Drop main() prototype. Syncs with NetBSD-8
[minix.git] / minix / drivers / storage / floppy / floppy.c
blobfbdb2cc229590c7930ef38deabdb9cee5a43f3da
1 /* This file contains the device dependent part of the driver for the Floppy
2 * Disk Controller (FDC) using the NEC PD765 chip.
4 * The file contains two entry points:
6 * floppy_task: main entry when system is brought up
8 * Changes:
9 * Sep 11, 2005 code cleanup (Andy Tanenbaum)
10 * Dec 01, 2004 floppy driver moved to user-space (Jorrit N. Herder)
11 * Sep 15, 2004 sync alarms/ local timer management (Jorrit N. Herder)
12 * Aug 12, 2003 null seek no interrupt fix (Mike Haertel)
13 * May 14, 2000 d-d/i rewrite (Kees J. Bot)
14 * Apr 04, 1992 device dependent/independent split (Kees J. Bot)
15 * Mar 27, 1992 last details on density checking (Kees J. Bot)
16 * Feb 14, 1992 check drive density on opens only (Andy Tanenbaum)
17 * 1991 len[] / motors / reset / step rate / ... (Bruce Evans)
18 * May 13, 1991 renovated the errors loop (Don Chapman)
19 * 1989 I/O vector to keep up with 1-1 interleave (Bruce Evans)
20 * Jan 06, 1988 allow 1.44 MB diskettes (Al Crew)
21 * Nov 28, 1986 better resetting for 386 (Peter Kay)
22 * Oct 27, 1986 fdc_results fixed for 8 MHz (Jakob Schripsema)
25 #include "floppy.h"
26 #include <minix/timers.h>
27 #include <machine/diskparm.h>
28 #include <minix/sysutil.h>
29 #include <minix/syslib.h>
30 #include <minix/endpoint.h>
31 #include <stdio.h>
33 /* I/O Ports used by floppy disk task. */
34 #define DOR 0x3F2 /* motor drive control bits */
35 #define FDC_STATUS 0x3F4 /* floppy disk controller status register */
36 #define FDC_DATA 0x3F5 /* floppy disk controller data register */
37 #define FDC_RATE 0x3F7 /* transfer rate register */
38 #define DMA_ADDR 0x004 /* port for low 16 bits of DMA address */
39 #define DMA_TOP 0x081 /* port for top 8 bits of 24-bit DMA addr */
40 #define DMA_COUNT 0x005 /* port for DMA count (count = bytes - 1) */
41 #define DMA_FLIPFLOP 0x00C /* DMA byte pointer flip-flop */
42 #define DMA_MODE 0x00B /* DMA mode port */
43 #define DMA_INIT 0x00A /* DMA init port */
44 #define DMA_RESET_VAL 0x006
46 #define DMA_ADDR_MASK 0xFFFFFF /* mask to verify DMA address is 24-bit */
48 /* Status registers returned as result of operation. */
49 #define ST0 0x00 /* status register 0 */
50 #define ST1 0x01 /* status register 1 */
51 #define ST2 0x02 /* status register 2 */
52 #define ST3 0x00 /* status register 3 (return by DRIVE_SENSE) */
53 #define ST_CYL 0x03 /* slot where controller reports cylinder */
54 #define ST_HEAD 0x04 /* slot where controller reports head */
55 #define ST_SEC 0x05 /* slot where controller reports sector */
56 #define ST_PCN 0x01 /* slot where controller reports present cyl */
58 /* Fields within the I/O ports. */
59 /* Main status register. */
60 #define CTL_BUSY 0x10 /* bit is set when read or write in progress */
61 #define DIRECTION 0x40 /* bit is set when reading data reg is valid */
62 #define MASTER 0x80 /* bit is set when data reg can be accessed */
64 /* Digital output port (DOR). */
65 #define MOTOR_SHIFT 4 /* high 4 bits control the motors in DOR */
66 #define ENABLE_INT 0x0C /* used for setting DOR port */
68 /* ST0. */
69 #define ST0_BITS_TRANS 0xD8 /* check 4 bits of status */
70 #define TRANS_ST0 0x00 /* 4 bits of ST0 for READ/WRITE */
71 #define ST0_BITS_SEEK 0xF8 /* check top 5 bits of seek status */
72 #define SEEK_ST0 0x20 /* top 5 bits of ST0 for SEEK */
74 /* ST1. */
75 #define BAD_SECTOR 0x05 /* if these bits are set in ST1, recalibrate */
76 #define WRITE_PROTECT 0x02 /* bit is set if diskette is write protected */
78 /* ST2. */
79 #define BAD_CYL 0x1F /* if any of these bits are set, recalibrate */
81 /* ST3 (not used). */
82 #define ST3_FAULT 0x80 /* if this bit is set, drive is sick */
83 #define ST3_WR_PROTECT 0x40 /* set when diskette is write protected */
84 #define ST3_READY 0x20 /* set when drive is ready */
86 /* Floppy disk controller command bytes. */
87 #define FDC_SEEK 0x0F /* command the drive to seek */
88 #define FDC_READ 0xE6 /* command the drive to read */
89 #define FDC_WRITE 0xC5 /* command the drive to write */
90 #define FDC_SENSE 0x08 /* command the controller to tell its status */
91 #define FDC_RECALIBRATE 0x07 /* command the drive to go to cyl 0 */
92 #define FDC_SPECIFY 0x03 /* command the drive to accept params */
93 #define FDC_READ_ID 0x4A /* command the drive to read sector identity */
94 #define FDC_FORMAT 0x4D /* command the drive to format a track */
96 /* DMA channel commands. */
97 #define DMA_READ 0x46 /* DMA read opcode */
98 #define DMA_WRITE 0x4A /* DMA write opcode */
100 /* Parameters for the disk drive. */
101 #define HC_SIZE 2880 /* # sectors on largest legal disk (1.44MB) */
102 #define NR_HEADS 0x02 /* two heads (i.e., two tracks/cylinder) */
103 #define MAX_SECTORS 18 /* largest # sectors per track */
104 #define DTL 0xFF /* determines data length (sector size) */
105 #define SPEC2 0x02 /* second parameter to SPECIFY */
106 #define MOTOR_OFF (3*system_hz) /* how long to wait before stopping motor */
107 #define WAKEUP (2*system_hz) /* timeout on I/O, FDC won't quit. */
109 /* Error codes */
110 #define ERR_SEEK (-1) /* bad seek */
111 #define ERR_TRANSFER (-2) /* bad transfer */
112 #define ERR_STATUS (-3) /* something wrong when getting status */
113 #define ERR_READ_ID (-4) /* bad read id */
114 #define ERR_RECALIBRATE (-5) /* recalibrate didn't work properly */
115 #define ERR_DRIVE (-6) /* something wrong with a drive */
116 #define ERR_WR_PROTECT (-7) /* diskette is write protected */
117 #define ERR_TIMEOUT (-8) /* interrupt timeout */
119 /* No retries on some errors. */
120 #define err_no_retry(err) ((err) <= ERR_WR_PROTECT)
122 /* Encoding of drive type in minor device number. */
123 #define DEV_TYPE_BITS 0x7C /* drive type + 1, if nonzero */
124 #define DEV_TYPE_SHIFT 2 /* right shift to normalize type bits */
125 #define FORMAT_DEV_BIT 0x80 /* bit in minor to turn write into format */
127 /* Miscellaneous. */
128 #define MAX_ERRORS 6 /* how often to try rd/wt before quitting */
129 #define MAX_RESULTS 7 /* max number of bytes controller returns */
130 #define NR_DRIVES 2 /* maximum number of drives */
131 #define DIVISOR 128 /* used for sector size encoding */
132 #define SECTOR_SIZE_CODE 2 /* code to say "512" to the controller */
133 #define TIMEOUT_MICROS 5000000L /* microseconds waiting for FDC */
134 #define NT 7 /* number of diskette/drive combinations */
135 #define UNCALIBRATED 0 /* drive needs to be calibrated at next use */
136 #define CALIBRATED 1 /* no calibration needed */
137 #define BASE_SECTOR 1 /* sectors are numbered starting at 1 */
138 #define NO_SECTOR ((unsigned) -1) /* current sector unknown */
139 #define NO_CYL (-1) /* current cylinder unknown, must seek */
140 #define NO_DENS 100 /* current media unknown */
141 #define BSY_IDLE 0 /* busy doing nothing */
142 #define BSY_IO 1 /* busy doing I/O */
143 #define BSY_WAKEN 2 /* got a wakeup call */
145 /* Seven combinations of diskette/drive are supported.
