1 /* This file contains essentially all of the process and message handling.
2 * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
3 * There is one entry point from the outside:
5 * sys_call: a system call, i.e., the kernel is trapped with an INT
8 * Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
9 * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
10 * May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
11 * May 24, 2005 new notification system call (Jorrit N. Herder)
12 * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
14 * The code here is critical to make everything work and is important for the
15 * overall performance of the system. A large fraction of the code deals with
16 * list manipulation. To make this both easy to understand and fast to execute
17 * pointer pointers are used throughout the code. Pointer pointers prevent
18 * exceptions for the head or tail of a linked list.
20 * node_t *queue, *new_node; // assume these as global variables
21 * node_t **xpp = &queue; // get pointer pointer to head of queue
22 * while (*xpp != NULL) // find last pointer of the linked list
23 * xpp = &(*xpp)->next; // get pointer to next pointer
24 * *xpp = new_node; // now replace the end (the NULL pointer)
25 * new_node->next = NULL; // and mark the new end of the list
27 * For example, when adding a new node to the end of the list, one normally
28 * makes an exception for an empty list and looks up the end of the list for
29 * nonempty lists. As shown above, this is not required with pointer pointers.
32 #include <minix/com.h>
33 #include <minix/endpoint.h>
36 #include <minix/syslib.h>
43 /* Scheduling and message passing functions */
44 FORWARD
_PROTOTYPE( void idle
, (void));
45 FORWARD
_PROTOTYPE( int mini_send
, (struct proc
*caller_ptr
, int dst_e
,
46 message
*m_ptr
, int flags
));
47 FORWARD
_PROTOTYPE( int mini_receive
, (struct proc
*caller_ptr
, int src
,
48 message
*m_ptr
, int flags
));
49 FORWARD
_PROTOTYPE( int mini_senda
, (struct proc
*caller_ptr
,
50 asynmsg_t
*table
, size_t size
));
51 FORWARD
_PROTOTYPE( int deadlock
, (int function
,
52 register struct proc
*caller
, int src_dst
));
53 FORWARD
_PROTOTYPE( int try_async
, (struct proc
*caller_ptr
));
54 FORWARD
_PROTOTYPE( int try_one
, (struct proc
*src_ptr
, struct proc
*dst_ptr
,
56 FORWARD
_PROTOTYPE( void sched
, (struct proc
*rp
, int *queue
, int *front
));
57 FORWARD
_PROTOTYPE( struct proc
* pick_proc
, (void));
58 FORWARD
_PROTOTYPE( void enqueue_head
, (struct proc
*rp
));
61 #define PICK_HIGHERONLY 2
63 #define BuildNotifyMessage(m_ptr, src, dst_ptr) \
64 (m_ptr)->m_type = NOTIFY_FROM(src); \
65 (m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
68 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
69 priv(dst_ptr)->s_int_pending = 0; \
72 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \
73 priv(dst_ptr)->s_sig_pending = 0; \
77 /*===========================================================================*
79 *===========================================================================*/
80 PRIVATE
int QueueMess(endpoint_t ep
, vir_bytes msg_lin
, struct proc
*dst
)
84 NOREC_ENTER(queuemess
);
85 /* Queue a message from the src process (in memory) to the dst
86 * process (using dst process table entry). Do actual copy to
87 * kernel here; it's an error if the copy fails into kernel.
89 vmassert(!(dst
->p_misc_flags
& MF_DELIVERMSG
));
90 vmassert(dst
->p_delivermsg_lin
);
91 vmassert(isokendpt(ep
, &k
));
95 PHYS_COPY_CATCH(msg_lin
, dst
->p_delivermsg_lin
,
96 sizeof(message
), addr
);
98 PHYS_COPY_CATCH(vir2phys(&ep
), dst
->p_delivermsg_lin
,
101 NOREC_RETURN(queuemess
, OK
);
107 PHYS_COPY_CATCH(msg_lin
, vir2phys(&dst
->p_delivermsg
), sizeof(message
), addr
);
109 NOREC_RETURN(queuemess
, EFAULT
);
112 dst
->p_delivermsg
.m_source
= ep
;
113 dst
->p_misc_flags
|= MF_DELIVERMSG
;
115 NOREC_RETURN(queuemess
, OK
);
118 /*===========================================================================*
120 *===========================================================================*/
121 PRIVATE
void idle(void)
123 /* This function is called whenever there is no work to do.
124 * Halt the CPU, and measure how many timestamp counter ticks are
125 * spent not doing anything. This allows test setups to measure
126 * the CPU utiliziation of certain workloads with high precision.
129 /* start accounting for the idle time */
130 cycles_accounting_stop(proc_addr(KERNEL
));
133 * end of accounting for the idle task does not happen here, the kernel
134 * is handling stuff for quite a while before it gets back here!
138 /*===========================================================================*
140 *===========================================================================*/
141 PUBLIC
struct proc
* schedcheck(void)
143 /* This function is called an instant before proc_ptr is
144 * to be scheduled again.
