Drop main() prototype. Syncs with NetBSD-8
[minix.git] / external / bsd / libevent / dist / test / regress.c
bloba34fbca57257b6a5920b9a2141d7be6c6496cd70
1 /* $NetBSD: regress.c,v 1.8 2015/01/29 07:26:02 spz Exp $ */
2 /*
3 * Copyright (c) 2003-2007 Niels Provos <provos@citi.umich.edu>
4 * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #ifdef WIN32
30 #include <winsock2.h>
31 #include <windows.h>
32 #endif
34 #include "event2/event-config.h"
35 #include <sys/cdefs.h>
36 __RCSID("$NetBSD: regress.c,v 1.8 2015/01/29 07:26:02 spz Exp $");
38 #include <sys/types.h>
39 #include <sys/stat.h>
40 #ifdef _EVENT_HAVE_SYS_TIME_H
41 #include <sys/time.h>
42 #endif
43 #include <sys/queue.h>
44 #ifndef WIN32
45 #include <sys/socket.h>
46 #include <sys/wait.h>
47 #include <signal.h>
48 #include <unistd.h>
49 #include <netdb.h>
50 #endif
51 #include <fcntl.h>
52 #include <signal.h>
53 #include <stdlib.h>
54 #include <stdio.h>
55 #include <string.h>
56 #include <errno.h>
57 #include <assert.h>
58 #include <ctype.h>
60 #include "event2/event.h"
61 #include "event2/event_struct.h"
62 #include "event2/event_compat.h"
63 #include "event2/tag.h"
64 #include "event2/buffer.h"
65 #include "event2/buffer_compat.h"
66 #include "event2/util.h"
67 #include "event-internal.h"
68 #include "evthread-internal.h"
69 #include "util-internal.h"
70 #include "log-internal.h"
72 #include "regress.h"
74 #ifndef WIN32
75 #include "regress.gen.h"
76 #endif
78 evutil_socket_t pair[2];
79 int test_ok;
80 int called;
81 struct event_base *global_base;
83 static char wbuf[4096];
84 static char rbuf[4096];
85 static int woff;
86 static int roff;
87 static int usepersist;
88 static struct timeval tset;
89 static struct timeval tcalled;
92 #define TEST1 "this is a test"
93 #define SECONDS 1
95 #ifndef SHUT_WR
96 #define SHUT_WR 1
97 #endif
99 #ifdef WIN32
100 #define write(fd,buf,len) send((fd),(buf),(int)(len),0)
101 #define read(fd,buf,len) recv((fd),(buf),(int)(len),0)
102 #endif
104 struct basic_cb_args
106 struct event_base *eb;
107 struct event *ev;
108 unsigned int callcount;
111 static void
112 simple_read_cb(evutil_socket_t fd, short event, void *arg)
114 char buf[256];
115 int len;
117 len = read(fd, buf, sizeof(buf));
119 if (len) {
120 if (!called) {
121 if (event_add(arg, NULL) == -1)
122 exit(1);
124 } else if (called == 1)
125 test_ok = 1;
127 called++;
130 static void
131 basic_read_cb(evutil_socket_t fd, short event, void *data)
133 char buf[256];
134 int len;
135 struct basic_cb_args *arg = data;
137 len = read(fd, buf, sizeof(buf));
139 if (len < 0) {
140 tt_fail_perror("read (callback)");
141 } else {
142 switch (arg->callcount++) {
143 case 0: /* first call: expect to read data; cycle */
144 if (len > 0)
145 return;
147 tt_fail_msg("EOF before data read");
148 break;
150 case 1: /* second call: expect EOF; stop */
151 if (len > 0)
152 tt_fail_msg("not all data read on first cycle");
153 break;
155 default: /* third call: should not happen */
156 tt_fail_msg("too many cycles");
160 event_del(arg->ev);
161 event_base_loopexit(arg->eb, NULL);
164 static void
165 dummy_read_cb(evutil_socket_t fd, short event, void *arg)
169 static void
170 simple_write_cb(evutil_socket_t fd, short event, void *arg)
172 int len;
174 len = write(fd, TEST1, strlen(TEST1) + 1);
175 if (len == -1)
176 test_ok = 0;
177 else
178 test_ok = 1;
181 static void
182 multiple_write_cb(evutil_socket_t fd, short event, void *arg)
184 struct event *ev = arg;
185 int len;
187 len = 128;
188 if (woff + len >= (int)sizeof(wbuf))
189 len = sizeof(wbuf) - woff;
191 len = write(fd, wbuf + woff, len);
192 if (len == -1) {
193 fprintf(stderr, "%s: write\n", __func__);
194 if (usepersist)
195 event_del(ev);
196 return;
199 woff += len;
201 if (woff >= (int)sizeof(wbuf)) {
202 shutdown(fd, SHUT_WR);
203 if (usepersist)
204 event_del(ev);
205 return;
208 if (!usepersist) {
209 if (event_add(ev, NULL) == -1)
210 exit(1);
214 static void
215 multiple_read_cb(evutil_socket_t fd, short event, void *arg)
217 struct event *ev = arg;
218 int len;
220 len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
221 if (len == -1)
222 fprintf(stderr, "%s: read\n", __func__);
223 if (len <= 0) {
224 if (usepersist)
225 event_del(ev);
226 return;
229 roff += len;
230 if (!usepersist) {
231 if (event_add(ev, NULL) == -1)
232 exit(1);
236 static void
237 timeout_cb(evutil_socket_t fd, short event, void *arg)
239 struct timeval tv;
240 int diff;
242 evutil_gettimeofday(&tcalled, NULL);
243 if (evutil_timercmp(&tcalled, &tset, >))
244 evutil_timersub(&tcalled, &tset, &tv);
245 else
246 evutil_timersub(&tset, &tcalled, &tv);
248 diff = tv.tv_sec*1000 + tv.tv_usec/1000 - SECONDS * 1000;
249 if (diff < 0)
250 diff = -diff;
252 if (diff < 100)
253 test_ok = 1;
256 struct both {
257 struct event ev;
258 int nread;
261 static void
262 combined_read_cb(evutil_socket_t fd, short event, void *arg)
264 struct both *both = arg;
265 char buf[128];
266 int len;
268 len = read(fd, buf, sizeof(buf));
269 if (len == -1)
270 fprintf(stderr, "%s: read\n", __func__);
271 if (len <= 0)
272 return;
274 both->nread += len;
275 if (event_add(&both->ev, NULL) == -1)
276 exit(1);
279 static void
280 combined_write_cb(evutil_socket_t fd, short event, void *arg)
282 struct both *both = arg;
283 char buf[128];
284 int len;
286 len = sizeof(buf);
287 if (len > both->nread)
288 len = both->nread;
290 memset(buf, 'q', len);
292 len = write(fd, buf, len);
293 if (len == -1)
294 fprintf(stderr, "%s: write\n", __func__);
295 if (len <= 0) {
296 shutdown(fd, SHUT_WR);
297 return;
300 both->nread -= len;
301 if (event_add(&both->ev, NULL) == -1)
302 exit(1);
305 /* These macros used to replicate the work of the legacy test wrapper code */
306 #define setup_test(x) do { \
307 if (!in_legacy_test_wrapper) { \
308 TT_FAIL(("Legacy test %s not wrapped properly", x)); \
309 return; \
311 } while (/*CONSTCOND*/0)
312 #define cleanup_test() setup_test("cleanup")
314 static void
315 test_simpleread(void)
317 struct event ev;
319 /* Very simple read test */
320 setup_test("Simple read: ");
322 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
323 tt_fail_perror("write");
326 shutdown(pair[0], SHUT_WR);
328 event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
329 if (event_add(&ev, NULL) == -1)
330 exit(1);
331 event_dispatch();
333 cleanup_test();
336 static void
337 test_simplewrite(void)
339 struct event ev;
341 /* Very simple write test */
342 setup_test("Simple write: ");
344 event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
345 if (event_add(&ev, NULL) == -1)
346 exit(1);
347 event_dispatch();
349 cleanup_test();
352 static void
353 simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg)
355 if (++called == 2)
356 test_ok = 1;
359 static void
360 test_simpleread_multiple(void)
362 struct event one, two;
364 /* Very simple read test */
365 setup_test("Simple read to multiple evens: ");
367 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
368 tt_fail_perror("write");
371 shutdown(pair[0], SHUT_WR);
373 event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL);
374 if (event_add(&one, NULL) == -1)
375 exit(1);
376 event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL);
377 if (event_add(&two, NULL) == -1)
378 exit(1);
379 event_dispatch();
381 cleanup_test();
384 static int have_closed = 0;
385 static int premature_event = 0;
386 static void
387 simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr)
389 evutil_socket_t **fds = ptr;
390 TT_BLATHER(("Closing"));
391 evutil_closesocket(*fds[0]);
392 evutil_closesocket(*fds[1]);
393 *fds[0] = -1;
394 *fds[1] = -1;
395 have_closed = 1;
398 static void
399 record_event_cb(evutil_socket_t s, short what, void *ptr)
401 short *whatp = ptr;
402 if (!have_closed)
403 premature_event = 1;
