VM: only single page chunks
[minix.git] / sys / ufs / chfs / chfs_write.c
blob0838ed9b1a6fee1eb2ce2c3175593a22a7e2911a
1 /* $NetBSD: chfs_write.c,v 1.2 2011/11/24 21:09:37 agc Exp $ */
3 /*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 * University of Szeged, Hungary
6 * Copyright (C) 2010 David Tengeri <dtengeri@inf.u-szeged.hu>
7 * Copyright (C) 2010 Tamas Toth <ttoth@inf.u-szeged.hu>
8 * Copyright (C) 2010 Adam Hoka <ahoka@NetBSD.org>
9 * All rights reserved.
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by the Department of Software Engineering, University of Szeged, Hungary
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
37 * chfs_write.c
39 * Created on: 2010.02.17.
40 * Author: dtengeri
43 #include <sys/param.h>
44 #include <sys/buf.h>
46 #include "chfs.h"
48 int
49 chfs_write_flash_vnode(struct chfs_mount *chmp,
50 struct chfs_inode *ip, int prio)
52 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
54 struct chfs_flash_vnode *fvnode;
55 struct chfs_vnode_cache* chvc;
56 struct chfs_node_ref *nref;
57 struct iovec vec;
58 size_t size, retlen;
59 int err = 0, retries = 0;
61 if (ip->ino == CHFS_ROOTINO)
62 return 0;
64 fvnode = chfs_alloc_flash_vnode();
65 if (!fvnode)
66 return ENOMEM;
68 chvc = ip->chvc;
70 /* setting up flash_vnode members */
71 size = sizeof(*fvnode);
72 //dbg("size: %zu | PADDED: %zu\n", size, CHFS_PAD(size));
73 fvnode->magic = htole16(CHFS_FS_MAGIC_BITMASK);
74 fvnode->type = htole16(CHFS_NODETYPE_VNODE);
75 fvnode->length = htole32(CHFS_PAD(size));
76 fvnode->hdr_crc = htole32(crc32(0, (uint8_t *)fvnode,
77 CHFS_NODE_HDR_SIZE - 4));
78 fvnode->vno = htole64(ip->ino);
79 fvnode->version = htole64(++ip->chvc->highest_version);
80 fvnode->mode = htole32(ip->mode);
81 fvnode->dn_size = htole32(ip->size);
82 fvnode->atime = htole32(ip->atime);
83 fvnode->ctime = htole32(ip->ctime);
84 fvnode->mtime = htole32(ip->mtime);
85 fvnode->gid = htole32(ip->gid);
86 fvnode->uid = htole32(ip->uid);
87 fvnode->node_crc = htole32(crc32(0, (uint8_t *)fvnode, size - 4));
89 /* write out flash_vnode */
90 retry:
91 if (prio == ALLOC_GC) {
92 /* the GC calls this function */
93 err = chfs_reserve_space_gc(chmp, CHFS_PAD(size));
94 if (err)
95 goto out;
96 } else {
97 chfs_gc_trigger(chmp);
98 if (prio == ALLOC_NORMAL)
99 err = chfs_reserve_space_normal(chmp,
100 CHFS_PAD(size), ALLOC_NORMAL);
101 else
102 err = chfs_reserve_space_normal(chmp,
103 CHFS_PAD(size), ALLOC_DELETION);
104 if (err)
105 goto out;
108 nref = chfs_alloc_node_ref(chmp->chm_nextblock);
109 if (!nref) {
110 err = ENOMEM;
111 goto out;
114 mutex_enter(&chmp->chm_lock_sizes);
116 nref->nref_offset = chmp->chm_ebh->eb_size - chmp->chm_nextblock->free_size;
117 chfs_change_size_free(chmp, chmp->chm_nextblock, -CHFS_PAD(size));
118 vec.iov_base = fvnode;
119 vec.iov_len = CHFS_PAD(size);
120 err = chfs_write_wbuf(chmp, &vec, 1, nref->nref_offset, &retlen);
121 if (err || retlen != CHFS_PAD(size)) {
122 chfs_err("error while writing out flash vnode to the media\n");
123 chfs_err("err: %d | size: %zu | retlen : %zu\n",