147 * # Diskette Drive Sectors Tracks Rotation Data-rate Comment
148 * 0 360K 360K 9 40 300 RPM 250 kbps Standard PC DSDD
149 * 1 1.2M 1.2M 15 80 360 RPM 500 kbps AT disk in AT drive
150 * 2 360K 720K 9 40 300 RPM 250 kbps Quad density PC
151 * 3 720K 720K 9 80 300 RPM 250 kbps Toshiba, et al.
152 * 4 360K 1.2M 9 40 360 RPM 300 kbps PC disk in AT drive
153 * 5 720K 1.2M 9 80 360 RPM 300 kbps Toshiba in AT drive
154 * 6 1.44M 1.44M 18 80 300 RPM 500 kbps PS/2, et al.
156 * In addition, 720K diskettes can be read in 1.44MB drives, but that does
157 * not need a different set of parameters. This combination uses
159 * 3 720K 1.44M 9 80 300 RPM 250 kbps PS/2, et al.
161 static struct density {
162 u8_t secpt; /* sectors per track */
163 u8_t cyls; /* tracks per side */
164 u8_t steps; /* steps per cylinder (2 = double step) */
165 u8_t test; /* sector to try for density test */
166 u8_t rate; /* data rate (2=250, 1=300, 0=500 kbps) */
167 clock_t start_ms; /* motor start (milliseconds) */
168 u8_t gap; /* gap size */
169 u8_t spec1; /* first specify byte (SRT/HUT) */
170 } fdensity[NT] = {
171 { 9, 40, 1, 4*9, 2, 500, 0x2A, 0xDF }, /* 360K / 360K */
172 { 15, 80, 1, 14, 0, 500, 0x1B, 0xDF }, /* 1.2M / 1.2M */
173 { 9, 40, 2, 2*9, 2, 500, 0x2A, 0xDF }, /* 360K / 720K */
174 { 9, 80, 1, 4*9, 2, 750, 0x2A, 0xDF }, /* 720K / 720K */
175 { 9, 40, 2, 2*9, 1, 500, 0x23, 0xDF }, /* 360K / 1.2M */
176 { 9, 80, 1, 4*9, 1, 500, 0x23, 0xDF }, /* 720K / 1.2M */
177 { 18, 80, 1, 17, 0, 750, 0x1B, 0xCF }, /* 1.44M / 1.44M */
180 /* The following table is used with the test_sector array to recognize a
181 * drive/floppy combination. The sector to test has been determined by
182 * looking at the differences in gap size, sectors/track, and double stepping.
183 * This means that types 0 and 3 can't be told apart, only the motor start
184 * time differs. If a read test succeeds then the drive is limited to the
185 * set of densities it can support to avoid unnecessary tests in the future.
188 #define b(d) (1 << (d)) /* bit for density d. */
190 static struct test_order {
191 u8_t t_density; /* floppy/drive type */
192 u8_t t_class; /* limit drive to this class of densities */
193 } test_order[NT-1] = {
194 { 6, b(3) | b(6) }, /* 1.44M {720K, 1.44M} */
195 { 1, b(1) | b(4) | b(5) }, /* 1.2M {1.2M, 360K, 720K} */
196 { 3, b(2) | b(3) | b(6) }, /* 720K {360K, 720K, 1.44M} */
197 { 4, b(1) | b(4) | b(5) }, /* 360K {1.2M, 360K, 720K} */
198 { 5, b(1) | b(4) | b(5) }, /* 720K {1.2M, 360K, 720K} */
199 { 2, b(2) | b(3) }, /* 360K {360K, 720K} */
200 /* Note that type 0 is missing, type 3 can read/write it too, which is
201 * why the type 3 parameters have been pessimized to be like type 0.
205 /* Variables. */
206 static struct floppy { /* main drive struct, one entry per drive */
207 unsigned fl_curcyl; /* current cylinder */
208 unsigned fl_hardcyl; /* hardware cylinder, as opposed to: */
209 unsigned fl_cylinder; /* cylinder number addressed */
210 unsigned fl_sector; /* sector addressed */
211 unsigned fl_head; /* head number addressed */
212 char fl_calibration; /* CALIBRATED or UNCALIBRATED */
213 u8_t fl_density; /* NO_DENS = ?, 0 = 360K; 1 = 360K/1.2M; etc.*/
214 u8_t fl_class; /* bitmap for possible densities */
215 minix_timer_t fl_tmr_stop; /* timer to stop motor */
216 struct device fl_geom; /* Geometry of the drive */
217 struct device fl_part[NR_PARTITIONS]; /* partition's base & size */
218 } floppy[NR_DRIVES];
220 static int irq_hook_id; /* id of irq hook at the kernel */
221 int motor_status; /* bitmap of current motor status */
222 static int need_reset; /* set to 1 when controller must be reset */
223 unsigned f_drive; /* selected drive */
224 static unsigned f_device; /* selected minor device */
225 static struct floppy *f_fp; /* current drive */
226 static struct density *f_dp; /* current density parameters */
227 static struct density *prev_dp;/* previous density parameters */
228 static unsigned f_sectors; /* equal to f_dp->secpt (needed a lot) */
229 u16_t f_busy; /* BSY_IDLE, BSY_IO, BSY_WAKEN */
230 static struct device *f_dv; /* device's base and size */
231 static struct disk_parameter_s fmt_param; /* parameters for format */
232 static u8_t f_results[MAX_RESULTS];/* the controller can give lots of output */
234 /* The floppy uses various timers. These are managed by the floppy driver
235 * itself, because only a single synchronous alarm is available per process.