404 *whatp = what;
405 TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s));
408 static void
409 test_simpleclose(void *ptr)
411 /* Test that a close of FD is detected as a read and as a write. */
412 struct event_base *base = event_base_new();
413 evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1};
414 evutil_socket_t *to_close[2];
415 struct event *rev=NULL, *wev=NULL, *closeev=NULL;
416 struct timeval tv;
417 short got_read_on_close = 0, got_write_on_close = 0;
418 char buf[1024];
419 memset(buf, 99, sizeof(buf));
420 #ifdef WIN32
421 #define LOCAL_SOCKETPAIR_AF AF_INET
422 #else
423 #define LOCAL_SOCKETPAIR_AF AF_UNIX
424 #endif
425 if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0)
426 TT_DIE(("socketpair: %s", strerror(errno)));
427 if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0)
428 TT_DIE(("socketpair: %s", strerror(errno)));
429 if (evutil_make_socket_nonblocking(pair1[1]) < 0)
430 TT_DIE(("make_socket_nonblocking"));
431 if (evutil_make_socket_nonblocking(pair2[1]) < 0)
432 TT_DIE(("make_socket_nonblocking"));
434 /** Stuff pair2[1] full of data, until write fails */
435 while (1) {
436 int r = write(pair2[1], buf, sizeof(buf));
437 if (r<0) {
438 int err = evutil_socket_geterror(pair2[1]);
439 if (! EVUTIL_ERR_RW_RETRIABLE(err))
440 TT_DIE(("write failed strangely: %s",
441 evutil_socket_error_to_string(err)));
442 break;
445 to_close[0] = &pair1[0];
446 to_close[1] = &pair2[0];
448 closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb,
449 to_close);
450 rev = event_new(base, pair1[1], EV_READ, record_event_cb,
451 &got_read_on_close);
452 TT_BLATHER(("Waiting for read on %d", (int)pair1[1]));
453 wev = event_new(base, pair2[1], EV_WRITE, record_event_cb,
454 &got_write_on_close);
455 TT_BLATHER(("Waiting for write on %d", (int)pair2[1]));
456 tv.tv_sec = 0;
457 tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make
458 * sure we get a read event. */
459 event_add(closeev, &tv);
460 event_add(rev, NULL);
461 event_add(wev, NULL);
462 /* Don't let the test go on too long. */
463 tv.tv_sec = 0;
464 tv.tv_usec = 200*1000;
465 event_base_loopexit(base, &tv);
466 event_base_loop(base, 0);
468 tt_int_op(got_read_on_close, ==, EV_READ);
469 tt_int_op(got_write_on_close, ==, EV_WRITE);
470 tt_int_op(premature_event, ==, 0);
472 end:
473 if (pair1[0] >= 0)
474 evutil_closesocket(pair1[0]);
475 if (pair1[1] >= 0)
476 evutil_closesocket(pair1[1]);
477 if (pair2[0] >= 0)
478 evutil_closesocket(pair2[0]);
479 if (pair2[1] >= 0)
480 evutil_closesocket(pair2[1]);
481 if (rev)
482 event_free(rev);
483 if (wev)
484 event_free(wev);
485 if (closeev)
486 event_free(closeev);
487 if (base)
488 event_base_free(base);
492 static void
493 test_multiple(void)
495 struct event ev, ev2;
496 int i;
498 /* Multiple read and write test */
499 setup_test("Multiple read/write: ");
500 memset(rbuf, 0, sizeof(rbuf));
501 for (i = 0; i < (int)sizeof(wbuf); i++)
502 wbuf[i] = i;
504 roff = woff = 0;
505 usepersist = 0;
507 event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
508 if (event_add(&ev, NULL) == -1)
509 exit(1);
510 event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
511 if (event_add(&ev2, NULL) == -1)
512 exit(1);
513 event_dispatch();
515 if (roff == woff)
516 test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
518 cleanup_test();
521 static void
522 test_persistent(void)
524 struct event ev, ev2;
525 int i;
527 /* Multiple read and write test with persist */
528 setup_test("Persist read/write: ");
529 memset(rbuf, 0, sizeof(rbuf));
530 for (i = 0; i < (int)sizeof(wbuf); i++)
531 wbuf[i] = i;
533 roff = woff = 0;
534 usepersist = 1;
536 event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
537 if (event_add(&ev, NULL) == -1)
538 exit(1);
539 event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
540 if (event_add(&ev2, NULL) == -1)
541 exit(1);
542 event_dispatch();
544 if (roff == woff)
545 test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
547 cleanup_test();
550 static void
551 test_combined(void)
553 struct both r1, r2, w1, w2;
555 setup_test("Combined read/write: ");
556 memset(&r1, 0, sizeof(r1));
557 memset(&r2, 0, sizeof(r2));
558 memset(&w1, 0, sizeof(w1));
559 memset(&w2, 0, sizeof(w2));
561 w1.nread = 4096;
562 w2.nread = 8192;
564 event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
565 event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
566 event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
567 event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
568 tt_assert(event_add(&r1.ev, NULL) != -1);
569 tt_assert(!event_add(&w1.ev, NULL));
570 tt_assert(!event_add(&r2.ev, NULL));
571 tt_assert(!event_add(&w2.ev, NULL));
572 event_dispatch();
574 if (r1.nread == 8192 && r2.nread == 4096)
575 test_ok = 1;
577 end:
578 cleanup_test();
581 static void
582 test_simpletimeout(void)
584 struct timeval tv;
585 struct event ev;
587 setup_test("Simple timeout: ");
589 tv.tv_usec = 0;
590 tv.tv_sec = SECONDS;
591 evtimer_set(&ev, timeout_cb, NULL);
592 evtimer_add(&ev, &tv);
594 evutil_gettimeofday(&tset, NULL);
595 event_dispatch();
597 cleanup_test();
600 static void
601 periodic_timeout_cb(evutil_socket_t fd, short event, void *arg)
603 int *count = arg;
605 (*count)++;
606 if (*count == 6) {
607 /* call loopexit only once - on slow machines(?), it is
608 * apparently possible for this to get called twice. */
609 test_ok = 1;
610 event_base_loopexit(global_base, NULL);
614 static void
615 test_persistent_timeout(void)
617 struct timeval tv;
618 struct event ev;
619 int count = 0;
621 evutil_timerclear(&tv);
622 tv.tv_usec = 10000;
624 event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST,
625 periodic_timeout_cb, &count);
626 event_add(&ev, &tv);
628 event_dispatch();
630 event_del(&ev);
633 static void
634 test_persistent_timeout_jump(void *ptr)
636 struct basic_test_data *data = ptr;
637 struct event ev;
638 int count = 0;
639 struct timeval msec100 = { 0, 100 * 1000 };
640 struct timeval msec50 = { 0, 50 * 1000 };
642 event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count);
643 event_add(&ev, &msec100);
644 /* Wait for a bit */
645 #ifdef _WIN32
646 Sleep(1000);
647 #else
648 sleep(1);
649 #endif
650 event_base_loopexit(data->base, &msec50);
651 event_base_dispatch(data->base);
652 tt_int_op(count, ==, 1);
654 end:
655 event_del(&ev);
658 struct persist_active_timeout_called {
659 int n;
660 short events[16];
661 struct timeval tvs[16];
664 static void
665 activate_cb(evutil_socket_t fd, short event, void *arg)
667 struct event *ev = arg;
668 event_active(ev, EV_READ, 1);
671 static void
672 persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg)
674 struct persist_active_timeout_called *c = arg;
675 if (c->n < 15) {
676 c->events[c->n] = event;
677 evutil_gettimeofday(&c->tvs[c->n], NULL);
678 ++c->n;
682 static void
683 test_persistent_active_timeout(void *ptr)
685 struct timeval tv, tv2, tv_exit, start;
686 struct event ev;
687 struct persist_active_timeout_called res;
689 struct basic_test_data *data = ptr;
690 struct event_base *base = data->base;
692 memset(&res, 0, sizeof(res));
694 tv.tv_sec = 0;
695 tv.tv_usec = 200 * 1000;
696 event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST,
697 persist_active_timeout_cb, &res);
698 event_add(&ev, &tv);
700 tv2.tv_sec = 0;
701 tv2.tv_usec = 100 * 1000;
702 event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2);
704 tv_exit.tv_sec = 0;
705 tv_exit.tv_usec = 600 * 1000;
706 event_base_loopexit(base, &tv_exit);
708 event_base_assert_ok(base);
709 evutil_gettimeofday(&start, NULL);
711 event_base_dispatch(base);
712 event_base_assert_ok(base);
714 tt_int_op(res.n, ==, 3);
715 tt_int_op(res.events[0], ==, EV_READ);
716 tt_int_op(res.events[1], ==, EV_TIMEOUT);
717 tt_int_op(res.events[2], ==, EV_TIMEOUT);