146 NOREC_ENTER(schedch
);
149 * if the current process is still runnable check the misc flags and let
150 * it run unless it becomes not runnable in the meantime
152 if (proc_is_runnable(proc_ptr
))
153 goto check_misc_flags
;
156 * if a process becomes not runnable while handling the misc flags, we
157 * need to pick a new one here and start from scratch. Also if the
158 * current process wasn' runnable, we pick a new one here
160 not_runnable_pick_new
:
161 if (proc_is_preempted(proc_ptr
)) {
162 proc_ptr
->p_rts_flags
&= ~RTS_PREEMPTED
;
163 if (proc_is_runnable(proc_ptr
))
164 enqueue_head(proc_ptr
);
166 /* this enqueues the process again */
167 if (proc_no_quantum(proc_ptr
))
168 RTS_UNSET(proc_ptr
, RTS_NO_QUANTUM
);
171 * if we have no process to run, set IDLE as the current process for
172 * time accounting and put the cpu in and idle state. After the next
173 * timer interrupt the execution resumes here and we can pick another
174 * process. If there is still nothing runnable we "schedule" IDLE again
176 while (!(proc_ptr
= pick_proc())) {
177 proc_ptr
= proc_addr(IDLE
);
178 if (priv(proc_ptr
)->s_flags
& BILLABLE
)
183 switch_address_space(proc_ptr
);
188 vmassert(proc_is_runnable(proc_ptr
));
189 while (proc_ptr
->p_misc_flags
&
190 (MF_KCALL_RESUME
| MF_DELIVERMSG
|
191 MF_SC_DEFER
| MF_SC_TRACE
| MF_SC_ACTIVE
)) {
193 vmassert(proc_is_runnable(proc_ptr
));
194 if (proc_ptr
->p_misc_flags
& MF_KCALL_RESUME
) {
195 kernel_call_resume(proc_ptr
);
197 else if (proc_ptr
->p_misc_flags
& MF_DELIVERMSG
) {
198 TRACE(VF_SCHEDULING
, printf("delivering to %s / %d\n",
199 proc_ptr
->p_name
, proc_ptr
->p_endpoint
););
200 if(delivermsg(proc_ptr
) == VMSUSPEND
) {
202 printf("suspending %s / %d\n",
204 proc_ptr
->p_endpoint
););
205 vmassert(!proc_is_runnable(proc_ptr
));
208 else if (proc_ptr
->p_misc_flags
& MF_SC_DEFER
) {
209 /* Perform the system call that we deferred earlier. */
211 #if DEBUG_SCHED_CHECK
212 if (proc_ptr
->p_misc_flags
& MF_SC_ACTIVE
)
213 panic("MF_SC_ACTIVE and MF_SC_DEFER set");
216 arch_do_syscall(proc_ptr
);
218 /* If the process is stopped for signal delivery, and
219 * not blocked sending a message after the system call,
222 if ((proc_ptr
->p_misc_flags
& MF_SIG_DELAY
) &&
223 !RTS_ISSET(proc_ptr
, RTS_SENDING
))
224 sig_delay_done(proc_ptr
);
226 else if (proc_ptr
->p_misc_flags
& MF_SC_TRACE
) {
227 /* Trigger a system call leave event if this was a
228 * system call. We must do this after processing the
229 * other flags above, both for tracing correctness and
230 * to be able to use 'break'.
232 if (!(proc_ptr
->p_misc_flags
& MF_SC_ACTIVE
))
235 proc_ptr
->p_misc_flags
&=
236 ~(MF_SC_TRACE
| MF_SC_ACTIVE
);
238 /* Signal the "leave system call" event.
241 cause_sig(proc_nr(proc_ptr
), SIGTRAP
);
243 else if (proc_ptr
->p_misc_flags
& MF_SC_ACTIVE
) {
244 /* If MF_SC_ACTIVE was set, remove it now:
245 * we're leaving the system call.
247 proc_ptr
->p_misc_flags
&= ~MF_SC_ACTIVE
;
253 * the selected process might not be runnable anymore. We have
254 * to checkit and schedule another one
256 if (!proc_is_runnable(proc_ptr
))
257 goto not_runnable_pick_new
;
259 TRACE(VF_SCHEDULING
, printf("starting %s / %d\n",
260 proc_ptr
->p_name
, proc_ptr
->p_endpoint
););
262 proc_ptr
->p_schedules
++;
265 proc_ptr
= arch_finish_schedcheck();
266 cycles_accounting_stop(proc_addr(KERNEL
));
268 NOREC_RETURN(schedch
, proc_ptr
);
271 /*===========================================================================*
273 *===========================================================================*/
274 PUBLIC
int do_ipc(call_nr
, src_dst_e
, m_ptr
, bit_map
)
275 int call_nr
; /* system call number and flags */
276 int src_dst_e
; /* src to receive from or dst to send to */
277 message
*m_ptr
; /* pointer to message in the caller's space */
278 long bit_map
; /* notification event set or flags */
280 /* System calls are done by trapping to the kernel with an INT instruction.
281 * The trap is caught and sys_call() is called to send or receive a message
282 * (or both). The caller is always given by 'proc_ptr'.
284 register struct proc
*caller_ptr
= proc_ptr
; /* get pointer to caller */
285 int result
; /* the system call's result */
286 int src_dst_p
; /* Process slot number */
289 /* If this process is subject to system call tracing, handle that first. */
290 if (caller_ptr
->p_misc_flags
& (MF_SC_TRACE
| MF_SC_DEFER
)) {
291 /* Are we tracing this process, and is it the first sys_call entry? */
292 if ((caller_ptr
->p_misc_flags
& (MF_SC_TRACE
| MF_SC_DEFER
)) ==
294 /* We must notify the tracer before processing the actual
295 * system call. If we don't, the tracer could not obtain the
296 * input message. Postpone the entire system call.