236 * Besides the 'f_tmr_timeout' timer below, the floppy structure for each
237 * floppy disk drive contains a 'fl_tmr_stop' timer.
239 static minix_timer_t f_tmr_timeout; /* timer for various timeouts */
240 static u32_t system_hz; /* system clock frequency */
241 static void f_expire_tmrs(clock_t stamp);
242 static void stop_motor(int arg);
243 static void f_timeout(int arg);
245 static struct device *f_prepare(devminor_t device);
246 static struct device *f_part(devminor_t minor);
247 static void f_cleanup(void);
248 static ssize_t f_transfer(devminor_t minor, int do_write, u64_t position,
249 endpoint_t proc_nr, iovec_t *iov, unsigned int nr_req, int flags);
250 static int dma_setup(int do_write);
251 static void start_motor(void);
252 static int seek(void);
253 static int fdc_transfer(int do_write);
254 static int fdc_results(void);
255 static int fdc_command(const u8_t *cmd, int len);
256 static void fdc_out(int val);
257 static int recalibrate(void);
258 static void f_reset(void);
259 static int f_intr_wait(void);
260 static int read_id(void);
261 static int f_do_open(devminor_t minor, int access);
262 static int f_do_close(devminor_t minor);
263 static int test_read(int density);
264 static void f_geometry(devminor_t minor, struct part_geom *entry);
266 /* Entry points to this driver. */
267 static struct blockdriver f_dtab = {
268 .bdr_type = BLOCKDRIVER_TYPE_DISK, /* handle partition requests */
269 .bdr_open = f_do_open, /* open request, sense type of diskette */
270 .bdr_close = f_do_close, /* nothing on a close */
271 .bdr_transfer = f_transfer, /* do the I/O */
272 .bdr_cleanup = f_cleanup, /* cleanup before sending reply to caller */
273 .bdr_part = f_part, /* return partition information structure */
274 .bdr_geometry = f_geometry, /* tell the geometry of the diskette */
275 .bdr_alarm = f_expire_tmrs /* expire all alarm timers */
278 static char *floppy_buf;
279 static phys_bytes floppy_buf_phys;
281 /* SEF functions and variables. */
282 static void sef_local_startup(void);
283 static int sef_cb_init_fresh(int type, sef_init_info_t *info);
284 static void sef_cb_signal_handler(int signo);
285 EXTERN int sef_cb_lu_prepare(int state);
286 EXTERN int sef_cb_lu_state_isvalid(int state, int flags);
287 EXTERN void sef_cb_lu_state_dump(int state);
288 int last_was_write;
290 /*===========================================================================*
291 * floppy_task *
292 *===========================================================================*/
293 int main(void)
295 /* SEF local startup. */
296 sef_local_startup();
298 /* Call the generic receive loop. */
299 blockdriver_task(&f_dtab);
301 return(OK);
304 /*===========================================================================*
305 * sef_local_startup *
306 *===========================================================================*/
307 static void sef_local_startup(void)
309 /* Register init callbacks. */
310 sef_setcb_init_fresh(sef_cb_init_fresh);
312 /* Register live update callbacks. */
313 sef_setcb_lu_prepare(sef_cb_lu_prepare);
314 sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid);
315 sef_setcb_lu_state_dump(sef_cb_lu_state_dump);
317 /* Register signal callbacks. */
318 sef_setcb_signal_handler(sef_cb_signal_handler);
320 /* Let SEF perform startup. */
321 sef_startup();
324 /*===========================================================================*
325 * sef_cb_init_fresh *
326 *===========================================================================*/
327 static int sef_cb_init_fresh(int type, sef_init_info_t *UNUSED(info))
329 /* Initialize the floppy driver. */
330 struct floppy *fp;
331 int s;
333 /* Initialize the floppy structure and the timers. */
334 system_hz = sys_hz();
336 if(!(floppy_buf = alloc_contig(2*DMA_BUF_SIZE,
337 AC_LOWER16M | AC_ALIGN4K, &floppy_buf_phys)))
338 panic("couldn't allocate dma buffer");
340 init_timer(&f_tmr_timeout);
342 for (fp = &floppy[0]; fp < &floppy[NR_DRIVES]; fp++) {
343 fp->fl_curcyl = NO_CYL;
344 fp->fl_density = NO_DENS;
345 fp->fl_class = ~0;
346 init_timer(&fp->fl_tmr_stop);
349 /* Set IRQ policy, only request notifications, do not automatically
350 * reenable interrupts. ID return on interrupt is the IRQ line number.
352 irq_hook_id = FLOPPY_IRQ;
353 if ((s=sys_irqsetpolicy(FLOPPY_IRQ, 0, &irq_hook_id )) != OK)
354 panic("Couldn't set IRQ policy: %d", s);
355 if ((s=sys_irqenable(&irq_hook_id)) != OK)
356 panic("Couldn't enable IRQs: %d", s);
358 /* Announce we are up! */
359 blockdriver_announce(type);
361 return(OK);
364 /*===========================================================================*
365 * sef_cb_signal_handler *
366 *===========================================================================*/
367 static void sef_cb_signal_handler(int signo)
369 int s;
371 /* Only check for termination signal, ignore anything else. */
372 if (signo != SIGTERM) return;
374 /* Stop all activity and cleanly exit with the system. */
375 if ((s=sys_outb(DOR, ENABLE_INT)) != OK)
376 panic("Sys_outb failed: %d", s);
377 exit(0);
380 /*===========================================================================*
381 * f_expire_tmrs *
382 *===========================================================================*/
383 static void f_expire_tmrs(clock_t stamp)
385 /* A synchronous alarm message was received. Call the watchdog function for
386 * each expired timer, if any.
