vm: merge i386 and arm pagetable code
[minix.git] / kernel / proc.c
blob0518551e12a6305954d0263c62caf4eb85acfab6
1 /* This file contains essentially all of the process and message handling.
2 * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
3 * There is one entry point from the outside:
5 * sys_call: a system call, i.e., the kernel is trapped with an INT
7 * Changes:
8 * Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
9 * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
10 * May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
11 * May 24, 2005 new notification system call (Jorrit N. Herder)
12 * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
14 * The code here is critical to make everything work and is important for the
15 * overall performance of the system. A large fraction of the code deals with
16 * list manipulation. To make this both easy to understand and fast to execute
17 * pointer pointers are used throughout the code. Pointer pointers prevent
18 * exceptions for the head or tail of a linked list.
20 * node_t *queue, *new_node; // assume these as global variables
21 * node_t **xpp = &queue; // get pointer pointer to head of queue
22 * while (*xpp != NULL) // find last pointer of the linked list
23 * xpp = &(*xpp)->next; // get pointer to next pointer
24 * *xpp = new_node; // now replace the end (the NULL pointer)
25 * new_node->next = NULL; // and mark the new end of the list
27 * For example, when adding a new node to the end of the list, one normally
28 * makes an exception for an empty list and looks up the end of the list for
29 * nonempty lists. As shown above, this is not required with pointer pointers.
32 #include <minix/com.h>
33 #include <minix/ipcconst.h>
34 #include <stddef.h>
35 #include <signal.h>
36 #include <assert.h>
38 #include "kernel.h"
39 #include "vm.h"
40 #include "clock.h"
41 #include "spinlock.h"
42 #include "arch_proto.h"
44 #include <minix/syslib.h>
46 /* Scheduling and message passing functions */
47 static void idle(void);
48 /**
49 * Made public for use in clock.c (for user-space scheduling)
50 static int mini_send(struct proc *caller_ptr, endpoint_t dst_e, message
51 *m_ptr, int flags);
53 static int mini_receive(struct proc *caller_ptr, endpoint_t src,
54 message *m_ptr, int flags);
55 static int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t
56 size);
57 static int deadlock(int function, register struct proc *caller,
58 endpoint_t src_dst_e);
59 static int try_async(struct proc *caller_ptr);
60 static int try_one(struct proc *src_ptr, struct proc *dst_ptr);
61 static struct proc * pick_proc(void);
62 static void enqueue_head(struct proc *rp);
64 /* all idles share the same idle_priv structure */
65 static struct priv idle_priv;
67 static void set_idle_name(char * name, int n)
69 int i, c;
70 int p_z = 0;
72 if (n > 999)
73 n = 999;
75 name[0] = 'i';
76 name[1] = 'd';
77 name[2] = 'l';
78 name[3] = 'e';
80 for (i = 4, c = 100; c > 0; c /= 10) {
81 int digit;
83 digit = n / c;
84 n -= digit * c;
86 if (p_z || digit != 0 || c == 1) {
87 p_z = 1;
88 name[i++] = '0' + digit;
92 name[i] = '\0';
97 #define PICK_ANY 1
98 #define PICK_HIGHERONLY 2
100 #define BuildNotifyMessage(m_ptr, src, dst_ptr) \
101 (m_ptr)->m_type = NOTIFY_MESSAGE; \
102 (m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
103 switch (src) { \
104 case HARDWARE: \
105 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
106 priv(dst_ptr)->s_int_pending = 0; \
107 break; \
108 case SYSTEM: \
109 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \
110 priv(dst_ptr)->s_sig_pending = 0; \
111 break; \
114 void proc_init(void)
116 struct proc * rp;
117 struct priv *sp;
118 int i;
120 /* Clear the process table. Anounce each slot as empty and set up
121 * mappings for proc_addr() and proc_nr() macros. Do the same for the
122 * table with privilege structures for the system processes.
