
) {
2575 foreach_list_const (decl_ptr
, & decl_list
->declarations
) {
2581 /* Allocate storage for the structure fields and process the field
2582 * declarations. As the declarations are processed, try to also convert
2583 * the types to HIR. This ensures that structure definitions embedded in
2584 * other structure definitions are processed.
2586 glsl_struct_field
*const fields
= talloc_array(state
, glsl_struct_field
,
2590 foreach_list_typed (ast_declarator_list
, decl_list
, link
,
2591 &this->declarations
) {
2592 const char *type_name
;
2594 decl_list
->type
->specifier
->hir(instructions
, state
);
2596 const glsl_type
*decl_type
=
2597 decl_list
->type
->specifier
->glsl_type(& type_name
, state
);
2599 foreach_list_typed (ast_declaration
, decl
, link
,
2600 &decl_list
->declarations
) {
2601 const struct glsl_type
*const field_type
=
2603 ? process_array_type(decl_type
, decl
->array_size
, state
)
2606 fields
[i
].type
= (field_type
!= NULL
)
2607 ? field_type
: glsl_type::error_type
;
2608 fields
[i
].name
= decl
->identifier
;
2613 assert(i
== decl_count
);
2616 if (this->name
== NULL
) {
2617 static unsigned anon_count
= 1;
2620 snprintf(buf
, sizeof(buf
), "#anon_struct_%04x", anon_count
);
2628 const glsl_type
*t
=
2629 glsl_type::get_record_instance(fields
, decl_count
, name
);
2631 YYLTYPE loc
= this->get_location();
2632 ir_function
*ctor
= t
->generate_constructor();
2633 if (!state
->symbols
->add_type(name
, t
, ctor
)) {
2634 _mesa_glsl_error(& loc
, state
, "struct `%s' previously defined", name
);
2637 const glsl_type
**s
= (const glsl_type
**)
2638 realloc(state
->user_structures
,
2639 sizeof(state
->user_structures
[0]) *
2640 (state
->num_user_structures
+ 1));
2642 s
[state
->num_user_structures
] = t
;
2643 state
->user_structures
= s
;
2644 state
->num_user_structures
++;
2648 /* Structure type definitions do not have r-values.