389 expire_timers(stamp);
392 /*===========================================================================*
393 * f_prepare *
394 *===========================================================================*/
395 static struct device *f_prepare(devminor_t device)
397 /* Prepare for I/O on a device. */
399 f_device = device;
400 f_drive = device & ~(DEV_TYPE_BITS | FORMAT_DEV_BIT);
401 if (device < 0 || f_drive >= NR_DRIVES) return(NULL);
403 f_fp = &floppy[f_drive];
404 f_dv = &f_fp->fl_geom;
405 if (f_fp->fl_density < NT) {
406 f_dp = &fdensity[f_fp->fl_density];
407 f_sectors = f_dp->secpt;
408 f_fp->fl_geom.dv_size = (u64_t)(NR_HEADS * f_sectors * f_dp->cyls) *
409 SECTOR_SIZE;
412 /* A partition? */
413 if ((device &= DEV_TYPE_BITS) >= MINOR_fd0p0)
414 f_dv = &f_fp->fl_part[(device - MINOR_fd0p0) >> DEV_TYPE_SHIFT];
416 return f_dv;
419 /*===========================================================================*
420 * f_part *
421 *===========================================================================*/
422 static struct device *f_part(devminor_t minor)
424 /* Return a pointer to the partition information of the given minor device. */
426 return f_prepare(minor);
429 /*===========================================================================*
430 * f_cleanup *
431 *===========================================================================*/
432 static void f_cleanup(void)
434 /* Start a timer to turn the motor off in a few seconds. */
435 set_timer(&f_fp->fl_tmr_stop, MOTOR_OFF, stop_motor, f_drive);
437 /* Exiting the floppy driver, so forget where we are. */
438 f_fp->fl_sector = NO_SECTOR;
441 /*===========================================================================*
442 * f_transfer *
443 *===========================================================================*/
444 static ssize_t f_transfer(
445 devminor_t minor, /* minor device number */
446 int do_write, /* read or write? */
447 u64_t pos64, /* offset on device to read or write */
448 endpoint_t proc_nr, /* process doing the request */
449 iovec_t *iov, /* pointer to read or write request vector */
450 unsigned int nr_req, /* length of request vector */
451 int UNUSED(flags) /* transfer flags */
454 #define NO_OFFSET -1
455 struct floppy *fp;
456 iovec_t *iop, *iov_end = iov + nr_req;
457 int s, r, errors, nr;
458 unsigned block, nbytes, count, chunk, sector;
459 u64_t dv_size;
460 vir_bytes user_offset, iov_offset = 0, iop_offset;
461 unsigned long position;
462 signed long uoffsets[MAX_SECTORS], *up;
463 cp_grant_id_t ugrants[MAX_SECTORS], *ug = NULL;
464 u8_t cmd[3];
465 ssize_t total;
467 if (f_prepare(minor) == NULL) return(ENXIO);
469 fp = f_fp;
470 dv_size = f_dv->dv_size;
472 if (ex64hi(pos64) != 0)
473 return OK; /* Way beyond EOF */
474 position= pos64;
475 total = 0;
477 /* Record the direction of the last transfer performed. */
478 last_was_write = do_write;
480 /* Check disk address. */
481 if ((position & SECTOR_MASK) != 0) return(EINVAL);
483 #if 0 /* XXX hack to create a disk driver that crashes */
484 { static int count= 0; if (++count > 10) {
485 printf("floppy: time to die\n"); *(int *)-1= 42;
487 #endif
489 errors = 0;
490 while (nr_req > 0) {
491 /* How many bytes to transfer? */
492 nbytes = 0;
493 for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
495 /* Which block on disk and how close to EOF? */
496 if (position >= dv_size) return(total); /* At EOF */
497 if (position + nbytes > dv_size) nbytes = dv_size - position;
498 block = (unsigned long)((f_dv->dv_base + position) / SECTOR_SIZE);
500 if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
502 /* Using a formatting device? */
503 if (f_device & FORMAT_DEV_BIT) {
504 if (!do_write) return(EIO);
505 if (iov->iov_size < SECTOR_SIZE + sizeof(fmt_param))
506 return(EINVAL);
508 if(proc_nr != SELF) {
509 s=sys_safecopyfrom(proc_nr, iov->iov_addr,
510 SECTOR_SIZE + iov_offset, (vir_bytes) &fmt_param,
511 (phys_bytes) sizeof(fmt_param));
512 if(s != OK)
513 panic("sys_safecopyfrom failed: %d", s);
514 } else {
515 memcpy(&fmt_param, (void *) (iov->iov_addr +
516 SECTOR_SIZE + iov_offset),
517 (phys_bytes) sizeof(fmt_param));
520 /* Check that the number of sectors in the data is reasonable,
521 * to avoid division by 0. Leave checking of other data to
522 * the FDC.
524 if (fmt_param.sectors_per_cylinder == 0) return(EIO);
526 /* Only the first sector of the parameters now needed. */
527 iov->iov_size = nbytes = SECTOR_SIZE;
530 /* Only try one sector if there were errors. */
531 if (errors > 0) nbytes = SECTOR_SIZE;
533 /* Compute cylinder and head of the track to access. */
534 fp->fl_cylinder = block / (NR_HEADS * f_sectors);
535 fp->fl_hardcyl = fp->fl_cylinder * f_dp->steps;
536 fp->fl_head = (block % (NR_HEADS * f_sectors)) / f_sectors;
538 /* For each sector on this track compute the user address it is to
539 * go or to come from.
541 for (up = uoffsets; up < uoffsets + MAX_SECTORS; up++) *up = NO_OFFSET;
542 count = 0;
543 iop = iov;
544 sector = block % f_sectors;
545 nr = 0;
546 iop_offset = iov_offset;
547 for (;;) {
548 nr++;
549 user_offset = iop_offset;
550 chunk = iop->iov_size;
551 if ((chunk & SECTOR_MASK) != 0) return(EINVAL);
553 while (chunk > 0) {
554 ugrants[sector] = iop->iov_addr;
555 uoffsets[sector++] = user_offset;
556 chunk -= SECTOR_SIZE;
557 user_offset += SECTOR_SIZE;
558 count += SECTOR_SIZE;
559 if (sector == f_sectors || count == nbytes)
560 goto track_set_up;
562 iop_offset = 0;
563 iop++;
565 track_set_up:
567 /* First check to see if a reset is needed. */
568 if (need_reset) f_reset();
570 /* See if motor is running; if not, turn it on and wait. */
571 start_motor();
573 /* Set the stepping rate and data rate */
574 if (f_dp != prev_dp) {
575 cmd[0] = FDC_SPECIFY;
576 cmd[1] = f_dp->spec1;
577 cmd[2] = SPEC2;
578 (void) fdc_command(cmd, 3);
579 if ((s=sys_outb(FDC_RATE, f_dp->rate)) != OK)
580 panic("Sys_outb failed: %d", s);
581 prev_dp = f_dp;
584 /* If we are going to a new cylinder, perform a seek. */
585 r = seek();
587 /* Avoid read_id() if we don't plan to read much. */
588 if (fp->fl_sector == NO_SECTOR && count < (6 * SECTOR_SIZE))
589 fp->fl_sector = 0;
591 for (nbytes = 0; nbytes < count; nbytes += SECTOR_SIZE) {
592 if (fp->fl_sector == NO_SECTOR) {
593 /* Find out what the current sector is. This often
594 * fails right after a seek, so try it twice.