124 for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
125 rp->p_rts_flags = RTS_SLOT_FREE;/* initialize free slot */
126 rp->p_magic = PMAGIC;
127 rp->p_nr = i; /* proc number from ptr */
128 rp->p_endpoint = _ENDPOINT(0, rp->p_nr); /* generation no. 0 */
129 rp->p_scheduler = NULL; /* no user space scheduler */
130 rp->p_priority = 0; /* no priority */
131 rp->p_quantum_size_ms = 0; /* no quantum size */
133 /* arch-specific initialization */
134 arch_proc_reset(rp);
136 for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
137 sp->s_proc_nr = NONE; /* initialize as free */
138 sp->s_id = (sys_id_t) i; /* priv structure index */
139 ppriv_addr[i] = sp; /* priv ptr from number */
140 sp->s_sig_mgr = NONE; /* clear signal managers */
141 sp->s_bak_sig_mgr = NONE;
144 idle_priv.s_flags = IDL_F;
145 /* initialize IDLE structures for every CPU */
146 for (i = 0; i < CONFIG_MAX_CPUS; i++) {
147 struct proc * ip = get_cpu_var_ptr(i, idle_proc);
148 ip->p_endpoint = IDLE;
149 ip->p_priv = &idle_priv;
150 /* must not let idle ever get scheduled */
151 ip->p_rts_flags |= RTS_PROC_STOP;
152 set_idle_name(ip->p_name, i);
156 static void switch_address_space_idle(void)
158 #ifdef CONFIG_SMP
160 * currently we bet that VM is always alive and its pages available so
161 * when the CPU wakes up the kernel is mapped and no surprises happen.
162 * This is only a problem if more than 1 cpus are available
164 switch_address_space(proc_addr(VM_PROC_NR));
165 #endif
168 /*===========================================================================*
169 * idle *
170 *===========================================================================*/
171 static void idle(void)
173 struct proc * p;
175 /* This function is called whenever there is no work to do.
176 * Halt the CPU, and measure how many timestamp counter ticks are
177 * spent not doing anything. This allows test setups to measure
178 * the CPU utiliziation of certain workloads with high precision.
181 p = get_cpulocal_var(proc_ptr) = get_cpulocal_var_ptr(idle_proc);
182 if (priv(p)->s_flags & BILLABLE)
183 get_cpulocal_var(bill_ptr) = p;
185 switch_address_space_idle();
187 #ifdef CONFIG_SMP
188 get_cpulocal_var(cpu_is_idle) = 1;
189 /* we don't need to keep time on APs as it is handled on the BSP */
190 if (cpuid != bsp_cpu_id)
191 stop_local_timer();
192 else
193 #endif
196 * If the timer has expired while in kernel we must
197 * rearm it before we go to sleep
199 restart_local_timer();
202 /* start accounting for the idle time */
203 context_stop(proc_addr(KERNEL));
204 #if !SPROFILE
205 halt_cpu();
206 #else
207 if (!sprofiling)
208 halt_cpu();
209 else {
210 volatile int * v;
212 v = get_cpulocal_var_ptr(idle_interrupted);
213 interrupts_enable();
214 while (!*v)
215 arch_pause();
216 interrupts_disable();
217 *v = 0;
219 #endif
221 * end of accounting for the idle task does not happen here, the kernel
222 * is handling stuff for quite a while before it gets back here!
226 /*===========================================================================*
227 * switch_to_user *
228 *===========================================================================*/
229 void switch_to_user(void)
231 /* This function is called an instant before proc_ptr is
232 * to be scheduled again.
234 struct proc * p;
235 #ifdef CONFIG_SMP
236 int tlb_must_refresh = 0;
237 #endif
239 p = get_cpulocal_var(proc_ptr);
241 * if the current process is still runnable check the misc flags and let
242 * it run unless it becomes not runnable in the meantime
244 if (proc_is_runnable(p))
245 goto check_misc_flags;
247 * if a process becomes not runnable while handling the misc flags, we
248 * need to pick a new one here and start from scratch. Also if the
249 * current process wasn' runnable, we pick a new one here
251 not_runnable_pick_new:
252 if (proc_is_preempted(p)) {
253 p->p_rts_flags &= ~RTS_PREEMPTED;
254 if (proc_is_runnable(p)) {
255 if (!is_zero64(p->p_cpu_time_left))
256 enqueue_head(p);
257 else
258 enqueue(p);
263 * if we have no process to run, set IDLE as the current process for
264 * time accounting and put the cpu in and idle state. After the next
265 * timer interrupt the execution resumes here and we can pick another
266 * process. If there is still nothing runnable we "schedule" IDLE again
268 while (!(p = pick_proc())) {
269 idle();
272 /* update the global variable */
273 get_cpulocal_var(proc_ptr) = p;
275 #ifdef CONFIG_SMP
276 if (p->p_misc_flags & MF_FLUSH_TLB && get_cpulocal_var(ptproc) == p)
277 tlb_must_refresh = 1;
278 #endif
279 switch_address_space(p);
281 check_misc_flags:
283 assert(p);
284 assert(proc_is_runnable(p));
285 while (p->p_misc_flags &
286 (MF_KCALL_RESUME | MF_DELIVERMSG |
287 MF_SC_DEFER | MF_SC_TRACE | MF_SC_ACTIVE)) {
289 assert(proc_is_runnable(p));
290 if (p->p_misc_flags & MF_KCALL_RESUME) {
291 kernel_call_resume(p);
293 else if (p->p_misc_flags & MF_DELIVERMSG) {
294 TRACE(VF_SCHEDULING, printf("delivering to %s / %d\n",
295 p->p_name, p->p_endpoint););
296 delivermsg(p);
298 else if (p->p_misc_flags & MF_SC_DEFER) {
299 /* Perform the system call that we deferred earlier. */
301 assert (!(p->p_misc_flags & MF_SC_ACTIVE));
303 arch_do_syscall(p);
305 /* If the process is stopped for signal delivery, and
306 * not blocked sending a message after the system call,
307 * inform PM.