124 err, CHFS_PAD(size), retlen);
125 chfs_change_size_dirty(chmp,
126 chmp->chm_nextblock, CHFS_PAD(size));
127 if (retries) {
128 err = EIO;
129 mutex_exit(&chmp->chm_lock_sizes);
130 goto out;
133 retries++;
134 mutex_exit(&chmp->chm_lock_sizes);
135 goto retry;
137 //Everything went well
138 chfs_change_size_used(chmp,
139 &chmp->chm_blocks[nref->nref_lnr], CHFS_PAD(size));
140 mutex_exit(&chmp->chm_lock_sizes);
142 chfs_add_vnode_ref_to_vc(chmp, chvc, nref);
143 KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
144 out:
145 chfs_free_flash_vnode(fvnode);
146 return err;
150 chfs_write_flash_dirent(struct chfs_mount *chmp, struct chfs_inode *pdir,
151 struct chfs_inode *ip, struct chfs_dirent *fd,
152 ino_t ino, int prio)
154 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
156 struct chfs_flash_dirent_node *fdirent;
157 struct chfs_node_ref *nref;
158 struct iovec vec[2];
159 size_t size, retlen;
160 int err = 0, retries = 0;
161 uint8_t *name;
162 size_t namelen;
164 KASSERT(fd->vno != CHFS_ROOTINO);
166 fdirent = chfs_alloc_flash_dirent();
167 if (!fdirent)
168 return ENOMEM;
170 size = sizeof(*fdirent) + fd->nsize;
171 namelen = CHFS_PAD(size) - sizeof(*fdirent);
173 name = kmem_zalloc(namelen, KM_SLEEP);
174 memcpy(name, fd->name, fd->nsize);
175 //dbg("namelen: %zu | nsize: %hhu\n", namelen, fd->nsize);
178 //dbg("size: %zu | PADDED: %zu\n", size, CHFS_PAD(size));
179 fdirent->magic = htole16(CHFS_FS_MAGIC_BITMASK);
180 fdirent->type = htole16(CHFS_NODETYPE_DIRENT);
181 fdirent->length = htole32(CHFS_PAD(size));
182 fdirent->hdr_crc = htole32(crc32(0, (uint8_t *)fdirent,
183 CHFS_NODE_HDR_SIZE - 4));
184 fdirent->vno = htole64(ino);
185 fdirent->pvno = htole64(pdir->ino);
186 fdirent->version = htole64(++pdir->chvc->highest_version);
187 fdirent->mctime = ip?ip->ctime:0;
188 fdirent->nsize = fd->nsize;
189 fdirent->dtype = fd->type;
190 fdirent->name_crc = crc32(0, (uint8_t *)&(fd->name), fd->nsize);
191 fdirent->node_crc = crc32(0, (uint8_t *)fdirent, sizeof(*fdirent) - 4);
193 vec[0].iov_base = fdirent;
194 vec[0].iov_len = sizeof(*fdirent);
195 vec[1].iov_base = name;
196 vec[1].iov_len = namelen;
198 retry:
199 if (prio == ALLOC_GC) {
200 /* the GC calls this function */
201 err = chfs_reserve_space_gc(chmp, CHFS_PAD(size));
202 if (err)
203 goto out;
204 } else {
205 chfs_gc_trigger(chmp);
206 if (prio == ALLOC_NORMAL)
207 err = chfs_reserve_space_normal(chmp,
208 CHFS_PAD(size), ALLOC_NORMAL);
209 else
210 err = chfs_reserve_space_normal(chmp,
211 CHFS_PAD(size), ALLOC_DELETION);
212 if (err)
213 goto out;
216 nref = chfs_alloc_node_ref(chmp->chm_nextblock);
217 if (!nref) {
218 err = ENOMEM;
219 goto out;
222 mutex_enter(&chmp->chm_lock_sizes);
224 nref->nref_offset = chmp->chm_ebh->eb_size - chmp->chm_nextblock->free_size;
225 chfs_change_size_free(chmp, chmp->chm_nextblock, -CHFS_PAD(size));
227 err = chfs_write_wbuf(chmp, vec, 2, nref->nref_offset, &retlen);
228 if (err || retlen != CHFS_PAD(size)) {
229 chfs_err("error while writing out flash dirent node to the media\n");