298 caller_ptr
->p_misc_flags
&= ~MF_SC_TRACE
;
299 caller_ptr
->p_misc_flags
|= MF_SC_DEFER
;
301 /* Signal the "enter system call" event. Block the process. */
302 cause_sig(proc_nr(caller_ptr
), SIGTRAP
);
304 /* Preserve the return register's value. */
305 return caller_ptr
->p_reg
.retreg
;
308 /* If the MF_SC_DEFER flag is set, the syscall is now being resumed. */
309 caller_ptr
->p_misc_flags
&= ~MF_SC_DEFER
;
311 #if DEBUG_SCHED_CHECK
312 if (caller_ptr
->p_misc_flags
& MF_SC_ACTIVE
)
313 panic("MF_SC_ACTIVE already set");
316 /* Set a flag to allow reliable tracing of leaving the system call. */
317 caller_ptr
->p_misc_flags
|= MF_SC_ACTIVE
;
320 #if DEBUG_SCHED_CHECK
321 if(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
) {
322 printf("sys_call: MF_DELIVERMSG on for %s / %d\n",
323 caller_ptr
->p_name
, caller_ptr
->p_endpoint
);
324 panic("MF_DELIVERMSG on");
329 if(src_dst_e
!= 4 && src_dst_e
!= 5 &&
330 caller_ptr
->p_endpoint
!= 4 && caller_ptr
->p_endpoint
!= 5) {
332 printf("(%d SEND to %d) ", caller_ptr
->p_endpoint
, src_dst_e
);
333 else if(call_nr
== RECEIVE
)
334 printf("(%d RECEIVE from %d) ", caller_ptr
->p_endpoint
, src_dst_e
);
335 else if(call_nr
== SENDREC
)
336 printf("(%d SENDREC to %d) ", caller_ptr
->p_endpoint
, src_dst_e
);
338 printf("(%d %d to/from %d) ", caller_ptr
->p_endpoint
, call_nr
, src_dst_e
);
342 #if DEBUG_SCHED_CHECK
343 if (RTS_ISSET(caller_ptr
, RTS_SLOT_FREE
))
345 printf("called by the dead?!?\n");
350 /* Check destination. SENDA is special because its argument is a table and
351 * not a single destination. RECEIVE is the only call that accepts ANY (in
352 * addition to a real endpoint). The other calls (SEND, SENDREC,
353 * and NOTIFY) require an endpoint to corresponds to a process. In addition,
354 * it is necessary to check whether a process is allowed to send to a given
357 if (call_nr
== SENDA
)
359 /* No destination argument */
361 else if (src_dst_e
== ANY
)
363 if (call_nr
!= RECEIVE
)
366 printf("sys_call: trap %d by %d with bad endpoint %d\n",
367 call_nr
, proc_nr(caller_ptr
), src_dst_e
);
371 src_dst_p
= src_dst_e
;
375 /* Require a valid source and/or destination process. */
376 if(!isokendpt(src_dst_e
, &src_dst_p
)) {
378 printf("sys_call: trap %d by %d with bad endpoint %d\n",
379 call_nr
, proc_nr(caller_ptr
), src_dst_e
);
384 /* If the call is to send to a process, i.e., for SEND, SENDNB,
385 * SENDREC or NOTIFY, verify that the caller is allowed to send to
386 * the given destination.
388 if (call_nr
!= RECEIVE
)
390 if (!may_send_to(caller_ptr
, src_dst_p
)) {
391 #if DEBUG_ENABLE_IPC_WARNINGS
393 "sys_call: ipc mask denied trap %d from %d to %d\n",
394 call_nr
, caller_ptr
->p_endpoint
, src_dst_e
);
396 return(ECALLDENIED
); /* call denied by ipc mask */
401 /* Only allow non-negative call_nr values less than 32 */
402 if (call_nr
< 0 || call_nr
>= 32)
404 #if DEBUG_ENABLE_IPC_WARNINGS
405 printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
406 call_nr
, proc_nr(caller_ptr
), src_dst_p
);
408 return(ETRAPDENIED
); /* trap denied by mask or kernel */
411 /* Check if the process has privileges for the requested call. Calls to the
412 * kernel may only be SENDREC, because tasks always reply and may not block
413 * if the caller doesn't do receive().
415 if (!(priv(caller_ptr
)->s_trap_mask
& (1 << call_nr
))) {
416 #if DEBUG_ENABLE_IPC_WARNINGS
417 printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
418 call_nr
, proc_nr(caller_ptr
), src_dst_p
);
420 return(ETRAPDENIED
); /* trap denied by mask or kernel */
423 /* SENDA has no src_dst value here, so this check is in mini_senda() as well.
425 if (call_nr
!= SENDREC
&& call_nr
!= RECEIVE
&& call_nr
!= SENDA
&&
426 iskerneln(src_dst_p
)) {
427 #if DEBUG_ENABLE_IPC_WARNINGS
428 printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
429 call_nr
, proc_nr(caller_ptr
), src_dst_e
);
431 return(ETRAPDENIED
); /* trap denied by mask or kernel */
434 /* Get and check the size of the argument in bytes.
435 * Normally this is just the size of a regular message, but in the
436 * case of SENDA the argument is a table.
438 if(call_nr
== SENDA
) {
439 msg_size
= (size_t) src_dst_e
;
441 /* Limit size to something reasonable. An arbitrary choice is 16
442 * times the number of process table entries.
444 if (msg_size
> 16*(NR_TASKS
+ NR_PROCS
))
446 msg_size
*= sizeof(asynmsg_t
); /* convert to bytes */
448 msg_size
= sizeof(*m_ptr
);
451 /* Now check if the call is known and try to perform the request. The only
452 * system calls that exist in MINIX are sending and receiving messages.
453 * - SENDREC: combines SEND and RECEIVE in a single system call
454 * - SEND: sender blocks until its message has been delivered
455 * - RECEIVE: receiver blocks until an acceptable message has arrived
456 * - NOTIFY: asynchronous call; deliver notification or mark pending
457 * - SENDA: list of asynchronous send requests
461 /* A flag is set so that notifications cannot interrupt SENDREC. */
462 caller_ptr
->p_misc_flags
|= MF_REPLY_PEND
;
465 result
= mini_send(caller_ptr
, src_dst_e
, m_ptr
, 0);
466 if (call_nr
== SEND
|| result
!= OK
)
467 break; /* done, or SEND failed */
468 /* fall through for SENDREC */
470 if (call_nr
== RECEIVE
)
471 caller_ptr
->p_misc_flags
&= ~MF_REPLY_PEND
;
472 result
= mini_receive(caller_ptr
, src_dst_e
, m_ptr
, 0);
475 result
= mini_notify(caller_ptr
, src_dst_e
);
478 result
= mini_send(caller_ptr
, src_dst_e
, m_ptr
, NON_BLOCKING
);
481 result
= mini_senda(caller_ptr
, (asynmsg_t
*)m_ptr
, (size_t)src_dst_e
);
484 result
= EBADCALL
; /* illegal system call */
487 /* Now, return the result of the system call to the caller. */
491 /*===========================================================================*
493 *===========================================================================*/
494 PRIVATE
int deadlock(function
, cp
, src_dst
)
495 int function
; /* trap number */
496 register struct proc
*cp
; /* pointer to caller */
497 proc_nr_t src_dst
; /* src or dst process */
499 /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
500 * a cyclic dependency of blocking send and receive calls. The only cyclic
501 * depency that is not fatal is if the caller and target directly SEND(REC)
502 * and RECEIVE to each other. If a deadlock is found, the group size is
503 * returned. Otherwise zero is returned.