718 test_timeval_diff_eq(&start, &res.tvs[0], 100);
719 test_timeval_diff_eq(&start, &res.tvs[1], 300);
720 test_timeval_diff_eq(&start, &res.tvs[2], 500);
721 end:
722 event_del(&ev);
725 struct common_timeout_info {
726 struct event ev;
727 struct timeval called_at;
728 int which;
729 int count;
732 static void
733 common_timeout_cb(evutil_socket_t fd, short event, void *arg)
735 struct common_timeout_info *ti = arg;
736 ++ti->count;
737 evutil_gettimeofday(&ti->called_at, NULL);
738 if (ti->count >= 6)
739 event_del(&ti->ev);
742 static void
743 test_common_timeout(void *ptr)
745 struct basic_test_data *data = ptr;
747 struct event_base *base = data->base;
748 int i;
749 struct common_timeout_info info[100];
751 struct timeval now;
752 struct timeval tmp_100_ms = { 0, 100*1000 };
753 struct timeval tmp_200_ms = { 0, 200*1000 };
755 const struct timeval *ms_100, *ms_200;
757 ms_100 = event_base_init_common_timeout(base, &tmp_100_ms);
758 ms_200 = event_base_init_common_timeout(base, &tmp_200_ms);
759 tt_assert(ms_100);
760 tt_assert(ms_200);
761 tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms),
762 ==, ms_200);
763 tt_int_op(ms_100->tv_sec, ==, 0);
764 tt_int_op(ms_200->tv_sec, ==, 0);
765 tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000);
766 tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000);
768 memset(info, 0, sizeof(info));
770 for (i=0; i<100; ++i) {
771 info[i].which = i;
772 event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST,
773 common_timeout_cb, &info[i]);
774 if (i % 2) {
775 event_add(&info[i].ev, ms_100);
776 } else {
777 event_add(&info[i].ev, ms_200);
781 event_base_assert_ok(base);
782 event_base_dispatch(base);
784 evutil_gettimeofday(&now, NULL);
785 event_base_assert_ok(base);
787 for (i=0; i<10; ++i) {
788 struct timeval tmp;
789 int ms_diff;
790 tt_int_op(info[i].count, ==, 6);
791 evutil_timersub(&now, &info[i].called_at, &tmp);
792 ms_diff = tmp.tv_usec/1000 + tmp.tv_sec*1000;
793 if (i % 2) {
794 tt_int_op(ms_diff, >, 500);
795 tt_int_op(ms_diff, <, 700);
796 } else {
797 tt_int_op(ms_diff, >, -100);
798 tt_int_op(ms_diff, <, 100);
802 /* Make sure we can free the base with some events in. */
803 for (i=0; i<100; ++i) {
804 if (i % 2) {
805 event_add(&info[i].ev, ms_100);
806 } else {
807 event_add(&info[i].ev, ms_200);
811 end:
812 event_base_free(data->base); /* need to do this here before info is
813 * out-of-scope */
814 data->base = NULL;
817 #ifndef WIN32
818 static void signal_cb(evutil_socket_t fd, short event, void *arg);
820 #define current_base event_global_current_base_
821 extern struct event_base *current_base;
823 static void
824 child_signal_cb(evutil_socket_t fd, short event, void *arg)
826 struct timeval tv;
827 int *pint = arg;
829 *pint = 1;
831 tv.tv_usec = 500000;
832 tv.tv_sec = 0;
833 event_loopexit(&tv);
836 static void
837 test_fork(void)
839 int status, got_sigchld = 0;
840 struct event ev, sig_ev;
841 pid_t pid;
843 setup_test("After fork: ");
845 tt_assert(current_base);
846 evthread_make_base_notifiable(current_base);
848 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
849 tt_fail_perror("write");
852 event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
853 if (event_add(&ev, NULL) == -1)
854 exit(1);
856 evsignal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
857 evsignal_add(&sig_ev, NULL);
859 event_base_assert_ok(current_base);
860 TT_BLATHER(("Before fork"));
861 if ((pid = regress_fork()) == 0) {
862 /* in the child */
863 TT_BLATHER(("In child, before reinit"));
864 event_base_assert_ok(current_base);
865 if (event_reinit(current_base) == -1) {
866 fprintf(stdout, "FAILED (reinit)\n");
867 exit(1);
869 TT_BLATHER(("After reinit"));
870 event_base_assert_ok(current_base);
871 TT_BLATHER(("After assert-ok"));
873 evsignal_del(&sig_ev);
875 called = 0;
877 event_dispatch();
879 event_base_free(current_base);
881 /* we do not send an EOF; simple_read_cb requires an EOF
882 * to set test_ok. we just verify that the callback was
883 * called. */
884 exit(test_ok != 0 || called != 2 ? -2 : 76);
887 /* wait for the child to read the data */
888 sleep(1);
890 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
891 tt_fail_perror("write");
894 TT_BLATHER(("Before waitpid"));
895 if (waitpid(pid, &status, 0) == -1) {
896 fprintf(stdout, "FAILED (fork)\n");
897 exit(1);
899 TT_BLATHER(("After waitpid"));
901 if (WEXITSTATUS(status) != 76) {
902 fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status));
903 exit(1);
906 /* test that the current event loop still works */
907 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
908 fprintf(stderr, "%s: write\n", __func__);
911 shutdown(pair[0], SHUT_WR);
913 event_dispatch();
915 if (!got_sigchld) {
916 fprintf(stdout, "FAILED (sigchld)\n");
917 exit(1);
920 evsignal_del(&sig_ev);
922 end:
923 cleanup_test();
926 static void
927 signal_cb_sa(int sig)
929 test_ok = 2;
932 static void
933 signal_cb(evutil_socket_t fd, short event, void *arg)
935 struct event *ev = arg;
937 evsignal_del(ev);
938 test_ok = 1;
941 static void
942 test_simplesignal(void)
944 struct event ev;
945 struct itimerval itv;
947 setup_test("Simple signal: ");
948 evsignal_set(&ev, SIGALRM, signal_cb, &ev);
949 evsignal_add(&ev, NULL);
950 /* find bugs in which operations are re-ordered */
951 evsignal_del(&ev);
952 evsignal_add(&ev, NULL);
954 memset(&itv, 0, sizeof(itv));
955 itv.it_value.tv_sec = 1;
956 if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
957 goto skip_simplesignal;
959 event_dispatch();
960 skip_simplesignal:
961 if (evsignal_del(&ev) == -1)
962 test_ok = 0;
964 cleanup_test();
967 static void
968 test_multiplesignal(void)
970 struct event ev_one, ev_two;
971 struct itimerval itv;
973 setup_test("Multiple signal: ");
975 evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
976 evsignal_add(&ev_one, NULL);
978 evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
979 evsignal_add(&ev_two, NULL);
981 memset(&itv, 0, sizeof(itv));
982 itv.it_value.tv_sec = 1;
983 if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
984 goto skip_simplesignal;
986 event_dispatch();
988 skip_simplesignal:
989 if (evsignal_del(&ev_one) == -1)
990 test_ok = 0;
991 if (evsignal_del(&ev_two) == -1)
992 test_ok = 0;
994 cleanup_test();
997 static void
998 test_immediatesignal(void)
1000 struct event ev;
1002 test_ok = 0;
1003 evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1004 evsignal_add(&ev, NULL);
1005 raise(SIGUSR1);
1006 event_loop(EVLOOP_NONBLOCK);
1007 evsignal_del(&ev);
1008 cleanup_test();
1011 static void
1012 test_signal_dealloc(void)
1014 /* make sure that evsignal_event is event_del'ed and pipe closed */
1015 struct event ev;
1016 struct event_base *base = event_init();
1017 evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1018 evsignal_add(&ev, NULL);
1019 evsignal_del(&ev);
1020 event_base_free(base);
1021 /* If we got here without asserting, we're fine. */
1022 test_ok = 1;
1023 cleanup_test();
1026 static void
1027 test_signal_pipeloss(void)
1029 /* make sure that the base1 pipe is closed correctly. */
1030 struct event_base *base1, *base2;
1031 int pipe1;
1032 test_ok = 0;
1033 base1 = event_init();
1034 pipe1 = base1->sig.ev_signal_pair[0];
1035 base2 = event_init();
1036 event_base_free(base2);
1037 event_base_free(base1);
1038 if (close(pipe1) != -1 || errno!=EBADF) {
1039 /* fd must be closed, so second close gives -1, EBADF */
1040 printf("signal pipe not closed. ");
1041 test_ok = 0;
1042 } else {
1043 test_ok = 1;
1045 cleanup_test();
1049 * make two bases to catch signals, use both of them. this only works
1050 * for event mechanisms that use our signal pipe trick. kqueue handles
1051 * signals internally, and all interested kqueues get all the signals.