230 chfs_err("err: %d | size: %zu | retlen : %zu\n",
231 err, CHFS_PAD(size), retlen);
232 chfs_change_size_dirty(chmp,
233 chmp->chm_nextblock, CHFS_PAD(size));
234 if (retries) {
235 err = EIO;
236 mutex_exit(&chmp->chm_lock_sizes);
237 goto out;
240 retries++;
241 mutex_exit(&chmp->chm_lock_sizes);
242 goto retry;
246 // Everything went well
247 chfs_change_size_used(chmp,
248 &chmp->chm_blocks[nref->nref_lnr], CHFS_PAD(size));
249 mutex_exit(&chmp->chm_lock_sizes);
250 KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
251 fd->nref = nref;
252 if (prio != ALLOC_DELETION) {
253 chfs_add_node_to_list(chmp,
254 pdir->chvc, nref, &pdir->chvc->dirents);
256 out:
257 chfs_free_flash_dirent(fdirent);
258 return err;
262 * chfs_write_flash_dnode - write out a data node to flash
263 * @chmp: chfs mount structure
264 * @vp: vnode where the data belongs to
265 * @bp: buffer contains data
268 chfs_write_flash_dnode(struct chfs_mount *chmp, struct vnode *vp,
269 struct buf *bp, struct chfs_full_dnode *fd)
271 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
273 int err = 0, retries = 0;
274 size_t size, retlen;
275 off_t ofs;
276 struct chfs_flash_data_node *dnode;
277 struct chfs_node_ref *nref;
278 struct chfs_inode *ip = VTOI(vp);
279 struct iovec vec[2];
280 uint32_t len;
281 void *tmpbuf = NULL;
283 KASSERT(ip->ino != CHFS_ROOTINO);
285 dnode = chfs_alloc_flash_dnode();
286 if (!dnode)
287 return ENOMEM;
289 /* initialize flash data node */
290 ofs = bp->b_blkno * PAGE_SIZE;
291 //dbg("vp->v_size: %ju, bp->b_blkno: %ju, bp-b_data: %p,"
292 // " bp->b_resid: %ju\n",
293 // (uintmax_t )vp->v_size, (uintmax_t )bp->b_blkno,
294 // bp->b_data, (uintmax_t )bp->b_resid);
295 //dbg("[XXX]vp->v_size - ofs: %llu\n", (vp->v_size - ofs));
296 len = MIN((vp->v_size - ofs), bp->b_resid);
297 size = sizeof(*dnode) + len;
299 dnode->magic = htole16(CHFS_FS_MAGIC_BITMASK);
300 dnode->type = htole16(CHFS_NODETYPE_DATA);
301 dnode->length = htole32(CHFS_PAD(size));
302 dnode->hdr_crc = htole32(crc32(0, (uint8_t *)dnode,
303 CHFS_NODE_HDR_SIZE - 4));
304 dnode->vno = htole64(ip->ino);
305 dnode->version = htole64(++ip->chvc->highest_version);
306 dnode->offset = htole64(ofs);
307 dnode->data_length = htole32(len);
308 dnode->data_crc = htole32(crc32(0, (uint8_t *)bp->b_data, len));
309 dnode->node_crc = htole32(crc32(0, (uint8_t *)dnode,
310 sizeof(*dnode) - 4));
312 dbg("dnode @%llu %ub v%llu\n", (unsigned long long)dnode->offset,
313 dnode->data_length, (unsigned long long)dnode->version);
315 if (CHFS_PAD(size) - sizeof(*dnode)) {
316 tmpbuf = kmem_zalloc(CHFS_PAD(size)
317 - sizeof(*dnode), KM_SLEEP);
318 memcpy(tmpbuf, bp->b_data, len);
321 /* creating iovecs for wbuf */
322 vec[0].iov_base = dnode;
323 vec[0].iov_len = sizeof(*dnode);
324 vec[1].iov_base = tmpbuf;
325 vec[1].iov_len = CHFS_PAD(size) - sizeof(*dnode);
327 fd->frags = 0;
328 fd->ofs = ofs;
329 fd->size = len;
331 retry:
333 /* Reserve space for data node. This will set up the next eraseblock
334 * where to we will write.