505 register struct proc
*xp
; /* process pointer */
506 int group_size
= 1; /* start with only caller */
507 #if DEBUG_ENABLE_IPC_WARNINGS
508 static struct proc
*processes
[NR_PROCS
+ NR_TASKS
];
512 while (src_dst
!= ANY
) { /* check while process nr */
514 xp
= proc_addr(src_dst
); /* follow chain of processes */
515 #if DEBUG_ENABLE_IPC_WARNINGS
516 processes
[group_size
] = xp
;
518 group_size
++; /* extra process in group */
520 /* Check whether the last process in the chain has a dependency. If it
521 * has not, the cycle cannot be closed and we are done.
523 if((dep
= P_BLOCKEDON(xp
)) == NONE
)
529 okendpt(dep
, &src_dst
);
531 /* Now check if there is a cyclic dependency. For group sizes of two,
532 * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
533 * or other combinations indicate a deadlock.
535 if (src_dst
== proc_nr(cp
)) { /* possible deadlock */
536 if (group_size
== 2) { /* caller and src_dst */
537 /* The function number is magically converted to flags. */
538 if ((xp
->p_rts_flags
^ (function
<< 2)) & RTS_SENDING
) {
539 return(0); /* not a deadlock */
542 #if DEBUG_ENABLE_IPC_WARNINGS
545 printf("deadlock between these processes:\n");
546 for(i
= 0; i
< group_size
; i
++) {
547 printf(" %10s ", processes
[i
]->p_name
);
548 proc_stacktrace(processes
[i
]);
552 return(group_size
); /* deadlock found */
555 return(0); /* not a deadlock */
558 /*===========================================================================*
560 *===========================================================================*/
561 PRIVATE
int mini_send(caller_ptr
, dst_e
, m_ptr
, flags
)
562 register struct proc
*caller_ptr
; /* who is trying to send a message? */
563 int dst_e
; /* to whom is message being sent? */
564 message
*m_ptr
; /* pointer to message buffer */
567 /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
568 * for this message, copy the message to it and unblock 'dst'. If 'dst' is
569 * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
571 register struct proc
*dst_ptr
;
572 register struct proc
**xpp
;
578 if(!(linaddr
= umap_local(caller_ptr
, D
, (vir_bytes
) m_ptr
,
582 dst_p
= _ENDPOINT_P(dst_e
);
583 dst_ptr
= proc_addr(dst_p
);
585 if (RTS_ISSET(dst_ptr
, RTS_NO_ENDPOINT
))
590 /* Check if 'dst' is blocked waiting for this message. The destination's
591 * RTS_SENDING flag may be set when its SENDREC call blocked while sending.
593 if (WILLRECEIVE(dst_ptr
, caller_ptr
->p_endpoint
)) {
594 /* Destination is indeed waiting for this message. */
595 vmassert(!(dst_ptr
->p_misc_flags
& MF_DELIVERMSG
));
596 if((r
=QueueMess(caller_ptr
->p_endpoint
, linaddr
, dst_ptr
)) != OK
)
598 RTS_UNSET(dst_ptr
, RTS_RECEIVING
);
600 if(flags
& NON_BLOCKING
) {
604 /* Check for a possible deadlock before actually blocking. */
605 if (deadlock(SEND
, caller_ptr
, dst_p
)) {
609 /* Destination is not waiting. Block and dequeue caller. */
610 PHYS_COPY_CATCH(linaddr
, vir2phys(&caller_ptr
->p_sendmsg
),
611 sizeof(message
), addr
);
613 if(addr
) { return EFAULT
; }
614 RTS_SET(caller_ptr
, RTS_SENDING
);
615 caller_ptr
->p_sendto_e
= dst_e
;
617 /* Process is now blocked. Put in on the destination's queue. */
618 xpp
= &dst_ptr
->p_caller_q
; /* find end of list */
619 while (*xpp
!= NIL_PROC
) xpp
= &(*xpp
)->p_q_link
;
620 *xpp
= caller_ptr
; /* add caller to end */
621 caller_ptr
->p_q_link
= NIL_PROC
; /* mark new end of list */
626 /*===========================================================================*
628 *===========================================================================*/
629 PRIVATE
int mini_receive(caller_ptr
, src_e
, m_ptr
, flags
)
630 register struct proc
*caller_ptr
; /* process trying to get message */
631 int src_e
; /* which message source is wanted */
632 message
*m_ptr
; /* pointer to message buffer */
635 /* A process or task wants to get a message. If a message is already queued,
636 * acquire it and deblock the sender. If no message from the desired source
637 * is available block the caller.
639 register struct proc
**xpp
;
643 int i
, r
, src_id
, src_proc_nr
, src_p
;
646 vmassert(!(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
));
648 if(!(linaddr
= umap_local(caller_ptr
, D
, (vir_bytes
) m_ptr
,
653 /* This is where we want our message. */
654 caller_ptr
->p_delivermsg_lin
= linaddr
;
655 caller_ptr
->p_delivermsg_vir
= (vir_bytes
) m_ptr
;
657 if(src_e
== ANY
) src_p
= ANY
;
660 okendpt(src_e
, &src_p
);
661 if (RTS_ISSET(proc_addr(src_p
), RTS_NO_ENDPOINT
))
668 /* Check to see if a message from desired source is already available. The
669 * caller's RTS_SENDING flag may be set if SENDREC couldn't send. If it is
670 * set, the process should be blocked.