596 if (r == OK && read_id() != OK) r = read_id();
599 /* Look for the next job in uoffsets[] */
600 if (r == OK) {
601 for (;;) {
602 if (fp->fl_sector >= f_sectors)
603 fp->fl_sector = 0;
605 up = &uoffsets[fp->fl_sector];
606 ug = &ugrants[fp->fl_sector];
607 if (*up != NO_OFFSET) break;
608 fp->fl_sector++;
611 if (do_write) {
612 /* Copy the user bytes to the DMA buffer. */
613 if(proc_nr != SELF) {
614 s=sys_safecopyfrom(proc_nr, *ug, *up,
615 (vir_bytes) floppy_buf,
616 (phys_bytes) SECTOR_SIZE);
617 if(s != OK)
618 panic("sys_safecopyfrom failed: %d", s);
619 } else {
620 memcpy(floppy_buf, (void *) (*ug + *up), SECTOR_SIZE);
625 /* Set up the DMA chip and perform the transfer. */
626 if (r == OK) {
627 if (dma_setup(do_write) != OK) {
628 /* This can only fail for addresses above 16MB
629 * that cannot be handled by the controller,
630 * because it uses 24-bit addressing.
632 return(EIO);
634 r = fdc_transfer(do_write);
637 if (r == OK && !do_write) {
638 /* Copy the DMA buffer to user space. */
639 if(proc_nr != SELF) {
640 s=sys_safecopyto(proc_nr, *ug, *up,
641 (vir_bytes) floppy_buf,
642 (phys_bytes) SECTOR_SIZE);
643 if(s != OK)
644 panic("sys_safecopyto failed: %d", s);
645 } else {
646 memcpy((void *) (*ug + *up), floppy_buf, SECTOR_SIZE);
650 if (r != OK) {
651 /* Don't retry if write protected or too many errors. */
652 if (err_no_retry(r) || ++errors == MAX_ERRORS) {
653 return(EIO);
656 /* Recalibrate if halfway. */
657 if (errors == MAX_ERRORS / 2)
658 fp->fl_calibration = UNCALIBRATED;
660 nbytes = 0;
661 break; /* retry */
665 /* Book the bytes successfully transferred. */
666 position += nbytes;
667 total += nbytes;
668 while (nbytes > 0) {
669 if (nbytes < iov->iov_size) {
670 /* Not done with this one yet. */
671 iov_offset += nbytes;
672 iov->iov_size -= nbytes;
673 break;
675 iov_offset = 0;
676 nbytes -= iov->iov_size;
677 iov->iov_size = 0;
678 iov++;
679 nr_req--;
682 return(total);
685 /*===========================================================================*
686 * dma_setup *
687 *===========================================================================*/
688 static int dma_setup(int do_write)
690 /* The IBM PC can perform DMA operations by using the DMA chip. To use it,
691 * the DMA (Direct Memory Access) chip is loaded with the 20-bit memory address
692 * to be read from or written to, the byte count minus 1, and a read or write
693 * opcode. This routine sets up the DMA chip. Note that the chip is not
694 * capable of doing a DMA across a 64K boundary (e.g., you can't read a
695 * 512-byte block starting at physical address 65520).
697 * Warning! Also note that it's not possible to do DMA above 16 MB because
698 * the ISA bus uses 24-bit addresses. Addresses above 16 MB therefore will
699 * be interpreted modulo 16 MB, dangerously overwriting arbitrary memory.
700 * A check here denies the I/O if the address is out of range.
702 pvb_pair_t byte_out[9];
703 int s;
705 /* First check the DMA memory address not to exceed maximum. */
706 if (floppy_buf_phys != (floppy_buf_phys & DMA_ADDR_MASK)) {
707 printf("floppy: DMA denied because address out of range\n");
708 return(EIO);
711 /* Set up the DMA registers. (The comment on the reset is a bit strong,
712 * it probably only resets the floppy channel.)
714 pv_set(byte_out[0], DMA_INIT, DMA_RESET_VAL); /* reset the dma controller */
715 pv_set(byte_out[1], DMA_FLIPFLOP, 0); /* write anything to reset it */
716 pv_set(byte_out[2], DMA_MODE, do_write ? DMA_WRITE : DMA_READ);
717 pv_set(byte_out[3], DMA_ADDR, (unsigned) (floppy_buf_phys >> 0) & 0xff);
718 pv_set(byte_out[4], DMA_ADDR, (unsigned) (floppy_buf_phys >> 8) & 0xff);
719 pv_set(byte_out[5], DMA_TOP, (unsigned) (floppy_buf_phys >> 16) & 0xff);
720 pv_set(byte_out[6], DMA_COUNT, (((SECTOR_SIZE - 1) >> 0)) & 0xff);
721 pv_set(byte_out[7], DMA_COUNT, (SECTOR_SIZE - 1) >> 8);
722 pv_set(byte_out[8], DMA_INIT, 2); /* some sort of enable */
724 if ((s=sys_voutb(byte_out, 9)) != OK)
725 panic("Sys_voutb in dma_setup() failed: %d", s);
726 return(OK);
729 /*===========================================================================*
730 * start_motor *
731 *===========================================================================*/
732 static void start_motor(void)
734 /* Control of the floppy disk motors is a big pain. If a motor is off, you
735 * have to turn it on first, which takes 1/2 second. You can't leave it on
736 * all the time, since that would wear out the diskette. However, if you turn
737 * the motor off after each operation, the system performance will be awful.
738 * The compromise used here is to leave it on for a few seconds after each
739 * operation. If a new operation is started in that interval, it need not be
740 * turned on again. If no new operation is started, a timer goes off and the
741 * motor is turned off. I/O port DOR has bits to control each of 4 drives.
744 int s, motor_bit, running;
745 message mess;
746 int ipc_status;
748 motor_bit = 1 << f_drive; /* bit mask for this drive */
749 running = motor_status & motor_bit; /* nonzero if this motor is running */
750 motor_status |= motor_bit; /* want this drive running too */
752 if ((s=sys_outb(DOR,
753 (motor_status << MOTOR_SHIFT) | ENABLE_INT | f_drive)) != OK)
754 panic("Sys_outb in start_motor() failed: %d", s);
756 /* If the motor was already running, we don't have to wait for it. */
757 if (running) return; /* motor was already running */
759 /* Set an alarm timer to force a timeout if the hardware does not interrupt
760 * in time. Expect an interrupt, but check for a timeout.
762 set_timer(&f_tmr_timeout, f_dp->start_ms * system_hz / 1000, f_timeout, 0);
763 f_busy = BSY_IO;
764 do {
765 if ((s = driver_receive(ANY, &mess, &ipc_status)) != OK)
766 panic("Couldn't receive message: %d", s);
768 if (is_ipc_notify(ipc_status)) {
769 switch (_ENDPOINT_P(mess.m_source)) {
770 case CLOCK:
771 f_expire_tmrs(mess.m_notify.timestamp);
772 break;
773 default :
774 f_busy = BSY_IDLE;
775 break;
777 } else {
778 f_busy = BSY_IDLE;
780 } while (f_busy == BSY_IO);
781 f_fp->fl_sector = NO_SECTOR;
784 /*===========================================================================*
785 * stop_motor *
786 *===========================================================================*/
787 static void stop_motor(int arg)
789 /* This routine is called from an alarm timer after several seconds have
790 * elapsed with no floppy disk activity. It turns the drive motor off.