1053 static void
1054 test_signal_switchbase(void)
1056 struct event ev1, ev2;
1057 struct event_base *base1, *base2;
1058 int is_kqueue;
1059 test_ok = 0;
1060 base1 = event_init();
1061 base2 = event_init();
1062 is_kqueue = !strcmp(event_get_method(),"kqueue");
1063 evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1);
1064 evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2);
1065 if (event_base_set(base1, &ev1) ||
1066 event_base_set(base2, &ev2) ||
1067 event_add(&ev1, NULL) ||
1068 event_add(&ev2, NULL)) {
1069 fprintf(stderr, "%s: cannot set base, add\n", __func__);
1070 exit(1);
1073 tt_ptr_op(event_get_base(&ev1), ==, base1);
1074 tt_ptr_op(event_get_base(&ev2), ==, base2);
1076 test_ok = 0;
1077 /* can handle signal before loop is called */
1078 raise(SIGUSR1);
1079 event_base_loop(base2, EVLOOP_NONBLOCK);
1080 if (is_kqueue) {
1081 if (!test_ok)
1082 goto end;
1083 test_ok = 0;
1085 event_base_loop(base1, EVLOOP_NONBLOCK);
1086 if (test_ok && !is_kqueue) {
1087 test_ok = 0;
1089 /* set base1 to handle signals */
1090 event_base_loop(base1, EVLOOP_NONBLOCK);
1091 raise(SIGUSR1);
1092 event_base_loop(base1, EVLOOP_NONBLOCK);
1093 event_base_loop(base2, EVLOOP_NONBLOCK);
1095 end:
1096 event_base_free(base1);
1097 event_base_free(base2);
1098 cleanup_test();
1102 * assert that a signal event removed from the event queue really is
1103 * removed - with no possibility of it's parent handler being fired.
1105 static void
1106 test_signal_assert(void)
1108 struct event ev;
1109 struct event_base *base = event_init();
1110 test_ok = 0;
1111 /* use SIGCONT so we don't kill ourselves when we signal to nowhere */
1112 evsignal_set(&ev, SIGCONT, signal_cb, &ev);
1113 evsignal_add(&ev, NULL);
1115 * if evsignal_del() fails to reset the handler, it's current handler
1116 * will still point to evsig_handler().
1118 evsignal_del(&ev);
1120 raise(SIGCONT);
1121 #if 0
1122 /* only way to verify we were in evsig_handler() */
1123 /* XXXX Now there's no longer a good way. */
1124 if (base->sig.evsig_caught)
1125 test_ok = 0;
1126 else
1127 test_ok = 1;
1128 #else
1129 test_ok = 1;
1130 #endif
1132 event_base_free(base);
1133 cleanup_test();
1134 return;
1138 * assert that we restore our previous signal handler properly.
1140 static void
1141 test_signal_restore(void)
1143 struct event ev;
1144 struct event_base *base = event_init();
1145 #ifdef _EVENT_HAVE_SIGACTION
1146 struct sigaction sa;
1147 #endif
1149 test_ok = 0;
1150 #ifdef _EVENT_HAVE_SIGACTION
1151 sa.sa_handler = signal_cb_sa;
1152 sa.sa_flags = 0x0;
1153 sigemptyset(&sa.sa_mask);
1154 if (sigaction(SIGUSR1, &sa, NULL) == -1)
1155 goto out;
1156 #else
1157 if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
1158 goto out;
1159 #endif
1160 evsignal_set(&ev, SIGUSR1, signal_cb, &ev);
1161 evsignal_add(&ev, NULL);
1162 evsignal_del(&ev);
1164 raise(SIGUSR1);
1165 /* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
1166 if (test_ok != 2)
1167 test_ok = 0;
1168 out:
1169 event_base_free(base);
1170 cleanup_test();
1171 return;
1174 static void
1175 signal_cb_swp(int sig, short event, void *arg)
1177 called++;
1178 if (called < 5)
1179 raise(sig);
1180 else
1181 event_loopexit(NULL);
1183 static void
1184 timeout_cb_swp(evutil_socket_t fd, short event, void *arg)
1186 if (called == -1) {
1187 struct timeval tv = {5, 0};
1189 called = 0;
1190 evtimer_add((struct event *)arg, &tv);
1191 raise(SIGUSR1);
1192 return;
1194 test_ok = 0;
1195 event_loopexit(NULL);
1198 static void
1199 test_signal_while_processing(void)
1201 struct event_base *base = event_init();
1202 struct event ev, ev_timer;
1203 struct timeval tv = {0, 0};
1205 setup_test("Receiving a signal while processing other signal: ");
1207 called = -1;
1208 test_ok = 1;
1209 signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
1210 signal_add(&ev, NULL);
1211 evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
1212 evtimer_add(&ev_timer, &tv);
1213 event_dispatch();
1215 event_base_free(base);
1216 cleanup_test();
1217 return;
1219 #endif
1221 static void
1222 test_free_active_base(void *ptr)
1224 struct basic_test_data *data = ptr;
1225 struct event_base *base1;
1226 struct event ev1;
1228 base1 = event_init();
1229 if (base1) {
1230 event_assign(&ev1, base1, data->pair[1], EV_READ,
1231 dummy_read_cb, NULL);
1232 event_add(&ev1, NULL);
1233 event_base_free(base1); /* should not crash */
1234 } else {
1235 tt_fail_msg("failed to create event_base for test");
1238 base1 = event_init();
1239 tt_assert(base1);
1240 event_assign(&ev1, base1, 0, 0, dummy_read_cb, NULL);
1241 event_active(&ev1, EV_READ, 1);
1242 event_base_free(base1);
1243 end:
1247 static void
1248 test_manipulate_active_events(void *ptr)
1250 struct basic_test_data *data = ptr;
1251 struct event_base *base = data->base;
1252 struct event ev1;
1254 event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL);
1256 /* Make sure an active event is pending. */
1257 event_active(&ev1, EV_READ, 1);
1258 tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1259 ==, EV_READ);
1261 /* Make sure that activating an event twice works. */
1262 event_active(&ev1, EV_WRITE, 1);
1263 tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL),
1264 ==, EV_READ|EV_WRITE);
1266 end:
1267 event_del(&ev1);
1270 static void
1271 test_bad_assign(void *ptr)
1273 struct event ev;
1274 int r;
1275 /* READ|SIGNAL is not allowed */
1276 r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL);
1277 tt_int_op(r,==,-1);
1279 end:
1283 static int reentrant_cb_run = 0;
1285 static void
1286 bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr)
1288 struct event_base *base = ptr;
1289 int r;
1290 reentrant_cb_run = 1;
1291 /* This reentrant call to event_base_loop should be detected and
1292 * should fail */
1293 r = event_base_loop(base, 0);
1294 tt_int_op(r, ==, -1);
1295 end:
1299 static void
1300 test_bad_reentrant(void *ptr)
1302 struct basic_test_data *data = ptr;
1303 struct event_base *base = data->base;
1304 struct event ev;
1305 int r;
1306 event_assign(&ev, base, -1,
1307 0, bad_reentrant_run_loop_cb, base);
1309 event_active(&ev, EV_WRITE, 1);
1310 r = event_base_loop(base, 0);
1311 tt_int_op(r, ==, 1);
1312 tt_int_op(reentrant_cb_run, ==, 1);
1313 end:
1317 static void
1318 test_event_base_new(void *ptr)
1320 struct basic_test_data *data = ptr;
1321 struct event_base *base = 0;
1322 struct event ev1;
1323 struct basic_cb_args args;
1325 int towrite = (int)strlen(TEST1)+1;
1326 int len = write(data->pair[0], TEST1, towrite);
1328 if (len < 0)
1329 tt_abort_perror("initial write");
1330 else if (len != towrite)
1331 tt_abort_printf(("initial write fell short (%d of %d bytes)",
1332 len, towrite));
1334 if (shutdown(data->pair[0], SHUT_WR))
1335 tt_abort_perror("initial write shutdown");
1337 base = event_base_new();
1338 if (!base)
1339 tt_abort_msg("failed to create event base");
1341 args.eb = base;
1342 args.ev = &ev1;
1343 args.callcount = 0;
1344 event_assign(&ev1, base, data->pair[1],
1345 EV_READ|EV_PERSIST, basic_read_cb, &args);
1347 if (event_add(&ev1, NULL))
1348 tt_abort_perror("initial event_add");