672 if (!RTS_ISSET(caller_ptr
, RTS_SENDING
)) {
674 /* Check if there are pending notifications, except for SENDREC. */
675 if (! (caller_ptr
->p_misc_flags
& MF_REPLY_PEND
)) {
677 map
= &priv(caller_ptr
)->s_notify_pending
;
678 for (chunk
=&map
->chunk
[0]; chunk
<&map
->chunk
[NR_SYS_CHUNKS
]; chunk
++) {
681 /* Find a pending notification from the requested source. */
682 if (! *chunk
) continue; /* no bits in chunk */
683 for (i
=0; ! (*chunk
& (1<<i
)); ++i
) {} /* look up the bit */
684 src_id
= (chunk
- &map
->chunk
[0]) * BITCHUNK_BITS
+ i
;
685 if (src_id
>= NR_SYS_PROCS
) break; /* out of range */
686 src_proc_nr
= id_to_nr(src_id
); /* get source proc */
687 #if DEBUG_ENABLE_IPC_WARNINGS
688 if(src_proc_nr
== NONE
) {
689 printf("mini_receive: sending notify from NONE\n");
692 if (src_e
!=ANY
&& src_p
!= src_proc_nr
) continue;/* source not ok */
693 *chunk
&= ~(1 << i
); /* no longer pending */
695 /* Found a suitable source, deliver the notification message. */
696 BuildNotifyMessage(&m
, src_proc_nr
, caller_ptr
); /* assemble message */
697 hisep
= proc_addr(src_proc_nr
)->p_endpoint
;
698 vmassert(!(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
));
699 vmassert(src_e
== ANY
|| hisep
== src_e
);
700 if((r
=QueueMess(hisep
, vir2phys(&m
), caller_ptr
)) != OK
) {
701 panic("mini_receive: local QueueMess failed");
703 return(OK
); /* report success */
707 /* Check caller queue. Use pointer pointers to keep code simple. */
708 xpp
= &caller_ptr
->p_caller_q
;
709 while (*xpp
!= NIL_PROC
) {
710 if (src_e
== ANY
|| src_p
== proc_nr(*xpp
)) {
711 #if DEBUG_SCHED_CHECK
712 if (RTS_ISSET(*xpp
, RTS_SLOT_FREE
) || RTS_ISSET(*xpp
, RTS_NO_ENDPOINT
))
714 printf("%d: receive from %d; found dead %d (%s)?\n",
715 caller_ptr
->p_endpoint
, src_e
, (*xpp
)->p_endpoint
,
721 /* Found acceptable message. Copy it and update status. */
722 vmassert(!(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
));
723 QueueMess((*xpp
)->p_endpoint
,
724 vir2phys(&(*xpp
)->p_sendmsg
), caller_ptr
);
725 if ((*xpp
)->p_misc_flags
& MF_SIG_DELAY
)
726 sig_delay_done(*xpp
);
727 RTS_UNSET(*xpp
, RTS_SENDING
);
728 *xpp
= (*xpp
)->p_q_link
; /* remove from queue */
729 return(OK
); /* report success */
731 xpp
= &(*xpp
)->p_q_link
; /* proceed to next */
734 if (caller_ptr
->p_misc_flags
& MF_ASYNMSG
)
737 r
= try_one(proc_addr(src_p
), caller_ptr
, NULL
);
739 r
= try_async(caller_ptr
);
742 return OK
; /* Got a message */
746 /* No suitable message is available or the caller couldn't send in SENDREC.
747 * Block the process trying to receive, unless the flags tell otherwise.
749 if ( ! (flags
& NON_BLOCKING
)) {
750 /* Check for a possible deadlock before actually blocking. */
751 if (deadlock(RECEIVE
, caller_ptr
, src_p
)) {
755 caller_ptr
->p_getfrom_e
= src_e
;
756 RTS_SET(caller_ptr
, RTS_RECEIVING
);
763 /*===========================================================================*
765 *===========================================================================*/
766 PUBLIC
int mini_notify(caller_ptr
, dst_e
)
767 register struct proc
*caller_ptr
; /* sender of the notification */
768 endpoint_t dst_e
; /* which process to notify */
770 register struct proc
*dst_ptr
;
771 int src_id
; /* source id for late delivery */
772 message m
; /* the notification message */
776 if (!isokendpt(dst_e
, &dst_p
)) {
778 printf("mini_notify: bogus endpoint %d\n", dst_e
);
782 dst_ptr
= proc_addr(dst_p
);
784 /* Check to see if target is blocked waiting for this message. A process
785 * can be both sending and receiving during a SENDREC system call.
787 if (WILLRECEIVE(dst_ptr
, caller_ptr
->p_endpoint
) &&
788 ! (dst_ptr
->p_misc_flags
& MF_REPLY_PEND
)) {
789 /* Destination is indeed waiting for a message. Assemble a notification
790 * message and deliver it. Copy from pseudo-source HARDWARE, since the
791 * message is in the kernel's address space.
793 BuildNotifyMessage(&m
, proc_nr(caller_ptr
), dst_ptr
);
794 vmassert(!(dst_ptr
->p_misc_flags
& MF_DELIVERMSG
));
795 if((r
=QueueMess(caller_ptr
->p_endpoint
, vir2phys(&m
), dst_ptr
)) != OK
) {
796 panic("mini_notify: local QueueMess failed");
798 RTS_UNSET(dst_ptr
, RTS_RECEIVING
);
802 /* Destination is not ready to receive the notification. Add it to the
803 * bit map with pending notifications. Note the indirectness: the privilege id
804 * instead of the process number is used in the pending bit map.
806 src_id
= priv(caller_ptr
)->s_id
;
807 set_sys_bit(priv(dst_ptr
)->s_notify_pending
, src_id
);
811 #define ASCOMPLAIN(caller, entry, field) \
812 printf("kernel:%s:%d: asyn failed for %s in %s " \
813 "(%d/%d, tab 0x%lx)\n",__FILE__,__LINE__, \
814 field, caller->p_name, entry, priv(caller)->s_asynsize, priv(caller)->s_asyntab)
816 #define A_RETRIEVE(entry, field) \
817 if(data_copy(caller_ptr->p_endpoint, \
818 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
819 KERNEL, (vir_bytes) &tabent.field, \
820 sizeof(tabent.field)) != OK) {\
821 ASCOMPLAIN(caller_ptr, entry, #field); \
825 #define A_INSERT(entry, field) \
826 if(data_copy(KERNEL, (vir_bytes) &tabent.field, \
827 caller_ptr->p_endpoint, \
828 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
829 sizeof(tabent.field)) != OK) {\
830 ASCOMPLAIN(caller_ptr, entry, #field); \
834 /*===========================================================================*
836 *===========================================================================*/
837 PRIVATE
int mini_senda(struct proc
*caller_ptr
, asynmsg_t
*table
, size_t size
)
839 int i
, dst_p
, done
, do_notify
;
841 struct proc
*dst_ptr
;
844 vir_bytes table_v
= (vir_bytes
) table
;
847 privp
= priv(caller_ptr
);
848 if (!(privp
->s_flags
& SYS_PROC
))
851 "mini_senda: warning caller has no privilege structure\n");
856 privp
->s_asyntab
= -1;
857 privp
->s_asynsize
= 0;
861 /* Nothing to do, just return */
865 if(!(linaddr
= umap_local(caller_ptr
, D
, (vir_bytes
) table
,
866 size
* sizeof(*table
)))) {
867 printf("mini_senda: umap_local failed; 0x%lx len 0x%lx\n",
868 table
, size
* sizeof(*table
));
872 /* Limit size to something reasonable. An arbitrary choice is 16
873 * times the number of process table entries.