309 if ((p->p_misc_flags & MF_SIG_DELAY) &&
310 !RTS_ISSET(p, RTS_SENDING))
311 sig_delay_done(p);
313 else if (p->p_misc_flags & MF_SC_TRACE) {
314 /* Trigger a system call leave event if this was a
315 * system call. We must do this after processing the
316 * other flags above, both for tracing correctness and
317 * to be able to use 'break'.
319 if (!(p->p_misc_flags & MF_SC_ACTIVE))
320 break;
322 p->p_misc_flags &=
323 ~(MF_SC_TRACE | MF_SC_ACTIVE);
325 /* Signal the "leave system call" event.
326 * Block the process.
328 cause_sig(proc_nr(p), SIGTRAP);
330 else if (p->p_misc_flags & MF_SC_ACTIVE) {
331 /* If MF_SC_ACTIVE was set, remove it now:
332 * we're leaving the system call.
334 p->p_misc_flags &= ~MF_SC_ACTIVE;
336 break;
340 * the selected process might not be runnable anymore. We have
341 * to checkit and schedule another one
343 if (!proc_is_runnable(p))
344 goto not_runnable_pick_new;
347 * check the quantum left before it runs again. We must do it only here
348 * as we are sure that a possible out-of-quantum message to the
349 * scheduler will not collide with the regular ipc
351 if (is_zero64(p->p_cpu_time_left))
352 proc_no_time(p);
354 * After handling the misc flags the selected process might not be
355 * runnable anymore. We have to checkit and schedule another one
357 if (!proc_is_runnable(p))
358 goto not_runnable_pick_new;
360 TRACE(VF_SCHEDULING, printf("cpu %d starting %s / %d "
361 "pc 0x%08x\n",
362 cpuid, p->p_name, p->p_endpoint, p->p_reg.pc););
363 #if DEBUG_TRACE
364 p->p_schedules++;
365 #endif
367 p = arch_finish_switch_to_user();
368 assert(!is_zero64(p->p_cpu_time_left));
370 context_stop(proc_addr(KERNEL));
372 /* If the process isn't the owner of FPU, enable the FPU exception */
373 if(get_cpulocal_var(fpu_owner) != p)
374 enable_fpu_exception();
375 else
376 disable_fpu_exception();
378 /* If MF_CONTEXT_SET is set, don't clobber process state within
379 * the kernel. The next kernel entry is OK again though.
381 p->p_misc_flags &= ~MF_CONTEXT_SET;
383 #if defined(__i386__)
384 assert(p->p_seg.p_cr3 != 0);
385 #elif defined(__arm__)
386 assert(p->p_seg.p_ttbr != 0);
387 #endif
388 #ifdef CONFIG_SMP
389 if (p->p_misc_flags & MF_FLUSH_TLB) {
390 if (tlb_must_refresh)
391 refresh_tlb();
392 p->p_misc_flags &= ~MF_FLUSH_TLB;
394 #endif
396 restart_local_timer();
399 * restore_user_context() carries out the actual mode switch from kernel
400 * to userspace. This function does not return
402 restore_user_context(p);
403 NOT_REACHABLE;
407 * handler for all synchronous IPC calls
409 static int do_sync_ipc(struct proc * caller_ptr, /* who made the call */
410 int call_nr, /* system call number and flags */
411 endpoint_t src_dst_e, /* src or dst of the call */
412 message *m_ptr) /* users pointer to a message */
414 int result; /* the system call's result */
415 int src_dst_p; /* Process slot number */
416 char *callname;
418 /* Check destination. RECEIVE is the only call that accepts ANY (in addition
419 * to a real endpoint). The other calls (SEND, SENDREC, and NOTIFY) require an
420 * endpoint to corresponds to a process. In addition, it is necessary to check
421 * whether a process is allowed to send to a given destination.