1350 if (event_base_loop(base, 0))
1351 tt_abort_msg("unsuccessful exit from event loop");
1353 end:
1354 if (base)
1355 event_base_free(base);
1358 static void
1359 test_loopexit(void)
1361 struct timeval tv, tv_start, tv_end;
1362 struct event ev;
1364 setup_test("Loop exit: ");
1366 tv.tv_usec = 0;
1367 tv.tv_sec = 60*60*24;
1368 evtimer_set(&ev, timeout_cb, NULL);
1369 evtimer_add(&ev, &tv);
1371 tv.tv_usec = 0;
1372 tv.tv_sec = 1;
1373 event_loopexit(&tv);
1375 evutil_gettimeofday(&tv_start, NULL);
1376 event_dispatch();
1377 evutil_gettimeofday(&tv_end, NULL);
1378 evutil_timersub(&tv_end, &tv_start, &tv_end);
1380 evtimer_del(&ev);
1382 tt_assert(event_base_got_exit(global_base));
1383 tt_assert(!event_base_got_break(global_base));
1385 if (tv.tv_sec < 2)
1386 test_ok = 1;
1388 end:
1389 cleanup_test();
1392 static void
1393 test_loopexit_multiple(void)
1395 struct timeval tv;
1396 struct event_base *base;
1398 setup_test("Loop Multiple exit: ");
1400 base = event_base_new();
1402 tv.tv_usec = 0;
1403 tv.tv_sec = 1;
1404 event_base_loopexit(base, &tv);
1406 tv.tv_usec = 0;
1407 tv.tv_sec = 2;
1408 event_base_loopexit(base, &tv);
1410 event_base_dispatch(base);
1412 tt_assert(event_base_got_exit(base));
1413 tt_assert(!event_base_got_break(base));
1415 event_base_free(base);
1417 test_ok = 1;
1419 end:
1420 cleanup_test();
1423 static void
1424 break_cb(evutil_socket_t fd, short events, void *arg)
1426 test_ok = 1;
1427 event_loopbreak();
1430 static void
1431 fail_cb(evutil_socket_t fd, short events, void *arg)
1433 test_ok = 0;
1436 static void
1437 test_loopbreak(void)
1439 struct event ev1, ev2;
1440 struct timeval tv;
1442 setup_test("Loop break: ");
1444 tv.tv_sec = 0;
1445 tv.tv_usec = 0;
1446 evtimer_set(&ev1, break_cb, NULL);
1447 evtimer_add(&ev1, &tv);
1448 evtimer_set(&ev2, fail_cb, NULL);
1449 evtimer_add(&ev2, &tv);
1451 event_dispatch();
1453 tt_assert(!event_base_got_exit(global_base));
1454 tt_assert(event_base_got_break(global_base));
1456 evtimer_del(&ev1);
1457 evtimer_del(&ev2);
1459 end:
1460 cleanup_test();
1463 static struct event *readd_test_event_last_added = NULL;
1464 static void
1465 re_add_read_cb(evutil_socket_t fd, short event, void *arg)
1467 char buf[256];
1468 struct event *ev_other = arg;
1469 readd_test_event_last_added = ev_other;
1471 if (read(fd, buf, sizeof(buf)) < 0) {
1472 tt_fail_perror("read");
1475 event_add(ev_other, NULL);
1476 ++test_ok;
1479 static void
1480 test_nonpersist_readd(void)
1482 struct event ev1, ev2;
1484 setup_test("Re-add nonpersistent events: ");
1485 event_set(&ev1, pair[0], EV_READ, re_add_read_cb, &ev2);
1486 event_set(&ev2, pair[1], EV_READ, re_add_read_cb, &ev1);
1488 if (write(pair[0], "Hello", 5) < 0) {
1489 tt_fail_perror("write(pair[0])");
1492 if (write(pair[1], "Hello", 5) < 0) {
1493 tt_fail_perror("write(pair[1])\n");
1496 if (event_add(&ev1, NULL) == -1 ||
1497 event_add(&ev2, NULL) == -1) {
1498 test_ok = 0;
1500 if (test_ok != 0)
1501 exit(1);
1502 event_loop(EVLOOP_ONCE);
1503 if (test_ok != 2)
1504 exit(1);
1505 /* At this point, we executed both callbacks. Whichever one got
1506 * called first added the second, but the second then immediately got
1507 * deleted before its callback was called. At this point, though, it
1508 * re-added the first.
1510 if (!readd_test_event_last_added) {
1511 test_ok = 0;
1512 } else if (readd_test_event_last_added == &ev1) {
1513 if (!event_pending(&ev1, EV_READ, NULL) ||
1514 event_pending(&ev2, EV_READ, NULL))
1515 test_ok = 0;
1516 } else {
1517 if (event_pending(&ev1, EV_READ, NULL) ||
1518 !event_pending(&ev2, EV_READ, NULL))
1519 test_ok = 0;
1522 event_del(&ev1);
1523 event_del(&ev2);
1525 cleanup_test();
1528 struct test_pri_event {
1529 struct event ev;
1530 int count;
1533 static void
1534 test_priorities_cb(evutil_socket_t fd, short what, void *arg)
1536 struct test_pri_event *pri = arg;
1537 struct timeval tv;
1539 if (pri->count == 3) {
1540 event_loopexit(NULL);
1541 return;
1544 pri->count++;
1546 evutil_timerclear(&tv);
1547 event_add(&pri->ev, &tv);
1550 static void
1551 test_priorities_impl(int npriorities)
1553 struct test_pri_event one, two;
1554 struct timeval tv;
1556 TT_BLATHER(("Testing Priorities %d: ", npriorities));
1558 event_base_priority_init(global_base, npriorities);
1560 memset(&one, 0, sizeof(one));
1561 memset(&two, 0, sizeof(two));
1563 timeout_set(&one.ev, test_priorities_cb, &one);
1564 if (event_priority_set(&one.ev, 0) == -1) {
1565 fprintf(stderr, "%s: failed to set priority", __func__);
1566 exit(1);
1569 timeout_set(&two.ev, test_priorities_cb, &two);
1570 if (event_priority_set(&two.ev, npriorities - 1) == -1) {
1571 fprintf(stderr, "%s: failed to set priority", __func__);
1572 exit(1);
1575 evutil_timerclear(&tv);
1577 if (event_add(&one.ev, &tv) == -1)
1578 exit(1);
1579 if (event_add(&two.ev, &tv) == -1)
1580 exit(1);
1582 event_dispatch();
1584 event_del(&one.ev);
1585 event_del(&two.ev);
1587 if (npriorities == 1) {
1588 if (one.count == 3 && two.count == 3)
1589 test_ok = 1;
1590 } else if (npriorities == 2) {
1591 /* Two is called once because event_loopexit is priority 1 */
1592 if (one.count == 3 && two.count == 1)
1593 test_ok = 1;
1594 } else {
1595 if (one.count == 3 && two.count == 0)
1596 test_ok = 1;
1600 static void
1601 test_priorities(void)
1603 test_priorities_impl(1);
1604 if (test_ok)
1605 test_priorities_impl(2);
1606 if (test_ok)
1607 test_priorities_impl(3);
1610 /* priority-active-inversion: activate a higher-priority event, and make sure
1611 * it keeps us from running a lower-priority event first. */
1612 static int n_pai_calls = 0;
1613 static struct event pai_events[3];
1615 static void
1616 prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg)
1618 int *call_order = arg;
1619 *call_order = n_pai_calls++;
1620 if (n_pai_calls == 1) {
1621 /* This should activate later, even though it shares a
1622 priority with us. */
1623 event_active(&pai_events[1], EV_READ, 1);
1624 /* This should activate next, since its priority is higher,
1625 even though we activated it second. */
1626 event_active(&pai_events[2], EV_TIMEOUT, 1);
1630 static void
1631 test_priority_active_inversion(void *data_)
1633 struct basic_test_data *data = data_;
1634 struct event_base *base = data->base;
1635 int call_order[3];
1636 int i;
1637 tt_int_op(event_base_priority_init(base, 8), ==, 0);
1639 n_pai_calls = 0;
1640 memset(call_order, 0, sizeof(call_order));
1642 for (i=0;i<3;++i) {
1643 event_assign(&pai_events[i], data->base, -1, 0,
1644 prio_active_inversion_cb, &call_order[i]);
1647 event_priority_set(&pai_events[0], 4);
1648 event_priority_set(&pai_events[1], 4);
1649 event_priority_set(&pai_events[2], 0);
1651 event_active(&pai_events[0], EV_WRITE, 1);
1653 event_base_dispatch(base);
1654 tt_int_op(n_pai_calls, ==, 3);
1655 tt_int_op(call_order[0], ==, 0);
1656 tt_int_op(call_order[1], ==, 2);
1657 tt_int_op(call_order[2], ==, 1);
1658 end:
1663 static void
1664 test_multiple_cb(evutil_socket_t fd, short event, void *arg)
1666 if (event & EV_READ)
1667 test_ok |= 1;
1668 else if (event & EV_WRITE)
1669 test_ok |= 2;
1672 static void