792 int s;
793 motor_status &= ~(1 << arg);
794 if ((s=sys_outb(DOR, (motor_status << MOTOR_SHIFT) | ENABLE_INT)) != OK)
795 panic("Sys_outb in stop_motor() failed: %d", s);
798 /*===========================================================================*
799 * seek *
800 *===========================================================================*/
801 static int seek(void)
803 /* Issue a SEEK command on the indicated drive unless the arm is already
804 * positioned on the correct cylinder.
807 struct floppy *fp = f_fp;
808 int r;
809 message mess;
810 int ipc_status;
811 u8_t cmd[3];
813 /* Are we already on the correct cylinder? */
814 if (fp->fl_calibration == UNCALIBRATED)
815 if (recalibrate() != OK) return(ERR_SEEK);
816 if (fp->fl_curcyl == fp->fl_hardcyl) return(OK);
818 /* No. Wrong cylinder. Issue a SEEK and wait for interrupt. */
819 cmd[0] = FDC_SEEK;
820 cmd[1] = (fp->fl_head << 2) | f_drive;
821 cmd[2] = fp->fl_hardcyl;
822 if (fdc_command(cmd, 3) != OK) return(ERR_SEEK);
823 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
825 /* Interrupt has been received. Check drive status. */
826 fdc_out(FDC_SENSE); /* probe FDC to make it return status */
827 r = fdc_results(); /* get controller status bytes */
828 if (r != OK || (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0
829 || f_results[ST1] != fp->fl_hardcyl) {
830 /* seek failed, may need a recalibrate */
831 return(ERR_SEEK);
833 /* Give head time to settle on a format, no retrying here! */
834 if (f_device & FORMAT_DEV_BIT) {
835 /* Set a synchronous alarm to force a timeout if the hardware does
836 * not interrupt.
838 set_timer(&f_tmr_timeout, system_hz/30, f_timeout, 0);
839 f_busy = BSY_IO;
840 do {
841 if ((r = driver_receive(ANY, &mess, &ipc_status)) != OK)
842 panic("Couldn't receive message: %d", r);
844 if (is_ipc_notify(ipc_status)) {
845 switch (_ENDPOINT_P(mess.m_source)) {
846 case CLOCK:
847 f_expire_tmrs(mess.m_notify.timestamp);
848 break;
849 default :
850 f_busy = BSY_IDLE;
851 break;
853 } else {
854 f_busy = BSY_IDLE;
856 } while (f_busy == BSY_IO);
858 fp->fl_curcyl = fp->fl_hardcyl;
859 fp->fl_sector = NO_SECTOR;
860 return(OK);
863 /*===========================================================================*
864 * fdc_transfer *
865 *===========================================================================*/
866 static int fdc_transfer(int do_write)
868 /* The drive is now on the proper cylinder. Read, write or format 1 block. */
870 struct floppy *fp = f_fp;
871 int r, s;
872 u8_t cmd[9];
874 /* Never attempt a transfer if the drive is uncalibrated or motor is off. */
875 if (fp->fl_calibration == UNCALIBRATED) return(ERR_TRANSFER);
876 if ((motor_status & (1 << f_drive)) == 0) return(ERR_TRANSFER);
878 /* The command is issued by outputting several bytes to the controller chip.
880 if (f_device & FORMAT_DEV_BIT) {
881 cmd[0] = FDC_FORMAT;
882 cmd[1] = (fp->fl_head << 2) | f_drive;
883 cmd[2] = fmt_param.sector_size_code;
884 cmd[3] = fmt_param.sectors_per_cylinder;
885 cmd[4] = fmt_param.gap_length_for_format;
886 cmd[5] = fmt_param.fill_byte_for_format;
887 if (fdc_command(cmd, 6) != OK) return(ERR_TRANSFER);
888 } else {
889 cmd[0] = do_write ? FDC_WRITE : FDC_READ;
890 cmd[1] = (fp->fl_head << 2) | f_drive;
891 cmd[2] = fp->fl_cylinder;
892 cmd[3] = fp->fl_head;
893 cmd[4] = BASE_SECTOR + fp->fl_sector;
894 cmd[5] = SECTOR_SIZE_CODE;
895 cmd[6] = f_sectors;
896 cmd[7] = f_dp->gap; /* sector gap */
897 cmd[8] = DTL; /* data length */
898 if (fdc_command(cmd, 9) != OK) return(ERR_TRANSFER);
901 /* Block, waiting for disk interrupt. */
902 if (f_intr_wait() != OK) {
903 printf("fd%u: disk interrupt timed out.\n", f_drive);
904 return(ERR_TIMEOUT);
907 /* Get controller status and check for errors. */
908 r = fdc_results();
909 if (r != OK) return(r);
911 if (f_results[ST1] & WRITE_PROTECT) {
912 printf("fd%u: diskette is write protected.\n", f_drive);
913 return(ERR_WR_PROTECT);
916 if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_TRANSFER);
917 if (f_results[ST1] | f_results[ST2]) return(ERR_TRANSFER);
919 if (f_device & FORMAT_DEV_BIT) return(OK);
921 /* Compare actual numbers of sectors transferred with expected number. */
922 s = (f_results[ST_CYL] - fp->fl_cylinder) * NR_HEADS * f_sectors;
923 s += (f_results[ST_HEAD] - fp->fl_head) * f_sectors;
924 s += (f_results[ST_SEC] - BASE_SECTOR - fp->fl_sector);
925 if (s != 1) return(ERR_TRANSFER);
927 /* This sector is next for I/O: */
928 fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR;
929 #if 0
930 if (processor < 386) fp->fl_sector++; /* Old CPU can't keep up. */
931 #endif
932 return(OK);
935 /*===========================================================================*
936 * fdc_results *
937 *===========================================================================*/
938 static int fdc_results(void)
940 /* Extract results from the controller after an operation, then allow floppy
941 * interrupts again.
944 int s, result_nr;
945 u32_t status;
946 spin_t spin;
948 /* Extract bytes from FDC until it says it has no more. The loop is
949 * really an outer loop on result_nr and an inner loop on status.
950 * A timeout flag alarm is set.
952 result_nr = 0;
953 SPIN_FOR(&spin, TIMEOUT_MICROS) {
954 /* Reading one byte is almost a mirror of fdc_out() - the DIRECTION
955 * bit must be set instead of clear, but the CTL_BUSY bit destroys
956 * the perfection of the mirror.
958 if ((s=sys_inb(FDC_STATUS, &status)) != OK)
959 panic("Sys_inb in fdc_results() failed: %d", s);
960 status &= (MASTER | DIRECTION | CTL_BUSY);
961 if (status == (MASTER | DIRECTION | CTL_BUSY)) {
962 u32_t tmp_r;
963 if (result_nr >= MAX_RESULTS) break; /* too many results */
964 if ((s=sys_inb(FDC_DATA, &tmp_r)) != OK)
965 panic("Sys_inb in fdc_results() failed: %d", s);
966 f_results[result_nr] = tmp_r;
967 result_nr ++;
968 continue;
970 if (status == MASTER) { /* all read */
971 if ((s=sys_irqenable(&irq_hook_id)) != OK)
972 panic("Couldn't enable IRQs: %d", s);
974 return(OK); /* only good exit */
977 need_reset = TRUE; /* controller chip must be reset */
979 if ((s=sys_irqenable(&irq_hook_id)) != OK)
980 panic("Couldn't enable IRQs: %d", s);
981 return(ERR_STATUS);
984 /*===========================================================================*
985 * fdc_command *
986 *===========================================================================*/
987 static int fdc_command(
988 const u8_t *cmd, /* command bytes */
989 int len /* command length */
992 /* Output a command to the controller. */
994 /* Set a synchronous alarm to force a timeout if the hardware does
995 * not interrupt.