423 assert(call_nr != SENDA);
425 /* Only allow non-negative call_nr values less than 32 */
426 if (call_nr < 0 || call_nr > IPCNO_HIGHEST || call_nr >= 32
427 || !(callname = ipc_call_names[call_nr])) {
428 #if DEBUG_ENABLE_IPC_WARNINGS
429 printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
430 call_nr, proc_nr(caller_ptr), src_dst_e);
431 #endif
432 return(ETRAPDENIED); /* trap denied by mask or kernel */
435 if (src_dst_e == ANY)
437 if (call_nr != RECEIVE)
439 #if 0
440 printf("sys_call: %s by %d with bad endpoint %d\n",
441 callname,
442 proc_nr(caller_ptr), src_dst_e);
443 #endif
444 return EINVAL;
446 src_dst_p = (int) src_dst_e;
448 else
450 /* Require a valid source and/or destination process. */
451 if(!isokendpt(src_dst_e, &src_dst_p)) {
452 #if 0
453 printf("sys_call: %s by %d with bad endpoint %d\n",
454 callname,
455 proc_nr(caller_ptr), src_dst_e);
456 #endif
457 return EDEADSRCDST;
460 /* If the call is to send to a process, i.e., for SEND, SENDNB,
461 * SENDREC or NOTIFY, verify that the caller is allowed to send to
462 * the given destination.
464 if (call_nr != RECEIVE)
466 if (!may_send_to(caller_ptr, src_dst_p)) {
467 #if DEBUG_ENABLE_IPC_WARNINGS
468 printf(
469 "sys_call: ipc mask denied %s from %d to %d\n",
470 callname,
471 caller_ptr->p_endpoint, src_dst_e);
472 #endif
473 return(ECALLDENIED); /* call denied by ipc mask */
478 /* Check if the process has privileges for the requested call. Calls to the
479 * kernel may only be SENDREC, because tasks always reply and may not block
480 * if the caller doesn't do receive().
482 if (!(priv(caller_ptr)->s_trap_mask & (1 << call_nr))) {
483 #if DEBUG_ENABLE_IPC_WARNINGS
484 printf("sys_call: %s not allowed, caller %d, src_dst %d\n",
485 callname, proc_nr(caller_ptr), src_dst_p);
486 #endif
487 return(ETRAPDENIED); /* trap denied by mask or kernel */
490 if (call_nr != SENDREC && call_nr != RECEIVE && iskerneln(src_dst_p)) {
491 #if DEBUG_ENABLE_IPC_WARNINGS
492 printf("sys_call: trap %s not allowed, caller %d, src_dst %d\n",
493 callname, proc_nr(caller_ptr), src_dst_e);
494 #endif
495 return(ETRAPDENIED); /* trap denied by mask or kernel */
498 switch(call_nr) {
499 case SENDREC:
500 /* A flag is set so that notifications cannot interrupt SENDREC. */
501 caller_ptr->p_misc_flags |= MF_REPLY_PEND;
502 /* fall through */
503 case SEND:
504 result = mini_send(caller_ptr, src_dst_e, m_ptr, 0);
505 if (call_nr == SEND || result != OK)
506 break; /* done, or SEND failed */
507 /* fall through for SENDREC */
508 case RECEIVE:
509 if (call_nr == RECEIVE) {
510 caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
511 IPC_STATUS_CLEAR(caller_ptr); /* clear IPC status code */
513 result = mini_receive(caller_ptr, src_dst_e, m_ptr, 0);
514 break;
515 case NOTIFY:
516 result = mini_notify(caller_ptr, src_dst_e);
517 break;
518 case SENDNB:
519 result = mini_send(caller_ptr, src_dst_e, m_ptr, NON_BLOCKING);
520 break;
521 default:
522 result = EBADCALL; /* illegal system call */
525 /* Now, return the result of the system call to the caller. */
526 return(result);
529 int do_ipc(reg_t r1, reg_t r2, reg_t r3)
531 struct proc *const caller_ptr = get_cpulocal_var(proc_ptr); /* get pointer to caller */
532 int call_nr = (int) r1;
534 assert(!RTS_ISSET(caller_ptr, RTS_SLOT_FREE));
536 /* bill kernel time to this process. */
537 kbill_ipc = caller_ptr;
539 /* If this process is subject to system call tracing, handle that first. */
540 if (caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) {
541 /* Are we tracing this process, and is it the first sys_call entry? */
542 if ((caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) ==
543 MF_SC_TRACE) {
544 /* We must notify the tracer before processing the actual
545 * system call. If we don't, the tracer could not obtain the
546 * input message. Postpone the entire system call.