1673 test_multiple_events_for_same_fd(void)
1675 struct event e1, e2;
1677 setup_test("Multiple events for same fd: ");
1679 event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
1680 event_add(&e1, NULL);
1681 event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
1682 event_add(&e2, NULL);
1683 event_loop(EVLOOP_ONCE);
1684 event_del(&e2);
1686 if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) {
1687 tt_fail_perror("write");
1690 event_loop(EVLOOP_ONCE);
1691 event_del(&e1);
1693 if (test_ok != 3)
1694 test_ok = 0;
1696 cleanup_test();
1699 int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf);
1700 int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf);
1701 int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number);
1702 int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf);
1704 static void
1705 read_once_cb(evutil_socket_t fd, short event, void *arg)
1707 char buf[256];
1708 int len;
1710 len = read(fd, buf, sizeof(buf));
1712 if (called) {
1713 test_ok = 0;
1714 } else if (len) {
1715 /* Assumes global pair[0] can be used for writing */
1716 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
1717 tt_fail_perror("write");
1718 test_ok = 0;
1719 } else {
1720 test_ok = 1;
1724 called++;
1727 static void
1728 test_want_only_once(void)
1730 struct event ev;
1731 struct timeval tv;
1733 /* Very simple read test */
1734 setup_test("Want read only once: ");
1736 if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) {
1737 tt_fail_perror("write");
1740 /* Setup the loop termination */
1741 evutil_timerclear(&tv);
1742 tv.tv_sec = 1;
1743 event_loopexit(&tv);
1745 event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
1746 if (event_add(&ev, NULL) == -1)
1747 exit(1);
1748 event_dispatch();
1750 cleanup_test();
1753 #define TEST_MAX_INT 6
1755 static void
1756 evtag_int_test(void *ptr)
1758 struct evbuffer *tmp = evbuffer_new();
1759 ev_uint32_t integers[TEST_MAX_INT] = {
1760 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
1762 ev_uint32_t integer;
1763 ev_uint64_t big_int;
1764 int i;
1766 evtag_init();
1768 for (i = 0; i < TEST_MAX_INT; i++) {
1769 int oldlen, newlen;
1770 oldlen = (int)EVBUFFER_LENGTH(tmp);
1771 evtag_encode_int(tmp, integers[i]);
1772 newlen = (int)EVBUFFER_LENGTH(tmp);
1773 TT_BLATHER(("encoded 0x%08x with %d bytes",
1774 (unsigned)integers[i], newlen - oldlen));
1775 big_int = integers[i];
1776 big_int *= 1000000000; /* 1 billion */
1777 evtag_encode_int64(tmp, big_int);
1780 for (i = 0; i < TEST_MAX_INT; i++) {
1781 tt_int_op(evtag_decode_int(&integer, tmp), !=, -1);
1782 tt_uint_op(integer, ==, integers[i]);
1783 tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1);
1784 tt_assert((big_int / 1000000000) == integers[i]);
1787 tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
1788 end:
1789 evbuffer_free(tmp);
1792 static void
1793 evtag_fuzz(void *ptr)
1795 u_char buffer[4096];
1796 struct evbuffer *tmp = evbuffer_new();
1797 struct timeval tv;
1798 int i, j;
1800 int not_failed = 0;
1802 evtag_init();
1804 for (j = 0; j < 100; j++) {
1805 for (i = 0; i < (int)sizeof(buffer); i++)
1806 buffer[i] = rand();
1807 evbuffer_drain(tmp, -1);
1808 evbuffer_add(tmp, buffer, sizeof(buffer));
1810 if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
1811 not_failed++;
1814 /* The majority of decodes should fail */
1815 tt_int_op(not_failed, <, 10);
1817 /* Now insert some corruption into the tag length field */
1818 evbuffer_drain(tmp, -1);
1819 evutil_timerclear(&tv);
1820 tv.tv_sec = 1;
1821 evtag_marshal_timeval(tmp, 0, &tv);
1822 evbuffer_add(tmp, buffer, sizeof(buffer));
1824 ((char *)EVBUFFER_DATA(tmp))[1] = '\xff';
1825 if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
1826 tt_abort_msg("evtag_unmarshal_timeval should have failed");
1829 end:
1830 evbuffer_free(tmp);
1833 static void
1834 evtag_tag_encoding(void *ptr)
1836 struct evbuffer *tmp = evbuffer_new();
1837 ev_uint32_t integers[TEST_MAX_INT] = {
1838 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
1840 ev_uint32_t integer;
1841 int i;
1843 evtag_init();
1845 for (i = 0; i < TEST_MAX_INT; i++) {
1846 int oldlen, newlen;
1847 oldlen = (int)EVBUFFER_LENGTH(tmp);
1848 evtag_encode_tag(tmp, integers[i]);
1849 newlen = (int)EVBUFFER_LENGTH(tmp);
1850 TT_BLATHER(("encoded 0x%08x with %d bytes",
1851 (unsigned)integers[i], newlen - oldlen));
1854 for (i = 0; i < TEST_MAX_INT; i++) {
1855 tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1);
1856 tt_uint_op(integer, ==, integers[i]);
1859 tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0);
1861 end:
1862 evbuffer_free(tmp);
1865 static void
1866 evtag_test_peek(void *ptr)
1868 struct evbuffer *tmp = evbuffer_new();
1869 ev_uint32_t u32;
1871 evtag_marshal_int(tmp, 30, 0);
1872 evtag_marshal_string(tmp, 40, "Hello world");
1874 tt_int_op(evtag_peek(tmp, &u32), ==, 1);
1875 tt_int_op(u32, ==, 30);
1876 tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
1877 tt_int_op(u32, ==, 1+1+1);
1878 tt_int_op(evtag_consume(tmp), ==, 0);
1880 tt_int_op(evtag_peek(tmp, &u32), ==, 1);
1881 tt_int_op(u32, ==, 40);
1882 tt_int_op(evtag_peek_length(tmp, &u32), ==, 0);
1883 tt_int_op(u32, ==, 1+1+11);
1884 tt_int_op(evtag_payload_length(tmp, &u32), ==, 0);
1885 tt_int_op(u32, ==, 11);
1887 end:
1888 evbuffer_free(tmp);
1892 static void
1893 test_methods(void *ptr)
1895 const char **methods = event_get_supported_methods();
1896 struct event_config *cfg = NULL;
1897 struct event_base *base = NULL;
1898 const char *backend;
1899 int n_methods = 0;
1901 tt_assert(methods);
1903 backend = methods[0];
1904 while (*methods != NULL) {
1905 TT_BLATHER(("Support method: %s", *methods));
1906 ++methods;
1907 ++n_methods;
1910 cfg = event_config_new();
1911 assert(cfg != NULL);
1913 tt_int_op(event_config_avoid_method(cfg, backend), ==, 0);
1914 event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
1916 base = event_base_new_with_config(cfg);
1917 if (n_methods > 1) {
1918 tt_assert(base);
1919 tt_str_op(backend, !=, event_base_get_method(base));
1920 } else {
1921 tt_assert(base == NULL);
1924 end:
1925 if (base)
1926 event_base_free(base);
1927 if (cfg)
1928 event_config_free(cfg);
1931 static void
1932 test_version(void *arg)
1934 const char *vstr;
1935 ev_uint32_t vint;
1936 int major, minor, patch, n;
1938 vstr = event_get_version();
1939 vint = event_get_version_number();
1941 tt_assert(vstr);
1942 tt_assert(vint);
1944 tt_str_op(vstr, ==, LIBEVENT_VERSION);
1945 tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER);
1947 n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch);
1948 tt_assert(3 == n);
1949 tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8)));
1950 end:
1954 static void
1955 test_base_features(void *arg)
1957 struct event_base *base = NULL;
1958 struct event_config *cfg = NULL;
1960 cfg = event_config_new();
1962 tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET));
1964 base = event_base_new_with_config(cfg);
1965 if (base) {
1966 tt_int_op(EV_FEATURE_ET, ==,
1967 event_base_get_features(base) & EV_FEATURE_ET);
1968 } else {
1969 base = event_base_new();