875 * (this check has been duplicated in sys_call but is left here
878 if (size
> 16*(NR_TASKS
+ NR_PROCS
))
886 for (i
= 0; i
<size
; i
++)
889 /* Read status word */
890 A_RETRIEVE(i
, flags
);
893 /* Skip empty entries */
897 /* Check for reserved bits in the flags field */
898 if (flags
& ~(AMF_VALID
|AMF_DONE
|AMF_NOTIFY
|AMF_NOREPLY
) ||
899 !(flags
& AMF_VALID
))
904 /* Skip entry if AMF_DONE is already set */
905 if (flags
& AMF_DONE
)
908 /* Get destination */
911 if (!isokendpt(tabent
.dst
, &dst_p
))
913 /* Bad destination, report the error */
914 tabent
.result
= EDEADSRCDST
;
916 tabent
.flags
= flags
| AMF_DONE
;
919 if (flags
& AMF_NOTIFY
)
924 if (iskerneln(dst_p
))
926 /* Asynchronous sends to the kernel are not allowed */
927 tabent
.result
= ECALLDENIED
;
929 tabent
.flags
= flags
| AMF_DONE
;
932 if (flags
& AMF_NOTIFY
)
937 if (!may_send_to(caller_ptr
, dst_p
))
939 /* Send denied by IPC mask */
940 tabent
.result
= ECALLDENIED
;
942 tabent
.flags
= flags
| AMF_DONE
;
945 if (flags
& AMF_NOTIFY
)
951 printf("mini_senda: entry[%d]: flags 0x%x dst %d/%d\n",
952 i
, tabent
.flags
, tabent
.dst
, dst_p
);
955 dst_ptr
= proc_addr(dst_p
);
957 /* RTS_NO_ENDPOINT should be removed */
958 if (dst_ptr
->p_rts_flags
& RTS_NO_ENDPOINT
)
960 tabent
.result
= EDEADSRCDST
;
962 tabent
.flags
= flags
| AMF_DONE
;
965 if (flags
& AMF_NOTIFY
)
970 /* Check if 'dst' is blocked waiting for this message.
971 * If AMF_NOREPLY is set, do not satisfy the receiving part of
974 if (WILLRECEIVE(dst_ptr
, caller_ptr
->p_endpoint
) &&
975 (!(flags
& AMF_NOREPLY
) ||
976 !(dst_ptr
->p_misc_flags
& MF_REPLY_PEND
)))
978 /* Destination is indeed waiting for this message. */
979 /* Copy message from sender. */
980 tabent
.result
= QueueMess(caller_ptr
->p_endpoint
,
981 linaddr
+ (vir_bytes
) &table
[i
].msg
-
982 (vir_bytes
) table
, dst_ptr
);
983 if(tabent
.result
== OK
)
984 RTS_UNSET(dst_ptr
, RTS_RECEIVING
);
987 tabent
.flags
= flags
| AMF_DONE
;
990 if (flags
& AMF_NOTIFY
)
996 /* Should inform receiver that something is pending */
997 dst_ptr
->p_misc_flags
|= MF_ASYNMSG
;
1003 printf("mini_senda: should notify caller\n");
1006 privp
->s_asyntab
= (vir_bytes
)table
;
1007 privp
->s_asynsize
= size
;
1013 /*===========================================================================*
1015 *===========================================================================*/
1016 PRIVATE
int try_async(caller_ptr
)
1017 struct proc
*caller_ptr
;
1021 struct proc
*src_ptr
;
1022 int postponed
= FALSE
;
1024 /* Try all privilege structures */
1025 for (privp
= BEG_PRIV_ADDR
; privp
< END_PRIV_ADDR
; ++privp
)
1027 if (privp
->s_proc_nr
== NONE
)
1030 src_ptr
= proc_addr(privp
->s_proc_nr
);
1032 vmassert(!(caller_ptr
->p_misc_flags
& MF_DELIVERMSG
));
1033 r
= try_one(src_ptr
, caller_ptr
, &postponed
);
1038 /* Nothing found, clear MF_ASYNMSG unless messages were postponed */
1039 if (postponed
== FALSE
)
1040 caller_ptr
->p_misc_flags
&= ~MF_ASYNMSG
;
1046 /*===========================================================================*
1048 *===========================================================================*/
1049 PRIVATE
int try_one(struct proc
*src_ptr
, struct proc
*dst_ptr
, int *postponed
)
1058 struct proc
*caller_ptr
;
1061 privp
= priv(src_ptr
);
1063 /* Basic validity checks */
1064 if (privp
->s_id
== USER_PRIV_ID
) return EAGAIN
;
1065 if (privp
->s_asynsize
== 0) return EAGAIN
;
1066 if (!may_send_to(src_ptr
, proc_nr(dst_ptr
))) return EAGAIN
;
1068 size
= privp
->s_asynsize
;
1069 table_v
= privp
->s_asyntab
;
1070 caller_ptr
= src_ptr
;
1072 dst_e
= dst_ptr
->p_endpoint
;
1074 /* Scan the table */
1076 for (i
= 0; i
<size
; i
++)
1078 /* Read status word */
1079 A_RETRIEVE(i
, flags
);
1080 flags
= tabent
.flags
;
1082 /* Skip empty entries */
1088 /* Check for reserved bits in the flags field */
1089 if (flags
& ~(AMF_VALID
|AMF_DONE
|AMF_NOTIFY
|AMF_NOREPLY
) ||
1090 !(flags
& AMF_VALID
))
1092 printf("try_one: bad bits in table\n");
1093 privp
->s_asynsize
= 0;
1097 /* Skip entry is AMF_DONE is already set */
1098 if (flags
& AMF_DONE
)
1103 /* Clear done. We are done when all entries are either empty
1104 * or done at the start of the call.