996 * Note that the actual check is done by the code that issued the
997 * fdc_command() call.
999 set_timer(&f_tmr_timeout, WAKEUP, f_timeout, 0);
1001 f_busy = BSY_IO;
1002 while (len > 0) {
1003 fdc_out(*cmd++);
1004 len--;
1006 return(need_reset ? ERR_DRIVE : OK);
1009 /*===========================================================================*
1010 * fdc_out *
1011 *===========================================================================*/
1012 static void fdc_out(
1013 int val /* write this byte to floppy disk controller */
1016 /* Output a byte to the controller. This is not entirely trivial, since you
1017 * can only write to it when it is listening, and it decides when to listen.
1018 * If the controller refuses to listen, the FDC chip is given a hard reset.
1020 spin_t spin;
1021 int s;
1022 u32_t status;
1024 if (need_reset) return; /* if controller is not listening, return */
1026 /* It may take several tries to get the FDC to accept a command. */
1027 SPIN_FOR(&spin, TIMEOUT_MICROS) {
1028 if ((s=sys_inb(FDC_STATUS, &status)) != OK)
1029 panic("Sys_inb in fdc_out() failed: %d", s);
1031 if ((status & (MASTER | DIRECTION)) == (MASTER | 0)) {
1032 if ((s=sys_outb(FDC_DATA, val)) != OK)
1033 panic("Sys_outb in fdc_out() failed: %d", s);
1035 return;
1039 need_reset = TRUE; /* hit it over the head */
1042 /*===========================================================================*
1043 * recalibrate *
1044 *===========================================================================*/
1045 static int recalibrate(void)
1047 /* The floppy disk controller has no way of determining its absolute arm
1048 * position (cylinder). Instead, it steps the arm a cylinder at a time and
1049 * keeps track of where it thinks it is (in software). However, after a
1050 * SEEK, the hardware reads information from the diskette telling where the
1051 * arm actually is. If the arm is in the wrong place, a recalibration is done,
1052 * which forces the arm to cylinder 0. This way the controller can get back
1053 * into sync with reality.
1056 struct floppy *fp = f_fp;
1057 int r;
1058 u8_t cmd[2];
1060 /* Issue the RECALIBRATE command and wait for the interrupt. */
1061 cmd[0] = FDC_RECALIBRATE; /* tell drive to recalibrate itself */
1062 cmd[1] = f_drive; /* specify drive */
1063 if (fdc_command(cmd, 2) != OK) return(ERR_SEEK);
1064 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1066 /* Determine if the recalibration succeeded. */
1067 fdc_out(FDC_SENSE); /* issue SENSE command to request results */
1068 r = fdc_results(); /* get results of the FDC_RECALIBRATE command*/
1069 fp->fl_curcyl = NO_CYL; /* force a SEEK next time */
1070 fp->fl_sector = NO_SECTOR;
1071 if (r != OK || /* controller would not respond */
1072 (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0 || f_results[ST_PCN] != 0) {
1073 /* Recalibration failed. FDC must be reset. */
1074 need_reset = TRUE;
1075 return(ERR_RECALIBRATE);
1076 } else {
1077 /* Recalibration succeeded. */
1078 fp->fl_calibration = CALIBRATED;
1079 fp->fl_curcyl = f_results[ST_PCN];
1080 return(OK);
1084 /*===========================================================================*
1085 * f_reset *
1086 *===========================================================================*/
1087 static void f_reset(void)
1089 /* Issue a reset to the controller. This is done after any catastrophe,
1090 * like the controller refusing to respond.
1092 pvb_pair_t byte_out[2];
1093 int s,i;
1094 message mess;
1095 int ipc_status;
1097 /* Disable interrupts and strobe reset bit low. */
1098 need_reset = FALSE;
1100 /* It is not clear why the next lock is needed. Writing 0 to DOR causes
1101 * interrupt, while the PC documentation says turning bit 8 off disables
1102 * interrupts. Without the lock:
1103 * 1) the interrupt handler sets the floppy mask bit in the 8259.
1104 * 2) writing ENABLE_INT to DOR causes the FDC to assert the interrupt
1105 * line again, but the mask stops the cpu being interrupted.
1106 * 3) the sense interrupt clears the interrupt (not clear which one).
1107 * and for some reason the reset does not work.
1109 (void) fdc_command((u8_t *) 0, 0); /* need only the timer */
1110 motor_status = 0;
1111 pv_set(byte_out[0], DOR, 0); /* strobe reset bit low */
1112 pv_set(byte_out[1], DOR, ENABLE_INT); /* strobe it high again */
1113 if ((s=sys_voutb(byte_out, 2)) != OK)
1114 panic("Sys_voutb in f_reset() failed: %d", s);
1116 /* A synchronous alarm timer was set in fdc_command. Expect an interrupt,
1117 * but be prepared to handle a timeout.
1119 do {
1120 if ((s = driver_receive(ANY, &mess, &ipc_status)) != OK)
1121 panic("Couldn't receive message: %d", s);
1122 if (is_ipc_notify(ipc_status)) {
1123 switch (_ENDPOINT_P(mess.m_source)) {
1124 case CLOCK:
1125 f_expire_tmrs(mess.m_notify.timestamp);
1126 break;
1127 default :
1128 f_busy = BSY_IDLE;
1129 break;
1131 } else { /* expect hw interrupt */
1132 f_busy = BSY_IDLE;
1134 } while (f_busy == BSY_IO);
1136 /* The controller supports 4 drives and returns a result for each of them.
1137 * Collect all the results now. The old version only collected the first
1138 * result. This happens to work for 2 drives, but it doesn't work for 3
1139 * or more drives, at least with only drives 0 and 2 actually connected
1140 * (the controller generates an extra interrupt for the middle drive when
1141 * drive 2 is accessed and the driver panics).
1143 * It would be better to keep collecting results until there are no more.
1144 * For this, fdc_results needs to return the number of results (instead
1145 * of OK) when it succeeds.
1147 for (i = 0; i < 4; i++) {
1148 fdc_out(FDC_SENSE); /* probe FDC to make it return status */
1149 (void) fdc_results(); /* flush controller */
1151 for (i = 0; i < NR_DRIVES; i++) /* clear each drive */
1152 floppy[i].fl_calibration = UNCALIBRATED;
1154 /* The current timing parameters must be specified again. */
1155 prev_dp = NULL;
1158 /*===========================================================================*
1159 * f_intr_wait *
1160 *===========================================================================*/
1161 static int f_intr_wait(void)
1163 /* Wait for an interrupt, but not forever. The FDC may have all the time of
1164 * the world, but we humans do not.