1970 tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET);
1973 end:
1974 if (base)
1975 event_base_free(base);
1976 if (cfg)
1977 event_config_free(cfg);
1980 #ifdef _EVENT_HAVE_SETENV
1981 #define SETENV_OK
1982 #elif !defined(_EVENT_HAVE_SETENV) && defined(_EVENT_HAVE_PUTENV)
1983 static void setenv(const char *k, const char *v, int _o)
1985 char b[256];
1986 evutil_snprintf(b, sizeof(b), "%s=%s",k,v);
1987 putenv(b);
1989 #define SETENV_OK
1990 #endif
1992 #ifdef _EVENT_HAVE_UNSETENV
1993 #define UNSETENV_OK
1994 #elif !defined(_EVENT_HAVE_UNSETENV) && defined(_EVENT_HAVE_PUTENV)
1995 static void unsetenv(const char *k)
1997 char b[256];
1998 evutil_snprintf(b, sizeof(b), "%s=",k);
1999 putenv(b);
2001 #define UNSETENV_OK
2002 #endif
2004 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2005 static void
2006 methodname_to_envvar(const char *mname, char *buf, size_t buflen)
2008 char *cp;
2009 evutil_snprintf(buf, buflen, "EVENT_NO%s", mname);
2010 for (cp = buf; *cp; ++cp) {
2011 *cp = EVUTIL_TOUPPER(*cp);
2014 #endif
2016 static void
2017 test_base_environ(void *arg)
2019 struct event_base *base = NULL;
2020 struct event_config *cfg = NULL;
2022 #if defined(SETENV_OK) && defined(UNSETENV_OK)
2023 const char **basenames;
2024 int i, n_methods=0;
2025 char varbuf[128];
2026 const char *defaultname, *ignoreenvname;
2028 /* See if unsetenv works before we rely on it. */
2029 setenv("EVENT_NOWAFFLES", "1", 1);
2030 unsetenv("EVENT_NOWAFFLES");
2031 if (getenv("EVENT_NOWAFFLES") != NULL) {
2032 #ifndef _EVENT_HAVE_UNSETENV
2033 TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test"));
2034 #else
2035 TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test"));
2036 #endif
2037 tt_skip();
2040 basenames = event_get_supported_methods();
2041 for (i = 0; basenames[i]; ++i) {
2042 methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf));
2043 unsetenv(varbuf);
2044 ++n_methods;
2047 base = event_base_new();
2048 tt_assert(base);
2050 defaultname = event_base_get_method(base);
2051 TT_BLATHER(("default is <%s>", defaultname));
2052 event_base_free(base);
2053 base = NULL;
2055 /* Can we disable the method with EVENT_NOfoo ? */
2056 if (!strcmp(defaultname, "epoll (with changelist)")) {
2057 setenv("EVENT_NOEPOLL", "1", 1);
2058 ignoreenvname = "epoll";
2059 } else {
2060 methodname_to_envvar(defaultname, varbuf, sizeof(varbuf));
2061 setenv(varbuf, "1", 1);
2062 ignoreenvname = defaultname;
2065 /* Use an empty cfg rather than NULL so a failure doesn't exit() */
2066 cfg = event_config_new();
2067 base = event_base_new_with_config(cfg);
2068 event_config_free(cfg);
2069 cfg = NULL;
2070 if (n_methods == 1) {
2071 tt_assert(!base);
2072 } else {
2073 tt_assert(base);
2074 tt_str_op(defaultname, !=, event_base_get_method(base));
2075 event_base_free(base);
2076 base = NULL;
2079 /* Can we disable looking at the environment with IGNORE_ENV ? */
2080 cfg = event_config_new();
2081 event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV);
2082 base = event_base_new_with_config(cfg);
2083 tt_assert(base);
2084 tt_str_op(ignoreenvname, ==, event_base_get_method(base));
2085 #else
2086 tt_skip();
2087 #endif
2089 end:
2090 if (base)
2091 event_base_free(base);
2092 if (cfg)
2093 event_config_free(cfg);
2096 static void
2097 read_called_once_cb(evutil_socket_t fd, short event, void *arg)
2099 tt_int_op(event, ==, EV_READ);
2100 called += 1;
2101 end:
2105 static void
2106 timeout_called_once_cb(evutil_socket_t fd, short event, void *arg)
2108 tt_int_op(event, ==, EV_TIMEOUT);
2109 called += 100;
2110 end:
2114 static void
2115 test_event_once(void *ptr)
2117 struct basic_test_data *data = ptr;
2118 struct timeval tv;
2119 int r;
2121 tv.tv_sec = 0;
2122 tv.tv_usec = 50*1000;
2123 called = 0;
2124 r = event_base_once(data->base, data->pair[0], EV_READ,
2125 read_called_once_cb, NULL, NULL);
2126 tt_int_op(r, ==, 0);
2127 r = event_base_once(data->base, -1, EV_TIMEOUT,
2128 timeout_called_once_cb, NULL, &tv);
2129 tt_int_op(r, ==, 0);
2130 r = event_base_once(data->base, -1, 0, NULL, NULL, NULL);
2131 tt_int_op(r, <, 0);
2133 if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) {
2134 tt_fail_perror("write");
2137 shutdown(data->pair[1], SHUT_WR);
2139 event_base_dispatch(data->base);
2141 tt_int_op(called, ==, 101);
2142 end:
2146 static void
2147 test_event_pending(void *ptr)
2149 struct basic_test_data *data = ptr;
2150 struct event *r=NULL, *w=NULL, *t=NULL;
2151 struct timeval tv, now, tv2, diff;
2153 tv.tv_sec = 0;
2154 tv.tv_usec = 500 * 1000;
2155 r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb,
2156 NULL);
2157 w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb,
2158 NULL);
2159 t = evtimer_new(data->base, timeout_cb, NULL);
2161 tt_assert(r);
2162 tt_assert(w);
2163 tt_assert(t);
2165 evutil_gettimeofday(&now, NULL);
2166 event_add(r, NULL);
2167 event_add(t, &tv);
2169 tt_assert( event_pending(r, EV_READ, NULL));
2170 tt_assert(!event_pending(w, EV_WRITE, NULL));
2171 tt_assert(!event_pending(r, EV_WRITE, NULL));
2172 tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL));
2173 tt_assert(!event_pending(r, EV_TIMEOUT, NULL));
2174 tt_assert( event_pending(t, EV_TIMEOUT, NULL));
2175 tt_assert( event_pending(t, EV_TIMEOUT, &tv2));
2177 tt_assert(evutil_timercmp(&tv2, &now, >));
2178 evutil_timeradd(&now, &tv, &tv);
2179 evutil_timersub(&tv2, &tv, &diff);
2180 tt_int_op(diff.tv_sec, ==, 0);
2181 tt_int_op(labs(diff.tv_usec), <, 1000);
2183 end:
2184 if (r) {
2185 event_del(r);
2186 event_free(r);
2188 if (w) {
2189 event_del(w);
2190 event_free(w);
2192 if (t) {
2193 event_del(t);
2194 event_free(t);
2198 #ifndef WIN32
2199 /* You can't do this test on windows, since dup2 doesn't work on sockets */
2201 static void
2202 dfd_cb(evutil_socket_t fd, short e, void *data)
2204 *(int*)data = (int)e;
2207 /* Regression test for our workaround for a fun epoll/linux related bug
2208 * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2)
2209 * will get you an EEXIST */
2210 static void
2211 test_dup_fd(void *arg)
2213 struct basic_test_data *data = arg;
2214 struct event_base *base = data->base;
2215 struct event *ev1=NULL, *ev2=NULL;
2216 int fd, dfd=-1;
2217 int ev1_got, ev2_got;
2219 tt_int_op(write(data->pair[0], "Hello world",
2220 strlen("Hello world")), >, 0);
2221 fd = data->pair[1];
2223 dfd = dup(fd);
2224 tt_int_op(dfd, >=, 0);
2226 ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got);
2227 ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got);
2228 ev1_got = ev2_got = 0;
2229 event_add(ev1, NULL);
2230 event_add(ev2, NULL);
2231 event_base_loop(base, EVLOOP_ONCE);
2232 tt_int_op(ev1_got, ==, EV_READ);
2233 tt_int_op(ev2_got, ==, EV_READ);
2235 /* Now close and delete dfd then dispatch. We need to do the
2236 * dispatch here so that when we add it later, we think there
2237 * was an intermediate delete. */
2238 close(dfd);
2239 event_del(ev2);
2240 ev1_got = ev2_got = 0;
2241 event_base_loop(base, EVLOOP_ONCE);
2242 tt_want_int_op(ev1_got, ==, EV_READ);
2243 tt_int_op(ev2_got, ==, 0);
2245 /* Re-duplicate the fd. We need to get the same duplicated