1108 /* Get destination */
1111 if (tabent
.dst
!= dst_e
)
1116 /* If AMF_NOREPLY is set, do not satisfy the receiving part of
1117 * a SENDREC. Do not unset MF_ASYNMSG later because of this,
1118 * though: this message is still to be delivered later.
1120 if ((flags
& AMF_NOREPLY
) &&
1121 (dst_ptr
->p_misc_flags
& MF_REPLY_PEND
))
1123 if (postponed
!= NULL
)
1129 /* Deliver message */
1131 r
= QueueMess(src_ptr
->p_endpoint
, vir2phys(&tabent
.msg
),
1135 A_INSERT(i
, result
);
1136 tabent
.flags
= flags
| AMF_DONE
;
1139 if (flags
& AMF_NOTIFY
)
1141 printf("try_one: should notify caller\n");
1146 privp
->s_asynsize
= 0;
1150 /*===========================================================================*
1152 *===========================================================================*/
1153 PUBLIC
void enqueue(rp
)
1154 register struct proc
*rp
; /* this process is now runnable */
1156 /* Add 'rp' to one of the queues of runnable processes. This function is
1157 * responsible for inserting a process into one of the scheduling queues.
1158 * The mechanism is implemented here. The actual scheduling policy is
1159 * defined in sched() and pick_proc().
1161 int q
; /* scheduling queue to use */
1162 int front
; /* add to front or back */
1164 NOREC_ENTER(enqueuefunc
);
1166 #if DEBUG_SCHED_CHECK
1167 if (rp
->p_ready
) panic("enqueue already ready process");
1170 /* Determine where to insert to process. */
1171 sched(rp
, &q
, &front
);
1175 /* Now add the process to the queue. */
1176 if (rdy_head
[q
] == NIL_PROC
) { /* add to empty queue */
1177 rdy_head
[q
] = rdy_tail
[q
] = rp
; /* create a new queue */
1178 rp
->p_nextready
= NIL_PROC
; /* mark new end */
1180 else if (front
) { /* add to head of queue */
1181 rp
->p_nextready
= rdy_head
[q
]; /* chain head of queue */
1182 rdy_head
[q
] = rp
; /* set new queue head */
1184 else { /* add to tail of queue */
1185 rdy_tail
[q
]->p_nextready
= rp
; /* chain tail of queue */
1186 rdy_tail
[q
] = rp
; /* set new queue tail */
1187 rp
->p_nextready
= NIL_PROC
; /* mark new end */
1190 #if DEBUG_SCHED_CHECK
1196 * enqueueing a process with a higher priority than the current one, it gets
1197 * preempted. The current process must be preemptible. Testing the priority
1198 * also makes sure that a process does not preempt itself
1201 if ((proc_ptr
->p_priority
> rp
->p_priority
) &&
1202 (priv(proc_ptr
)->s_flags
& PREEMPTIBLE
))
1203 RTS_SET(proc_ptr
, RTS_PREEMPTED
); /* calls dequeue() */
1205 #if DEBUG_SCHED_CHECK
1209 NOREC_RETURN(enqueuefunc
, );
1212 /*===========================================================================*
1214 *===========================================================================*/
1216 * put a process at the front of its run queue. It comes handy when a process is
1217 * preempted and removed from run queue to not to have a currently not-runnable
1218 * process on a run queue. We have to put this process back at the fron to be
1221 PRIVATE
void enqueue_head(struct proc
*rp
)
1223 int q
= rp
->p_priority
; /* scheduling queue to use */
1225 #if DEBUG_SCHED_CHECK
1226 if (rp
->p_ready
) panic("enqueue already ready process");
1230 * the process was runnable without its quantum expired when dequeued. A
1231 * process with no time left should vahe been handled else and differently
1233 vmassert(rp
->p_ticks_left
);
1238 /* Now add the process to the queue. */
1239 if (rdy_head
[q
] == NIL_PROC
) { /* add to empty queue */
1240 rdy_head
[q
] = rdy_tail
[q
] = rp
; /* create a new queue */
1241 rp
->p_nextready
= NIL_PROC
; /* mark new end */
1243 else /* add to head of queue */
1244 rp
->p_nextready
= rdy_head
[q
]; /* chain head of queue */
1245 rdy_head
[q
] = rp
; /* set new queue head */
1247 #if DEBUG_SCHED_CHECK
1253 /*===========================================================================*
1255 *===========================================================================*/
1256 PUBLIC
void dequeue(rp
)
1257 register struct proc
*rp
; /* this process is no longer runnable */
1259 /* A process must be removed from the scheduling queues, for example, because
1260 * it has blocked. If the currently active process is removed, a new process
1261 * is picked to run by calling pick_proc().
1263 register int q
= rp
->p_priority
; /* queue to use */
1264 register struct proc
**xpp
; /* iterate over queue */
1265 register struct proc
*prev_xp
;
1267 NOREC_ENTER(dequeuefunc
);
1269 #if DEBUG_STACK_CHECK
1270 /* Side-effect for kernel: check if the task's stack still is ok? */
1271 if (iskernelp(rp
)) {
1272 if (*priv(rp
)->s_stack_guard
!= STACK_GUARD
)
1273 panic("stack overrun by task: %d", proc_nr(rp
));
1277 #if DEBUG_SCHED_CHECK
1278 if (! rp
->p_ready
) panic("dequeue() already unready process");
1281 /* Now make sure that the process is not in its ready queue. Remove the
1282 * process if it is found. A process can be made unready even if it is not
1283 * running by being sent a signal that kills it.