337 chfs_gc_trigger(chmp);
338 err = chfs_reserve_space_normal(chmp,
339 CHFS_PAD(size), ALLOC_NORMAL);
340 if (err)
341 goto out;
343 nref = chfs_alloc_node_ref(chmp->chm_nextblock);
344 if (!nref) {
345 err = ENOMEM;
346 goto out;
349 nref->nref_offset =
350 chmp->chm_ebh->eb_size - chmp->chm_nextblock->free_size;
352 KASSERT(nref->nref_offset < chmp->chm_ebh->eb_size);
354 mutex_enter(&chmp->chm_lock_sizes);
356 chfs_change_size_free(chmp,
357 chmp->chm_nextblock, -CHFS_PAD(size));
359 //dbg("vno: %llu nref lnr: %u offset: %u\n",
360 // dnode->vno, nref->nref_lnr, nref->nref_offset);
362 err = chfs_write_wbuf(chmp, vec, 2, nref->nref_offset, &retlen);
363 if (err || retlen != CHFS_PAD(size)) {
364 chfs_err("error while writing out flash data node to the media\n");
365 chfs_err("err: %d | size: %zu | retlen : %zu\n",
366 err, size, retlen);
367 chfs_change_size_dirty(chmp,
368 chmp->chm_nextblock, CHFS_PAD(size));
369 if (retries) {
370 err = EIO;
371 mutex_exit(&chmp->chm_lock_sizes);
372 goto out;
375 retries++;
376 mutex_exit(&chmp->chm_lock_sizes);
377 goto retry;
379 /* Everything went well */
380 ip->write_size += fd->size;
381 chfs_change_size_used(chmp,
382 &chmp->chm_blocks[nref->nref_lnr], CHFS_PAD(size));
383 mutex_exit(&chmp->chm_lock_sizes);
385 KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
386 fd->nref = nref;
387 chfs_add_node_to_list(chmp, ip->chvc, nref, &ip->chvc->dnode);
388 out:
389 chfs_free_flash_dnode(dnode);
390 if (CHFS_PAD(size) - sizeof(*dnode)) {
391 kmem_free(tmpbuf, CHFS_PAD(size) - sizeof(*dnode));
394 return err;
398 * chfs_do_link - makes a copy from a node
399 * @old: old node
400 * @oldfd: dirent of old node
401 * @parent: parent of new node
402 * @name: name of new node
403 * @namelen: length of name
404 * This function writes the dirent of the new node to the media.