2246 * value that we closed to provoke the epoll quirk. Also, we
2247 * need to change the events to write, or else the old lingering
2248 * read event will make the test pass whether the change was
2249 * successful or not. */
2250 tt_int_op(dup2(fd, dfd), ==, dfd);
2251 event_free(ev2);
2252 ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got);
2253 event_add(ev2, NULL);
2254 ev1_got = ev2_got = 0;
2255 event_base_loop(base, EVLOOP_ONCE);
2256 tt_want_int_op(ev1_got, ==, EV_READ);
2257 tt_int_op(ev2_got, ==, EV_WRITE);
2259 end:
2260 if (ev1)
2261 event_free(ev1);
2262 if (ev2)
2263 event_free(ev2);
2264 if (dfd >= 0)
2265 close(dfd);
2267 #endif
2269 #ifdef _EVENT_DISABLE_MM_REPLACEMENT
2270 static void
2271 test_mm_functions(void *arg)
2273 _tinytest_set_test_skipped();
2275 #else
2276 static int
2277 check_dummy_mem_ok(void *_mem)
2279 char *mem = _mem;
2280 mem -= 16;
2281 return !memcmp(mem, "{[<guardedram>]}", 16);
2284 static void *
2285 dummy_malloc(size_t len)
2287 char *mem = malloc(len+16);
2288 memcpy(mem, "{[<guardedram>]}", 16);
2289 return mem+16;
2292 static void *
2293 dummy_realloc(void *_mem, size_t len)
2295 char *mem = _mem;
2296 if (!mem)
2297 return dummy_malloc(len);
2298 tt_want(check_dummy_mem_ok(_mem));
2299 mem -= 16;
2300 mem = realloc(mem, len+16);
2301 return mem+16;
2304 static void
2305 dummy_free(void *_mem)
2307 char *mem = _mem;
2308 tt_want(check_dummy_mem_ok(_mem));
2309 mem -= 16;
2310 free(mem);
2313 static void
2314 test_mm_functions(void *arg)
2316 struct event_base *b = NULL;
2317 struct event_config *cfg = NULL;
2318 event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free);
2319 cfg = event_config_new();
2320 event_config_avoid_method(cfg, "Nonesuch");
2321 b = event_base_new_with_config(cfg);
2322 tt_assert(b);
2323 tt_assert(check_dummy_mem_ok(b));
2324 end:
2325 if (cfg)
2326 event_config_free(cfg);
2327 if (b)
2328 event_base_free(b);
2330 #endif
2332 static void
2333 many_event_cb(evutil_socket_t fd, short event, void *arg)
2335 int *calledp = arg;
2336 *calledp += 1;
2339 static void
2340 test_many_events(void *arg)
2342 /* Try 70 events that should all be ready at once. This will
2343 * exercise the "resize" code on most of the backends, and will make
2344 * sure that we can get past the 64-handle limit of some windows
2345 * functions. */
2346 #define MANY 70
2348 struct basic_test_data *data = arg;
2349 struct event_base *base = data->base;
2350 int one_at_a_time = data->setup_data != NULL;
2351 evutil_socket_t sock[MANY];
2352 struct event *ev[MANY];
2353 int xcalled[MANY];
2354 int i;
2355 int loopflags = EVLOOP_NONBLOCK, evflags=0;
2356 const int is_evport = !strcmp(event_base_get_method(base),"evport");
2357 if (one_at_a_time) {
2358 loopflags |= EVLOOP_ONCE;
2359 evflags = EV_PERSIST;
2362 memset(sock, 0xff, sizeof(sock));
2363 memset(ev, 0, sizeof(ev));
2364 memset(xcalled, 0, sizeof(xcalled));
2365 if (is_evport && one_at_a_time) {
2366 TT_DECLARE("NOTE", ("evport can't pass this in 2.0; skipping\n"));
2367 tt_skip();
2370 for (i = 0; i < MANY; ++i) {
2371 /* We need an event that will hit the backend, and that will
2372 * be ready immediately. "Send a datagram" is an easy
2373 * instance of that. */
2374 sock[i] = socket(AF_INET, SOCK_DGRAM, 0);
2375 tt_assert(sock[i] >= 0);
2376 xcalled[i] = 0;
2377 ev[i] = event_new(base, sock[i], EV_WRITE|evflags,
2378 many_event_cb, &xcalled[i]);
2379 event_add(ev[i], NULL);
2380 if (one_at_a_time)
2381 event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE);
2384 event_base_loop(base, loopflags);
2386 for (i = 0; i < MANY; ++i) {
2387 if (one_at_a_time)
2388 tt_int_op(xcalled[i], ==, MANY - i + 1);
2389 else
2390 tt_int_op(xcalled[i], ==, 1);
2393 end:
2394 for (i = 0; i < MANY; ++i) {
2395 if (ev[i])
2396 event_free(ev[i]);
2397 if (sock[i] >= 0)
2398 evutil_closesocket(sock[i]);
2400 #undef MANY
2403 static void
2404 test_struct_event_size(void *arg)
2406 tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event));
2407 end:
2411 struct testcase_t main_testcases[] = {
2412 /* Some converted-over tests */
2413 { "methods", test_methods, TT_FORK, NULL, NULL },
2414 { "version", test_version, 0, NULL, NULL },
2415 BASIC(base_features, TT_FORK|TT_NO_LOGS),
2416 { "base_environ", test_base_environ, TT_FORK, NULL, NULL },
2418 BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR),
2419 BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR),
2421 BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE),
2423 BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
2424 BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS),
2426 LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE),
2427 { "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
2428 { "persistent_active_timeout", test_persistent_active_timeout,
2429 TT_FORK|TT_NEED_BASE, &basic_setup, NULL },
2430 LEGACY(priorities, TT_FORK|TT_NEED_BASE),
2431 BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE),
2432 { "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE,
2433 &basic_setup, NULL },
2435 /* These legacy tests may not all need all of these flags. */
2436 LEGACY(simpleread, TT_ISOLATED),
2437 LEGACY(simpleread_multiple, TT_ISOLATED),
2438 LEGACY(simplewrite, TT_ISOLATED),
2439 { "simpleclose", test_simpleclose, TT_FORK, &basic_setup,
2440 NULL },
2441 LEGACY(multiple, TT_ISOLATED),
2442 LEGACY(persistent, TT_ISOLATED),
2443 LEGACY(combined, TT_ISOLATED),
2444 LEGACY(simpletimeout, TT_ISOLATED),
2445 LEGACY(loopbreak, TT_ISOLATED),
2446 LEGACY(loopexit, TT_ISOLATED),
2447 LEGACY(loopexit_multiple, TT_ISOLATED),
2448 LEGACY(nonpersist_readd, TT_ISOLATED),
2449 LEGACY(multiple_events_for_same_fd, TT_ISOLATED),
2450 LEGACY(want_only_once, TT_ISOLATED),
2451 { "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL },
2452 { "event_pending", test_event_pending, TT_ISOLATED, &basic_setup,
2453 NULL },
2454 #ifndef WIN32
2455 { "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL },
2456 #endif
2457 { "mm_functions", test_mm_functions, TT_FORK, NULL, NULL },
2458 { "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL },
2459 { "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 },
2461 { "struct_event_size", test_struct_event_size, 0, NULL, NULL },
2463 #ifndef WIN32
2464 LEGACY(fork, TT_ISOLATED),
2465 #endif
2466 END_OF_TESTCASES
2469 struct testcase_t evtag_testcases[] = {
2470 { "int", evtag_int_test, TT_FORK, NULL, NULL },
2471 { "fuzz", evtag_fuzz, TT_FORK, NULL, NULL },
2472 { "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL },
2473 { "peek", evtag_test_peek, 0, NULL, NULL },
2475 END_OF_TESTCASES
2478 struct testcase_t signal_testcases[] = {
2479 #ifndef WIN32
2480 LEGACY(simplesignal, TT_ISOLATED),
2481 LEGACY(multiplesignal, TT_ISOLATED),
2482 LEGACY(immediatesignal, TT_ISOLATED),
2483 LEGACY(signal_dealloc, TT_ISOLATED),
2484 LEGACY(signal_pipeloss, TT_ISOLATED),
2485 LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS),
2486 LEGACY(signal_restore, TT_ISOLATED),
2487 LEGACY(signal_assert, TT_ISOLATED),
2488 LEGACY(signal_while_processing, TT_ISOLATED),
2489 #endif
2490 END_OF_TESTCASES