1166 message mess;
1167 int r, ipc_status;
1169 /* We expect an interrupt, but if a timeout, occurs, report an error. */
1170 do {
1171 if ((r = driver_receive(ANY, &mess, &ipc_status)) != OK)
1172 panic("Couldn't receive message: %d", r);
1173 if (is_ipc_notify(ipc_status)) {
1174 switch (_ENDPOINT_P(mess.m_source)) {
1175 case CLOCK:
1176 f_expire_tmrs(mess.m_notify.timestamp);
1177 break;
1178 default :
1179 f_busy = BSY_IDLE;
1180 break;
1182 } else {
1183 f_busy = BSY_IDLE;
1185 } while (f_busy == BSY_IO);
1187 if (f_busy == BSY_WAKEN) {
1189 /* No interrupt from the FDC, this means that there is probably no
1190 * floppy in the drive. Get the FDC down to earth and return error.
1192 need_reset = TRUE;
1193 return(ERR_TIMEOUT);
1195 return(OK);
1198 /*===========================================================================*
1199 * f_timeout *
1200 *===========================================================================*/
1201 static void f_timeout(int arg __unused)
1203 /* This routine is called when a timer expires. Usually to tell that a
1204 * motor has spun up, but also to forge an interrupt when it takes too long
1205 * for the FDC to interrupt (no floppy in the drive). It sets a flag to tell
1206 * what has happened.
1208 if (f_busy == BSY_IO) {
1209 f_busy = BSY_WAKEN;
1213 /*===========================================================================*
1214 * read_id *
1215 *===========================================================================*/
1216 static int read_id(void)
1218 /* Determine current cylinder and sector. */
1220 struct floppy *fp = f_fp;
1221 int result;
1222 u8_t cmd[2];
1224 /* Never attempt a read id if the drive is uncalibrated or motor is off. */
1225 if (fp->fl_calibration == UNCALIBRATED) return(ERR_READ_ID);
1226 if ((motor_status & (1 << f_drive)) == 0) return(ERR_READ_ID);
1228 /* The command is issued by outputting 2 bytes to the controller chip. */
1229 cmd[0] = FDC_READ_ID; /* issue the read id command */
1230 cmd[1] = (fp->fl_head << 2) | f_drive;
1231 if (fdc_command(cmd, 2) != OK) return(ERR_READ_ID);
1232 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1234 /* Get controller status and check for errors. */
1235 result = fdc_results();
1236 if (result != OK) return(result);
1238 if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_READ_ID);
1239 if (f_results[ST1] | f_results[ST2]) return(ERR_READ_ID);
1241 /* The next sector is next for I/O: */
1242 fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR + 1;
1243 return(OK);
1246 /*===========================================================================*
1247 * f_do_open *
1248 *===========================================================================*/
1249 static int f_do_open(devminor_t minor, int UNUSED(access))
1251 /* Handle an open on a floppy. Determine diskette type if need be. */
1253 int dtype;
1254 struct test_order *top;
1256 /* Decode the message parameters. */
1257 if (f_prepare(minor) == NULL) return(ENXIO);
1259 dtype = f_device & DEV_TYPE_BITS; /* get density from minor dev */
1260 if (dtype >= MINOR_fd0p0) dtype = 0;
1262 if (dtype != 0) {
1263 /* All types except 0 indicate a specific drive/medium combination.*/
1264 dtype = (dtype >> DEV_TYPE_SHIFT) - 1;
1265 if (dtype >= NT) return(ENXIO);
1266 f_fp->fl_density = dtype;
1267 (void) f_prepare(f_device); /* Recompute parameters. */
1268 return(OK);
1270 if (f_device & FORMAT_DEV_BIT) return(EIO); /* Can't format /dev/fdN */
1272 /* The device opened is /dev/fdN. Experimentally determine drive/medium.
1273 * First check fl_density. If it is not NO_DENS, the drive has been used
1274 * before and the value of fl_density tells what was found last time. Try
1275 * that first. If the motor is still running then assume nothing changed.
1277 if (f_fp->fl_density != NO_DENS) {
1278 if (motor_status & (1 << f_drive)) return(OK);
1279 if (test_read(f_fp->fl_density) == OK) return(OK);
1282 /* Either drive type is unknown or a different diskette is now present.
1283 * Use test_order to try them one by one.
1285 for (top = &test_order[0]; top < &test_order[NT-1]; top++) {
1286 dtype = top->t_density;
1288 /* Skip densities that have been proven to be impossible */
1289 if (!(f_fp->fl_class & (1 << dtype))) continue;
1291 if (test_read(dtype) == OK) {
1292 /* The test succeeded, use this knowledge to limit the
1293 * drive class to match the density just read.
1295 f_fp->fl_class &= top->t_class;
1296 return(OK);
1298 /* Test failed, wrong density or did it time out? */
1299 if (f_busy == BSY_WAKEN) break;
1301 f_fp->fl_density = NO_DENS;
1302 return(EIO); /* nothing worked */
1305 /*===========================================================================*
1306 * f_do_close *
1307 *===========================================================================*/
1308 static int f_do_close(devminor_t UNUSED(minor))
1310 /* Handle a close on a floppy. Nothing to do here. */
1312 return(OK);
1315 /*===========================================================================*
1316 * test_read *
1317 *===========================================================================*/
1318 static int test_read(int density)
1320 /* Try to read the highest numbered sector on cylinder 2. Not all floppy
1321 * types have as many sectors per track, and trying cylinder 2 finds the
1322 * ones that need double stepping.
1324 int device;
1325 off_t position;
1326 iovec_t iovec1;
1327 ssize_t result;
1329 f_fp->fl_density = density;
1330 device = ((density + 1) << DEV_TYPE_SHIFT) + f_drive;
1332 (void) f_prepare(device);
1333 position = (off_t) f_dp->test << SECTOR_SHIFT;
1334 iovec1.iov_addr = (vir_bytes) floppy_buf;
1335 iovec1.iov_size = SECTOR_SIZE;
1336 result = f_transfer(device, FALSE /*do_write*/, position, SELF,
1337 &iovec1, 1, BDEV_NOFLAGS);
1339 if (result != SECTOR_SIZE) return(EIO);
1341 partition(&f_dtab, f_drive, P_FLOPPY, 0);
1342 return(OK);
1345 /*===========================================================================*
1346 * f_geometry *
1347 *===========================================================================*/
1348 static void f_geometry(devminor_t minor, struct part_geom *entry)
1350 if (f_prepare(minor) == NULL) return;
1352 entry->cylinders = f_dp->cyls;
1353 entry->heads = NR_HEADS;
1354 entry->sectors = f_sectors;