407 chfs_do_link(struct chfs_inode *ip, struct chfs_inode *parent, const char *name, int namelen, enum vtype type)
409 int error = 0;
410 struct vnode *vp = ITOV(ip);
411 struct ufsmount *ump = VFSTOUFS(vp->v_mount);
412 struct chfs_mount *chmp = ump->um_chfs;
413 struct chfs_dirent *newfd = NULL;
414 // struct chfs_dirent *fd = NULL;
416 //dbg("link vno: %llu\n", ip->ino);
418 newfd = chfs_alloc_dirent(namelen + 1);
420 newfd->vno = ip->ino;
421 newfd->type = type;
422 newfd->nsize = namelen;
423 memcpy(newfd->name, name, namelen);
424 newfd->name[newfd->nsize] = 0;
425 // newfd->next = NULL;
427 ip->chvc->nlink++;
428 parent->chvc->nlink++;
429 ip->iflag |= IN_CHANGE;
430 chfs_update(vp, NULL, NULL, UPDATE_WAIT);
432 mutex_enter(&chmp->chm_lock_mountfields);
434 error = chfs_write_flash_vnode(chmp, ip, ALLOC_NORMAL);
435 if (error)
436 return error;
438 error = chfs_write_flash_dirent(chmp,
439 parent, ip, newfd, ip->ino, ALLOC_NORMAL);
440 /* TODO: what should we do if error isn't zero? */
442 mutex_exit(&chmp->chm_lock_mountfields);
444 /* add fd to the fd list */
445 TAILQ_INSERT_TAIL(&parent->dents, newfd, fds);
446 #if 0
447 fd = parent->dents;
448 if (!fd) {
449 parent->dents = newfd;
450 } else {
451 while (fd->next)
452 fd = fd->next;
453 fd->next = newfd;
455 #endif
457 return error;
462 * chfs_do_unlink - delete a node
463 * @ip: node what we'd like to delete
464 * @parent: parent of the node
465 * @name: name of the node
466 * @namelen: length of name
467 * This function set the nlink and vno of the node zero and write its dirent to the media.
470 chfs_do_unlink(struct chfs_inode *ip,
471 struct chfs_inode *parent, const char *name, int namelen)
473 struct chfs_dirent *fd, *tmpfd;
474 int error = 0;
475 struct vnode *vp = ITOV(ip);
476 struct ufsmount *ump = VFSTOUFS(vp->v_mount);
477 struct chfs_mount *chmp = ump->um_chfs;
478 struct chfs_node_ref *nref;
480 //dbg("unlink vno: %llu\n", ip->ino);
482 vflushbuf(vp, 0);
484 mutex_enter(&chmp->chm_lock_mountfields);
486 /* remove the full direntry from the parent dents list */
487 TAILQ_FOREACH_SAFE(fd, &parent->dents, fds, tmpfd) {
488 if (fd->vno == ip->ino &&
489 fd->nsize == namelen &&
490 !memcmp(fd->name, name, fd->nsize)) {
491 if (fd->type == VDIR && ip->chvc->nlink == 2)
492 ip->chvc->nlink = 0;
493 else
494 ip->chvc->nlink--;
496 fd->type = VNON;
498 TAILQ_REMOVE(&parent->dents, fd, fds);
500 /* remove nref from dirents list */
501 nref = parent->chvc->dirents;
502 if (nref == fd->nref) {
503 nref->nref_next = fd->nref->nref_next;
504 } else {
505 while (nref->nref_next && nref->nref_next != fd->nref)
506 nref = nref->nref_next;
507 if (nref->nref_next)
508 nref->nref_next = fd->nref->nref_next;
511 //dbg("FD->NREF vno: %llu, lnr: %u, ofs: %u\n",
512 // fd->vno, fd->nref->nref_lnr, fd->nref->nref_offset);
513 chfs_mark_node_obsolete(chmp, fd->nref);
515 error = chfs_write_flash_dirent(chmp,
516 parent, ip, fd, 0, ALLOC_DELETION);
518 //dbg("FD->NREF vno: %llu, lnr: %u, ofs: %u\n",
519 // fd->vno, fd->nref->nref_lnr, fd->nref->nref_offset);
520 chfs_mark_node_obsolete(chmp, fd->nref);
522 nref = ip->chvc->dnode;
523 while (nref != (struct chfs_node_ref *)ip->chvc) {
524 //dbg("DATA NREF\n");
525 chfs_mark_node_obsolete(chmp, nref);
526 nref = nref->nref_next;
528 ip->chvc->dnode = (struct chfs_node_ref *)ip->chvc;
530 nref = ip->chvc->v;
531 while (nref != (struct chfs_node_ref *)ip->chvc) {
532 //dbg("V NREF\n");
533 chfs_mark_node_obsolete(chmp, nref);
534 nref = nref->nref_next;
536 ip->chvc->v = ip->chvc->v->nref_next;
538 parent->chvc->nlink--;
539 //TODO: if error
542 mutex_exit(&chmp->chm_lock_mountfields);
544 return error;