1286 for (xpp
= &rdy_head
[q
]; *xpp
!= NIL_PROC
; xpp
= &(*xpp
)->p_nextready
) {
1288 if (*xpp
== rp
) { /* found process to remove */
1289 *xpp
= (*xpp
)->p_nextready
; /* replace with next chain */
1290 if (rp
== rdy_tail
[q
]) /* queue tail removed */
1291 rdy_tail
[q
] = prev_xp
; /* set new tail */
1293 #if DEBUG_SCHED_CHECK
1299 prev_xp
= *xpp
; /* save previous in chain */
1302 #if DEBUG_SCHED_CHECK
1306 NOREC_RETURN(dequeuefunc
, );
1309 /*===========================================================================*
1311 *===========================================================================*/
1312 PRIVATE
void sched(rp
, queue
, front
)
1313 register struct proc
*rp
; /* process to be scheduled */
1314 int *queue
; /* return: queue to use */
1315 int *front
; /* return: front or back */
1317 /* This function determines the scheduling policy. It is called whenever a
1318 * process must be added to one of the scheduling queues to decide where to
1319 * insert it. As a side-effect the process' priority may be updated.
1321 int time_left
= (rp
->p_ticks_left
> 0); /* quantum fully consumed */
1323 /* Check whether the process has time left. Otherwise give a new quantum
1324 * and lower the process' priority, unless the process already is in the
1327 if (! time_left
) { /* quantum consumed ? */
1328 rp
->p_ticks_left
= rp
->p_quantum_size
; /* give new quantum */
1329 if (rp
->p_priority
< (NR_SCHED_QUEUES
-1)) {
1330 rp
->p_priority
+= 1; /* lower priority */
1334 /* If there is time left, the process is added to the front of its queue,
1335 * so that it can immediately run. The queue to use simply is always the
1336 * process' current priority.
1338 *queue
= rp
->p_priority
;
1342 /*===========================================================================*
1344 *===========================================================================*/
1345 PRIVATE
struct proc
* pick_proc(void)
1347 /* Decide who to run now. A new process is selected an returned.
1348 * When a billable process is selected, record it in 'bill_ptr', so that the
1349 * clock task can tell who to bill for system time.
1351 register struct proc
*rp
; /* process to run */
1352 int q
; /* iterate over queues */
1354 /* Check each of the scheduling queues for ready processes. The number of
1355 * queues is defined in proc.h, and priorities are set in the task table.
1356 * The lowest queue contains IDLE, which is always ready.
1358 for (q
=0; q
< NR_SCHED_QUEUES
; q
++) {
1359 if(!(rp
= rdy_head
[q
])) {
1360 TRACE(VF_PICKPROC
, printf("queue %d empty\n", q
););
1363 TRACE(VF_PICKPROC
, printf("found %s / %d on queue %d\n",
1364 rp
->p_name
, rp
->p_endpoint
, q
););
1365 vmassert(!proc_is_runnable(rp
));
1366 if (priv(rp
)->s_flags
& BILLABLE
)
1367 bill_ptr
= rp
; /* bill for system time */
1373 /*===========================================================================*
1375 *===========================================================================*/
1376 #define Q_BALANCE_TICKS 100
1377 PUBLIC
void balance_queues(tp
)
1378 timer_t
*tp
; /* watchdog timer pointer */
1380 /* Check entire process table and give all process a higher priority. This
1381 * effectively means giving a new quantum. If a process already is at its
1382 * maximum priority, its quantum will be renewed.
1384 static timer_t queue_timer
; /* timer structure to use */
1385 register struct proc
* rp
; /* process table pointer */
1386 clock_t next_period
; /* time of next period */
1387 int ticks_added
= 0; /* total time added */
1389 for (rp
=BEG_PROC_ADDR
; rp
<END_PROC_ADDR
; rp
++) {
1390 if (! isemptyp(rp
)) { /* check slot use */
1391 if (rp
->p_priority
> rp
->p_max_priority
) { /* update priority? */
1392 if (proc_is_runnable(rp
)) dequeue(rp
); /* take off queue */
1393 ticks_added
+= rp
->p_quantum_size
; /* do accounting */
1394 rp
->p_priority
-= 1; /* raise priority */
1395 if (proc_is_runnable(rp
)) enqueue(rp
); /* put on queue */
1398 ticks_added
+= rp
->p_quantum_size
- rp
->p_ticks_left
;
1399 rp
->p_ticks_left
= rp
->p_quantum_size
; /* give new quantum */
1404 /* Now schedule a new watchdog timer to balance the queues again. The
1405 * period depends on the total amount of quantum ticks added.
1407 next_period
= MAX(Q_BALANCE_TICKS
, ticks_added
); /* calculate next */
1408 set_timer(&queue_timer
, get_uptime() + next_period
, balance_queues
);
1411 /*===========================================================================*
1413 *===========================================================================*/
1414 PUBLIC
struct proc
*endpoint_lookup(endpoint_t e
)
1418 if(!isokendpt(e
, &n
)) return NULL
;
1420 return proc_addr(n
);
1423 /*===========================================================================*
1425 *===========================================================================*/
1426 #if DEBUG_ENABLE_IPC_WARNINGS
1427 PUBLIC
int isokendpt_f(file
, line
, e
, p
, fatalflag
)
1431 PUBLIC
int isokendpt_f(e
, p
, fatalflag
)
1437 /* Convert an endpoint number into a process number.
1438 * Return nonzero if the process is alive with the corresponding
1439 * generation number, zero otherwise.
1441 * This function is called with file and line number by the
1442 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
1443 * otherwise without. This allows us to print the where the
1444 * conversion was attempted, making the errors verbose without
1445 * adding code for that at every call.
1447 * If fatalflag is nonzero, we must panic if the conversion doesn't
1450 *p
= _ENDPOINT_P(e
);
1451 if(!isokprocn(*p
)) {
1452 #if DEBUG_ENABLE_IPC_WARNINGS
1453 printf("kernel:%s:%d: bad endpoint %d: proc %d out of range\n",
1456 } else if(isemptyn(*p
)) {
1458 printf("kernel:%s:%d: bad endpoint %d: proc %d empty\n", file
, line
, e
, *p
);
1460 } else if(proc_addr(*p
)->p_endpoint
!= e
) {
1461 #if DEBUG_ENABLE_IPC_WARNINGS
1462 printf("kernel:%s:%d: bad endpoint %d: proc %d has ept %d (generation %d vs. %d)\n", file
, line
,
1463 e
, *p
, proc_addr(*p
)->p_endpoint
,
1464 _ENDPOINT_G(e
), _ENDPOINT_G(proc_addr(*p
)->p_endpoint
));
1467 if(!ok
&& fatalflag
) {
1468 panic("invalid endpoint: %d", e
);