548 caller_ptr->p_misc_flags &= ~MF_SC_TRACE;
549 caller_ptr->p_misc_flags |= MF_SC_DEFER;
551 /* Signal the "enter system call" event. Block the process. */
552 cause_sig(proc_nr(caller_ptr), SIGTRAP);
554 /* Preserve the return register's value. */
555 return caller_ptr->p_reg.retreg;
558 /* If the MF_SC_DEFER flag is set, the syscall is now being resumed. */
559 caller_ptr->p_misc_flags &= ~MF_SC_DEFER;
561 assert (!(caller_ptr->p_misc_flags & MF_SC_ACTIVE));
563 /* Set a flag to allow reliable tracing of leaving the system call. */
564 caller_ptr->p_misc_flags |= MF_SC_ACTIVE;
567 if(caller_ptr->p_misc_flags & MF_DELIVERMSG) {
568 panic("sys_call: MF_DELIVERMSG on for %s / %d\n",
569 caller_ptr->p_name, caller_ptr->p_endpoint);
572 /* Now check if the call is known and try to perform the request. The only
573 * system calls that exist in MINIX are sending and receiving messages.
574 * - SENDREC: combines SEND and RECEIVE in a single system call
575 * - SEND: sender blocks until its message has been delivered
576 * - RECEIVE: receiver blocks until an acceptable message has arrived
577 * - NOTIFY: asynchronous call; deliver notification or mark pending
578 * - SENDA: list of asynchronous send requests
580 switch(call_nr) {
581 case SENDREC:
582 case SEND:
583 case RECEIVE:
584 case NOTIFY:
585 case SENDNB:
587 /* Process accounting for scheduling */
588 caller_ptr->p_accounting.ipc_sync++;
590 return do_sync_ipc(caller_ptr, call_nr, (endpoint_t) r2,
591 (message *) r3);
593 case SENDA:
596 * Get and check the size of the argument in bytes as it is a
597 * table
599 size_t msg_size = (size_t) r2;
601 /* Process accounting for scheduling */
602 caller_ptr->p_accounting.ipc_async++;
604 /* Limit size to something reasonable. An arbitrary choice is 16
605 * times the number of process table entries.
607 if (msg_size > 16*(NR_TASKS + NR_PROCS))
608 return EDOM;
609 return mini_senda(caller_ptr, (asynmsg_t *) r3, msg_size);
611 case MINIX_KERNINFO:
613 /* It might not be initialized yet. */
614 if(!minix_kerninfo_user) {
615 return EBADCALL;
618 arch_set_secondary_ipc_return(caller_ptr, minix_kerninfo_user);
619 return OK;
621 default:
622 return EBADCALL; /* illegal system call */
626 /*===========================================================================*
627 * deadlock *
628 *===========================================================================*/
629 static int deadlock(function, cp, src_dst_e)
630 int function; /* trap number */
631 register struct proc *cp; /* pointer to caller */
632 endpoint_t src_dst_e; /* src or dst process */
634 /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
635 * a cyclic dependency of blocking send and receive calls. The only cyclic
636 * depency that is not fatal is if the caller and target directly SEND(REC)
637 * and RECEIVE to each other. If a deadlock is found, the group size is
638 * returned. Otherwise zero is returned.
640 register struct proc *xp; /* process pointer */
641 int group_size = 1; /* start with only caller */
642 #if DEBUG_ENABLE_IPC_WARNINGS
643 static struct proc *processes[NR_PROCS + NR_TASKS];
644 processes[0] = cp;
645 #endif
647 while (src_dst_e != ANY) { /* check while process nr */
648 int src_dst_slot;
649 okendpt(src_dst_e, &src_dst_slot);
650 xp = proc_addr(src_dst_slot); /* follow chain of processes */
651 assert(proc_ptr_ok(xp));
652 assert(!RTS_ISSET(xp, RTS_SLOT_FREE));
653 #if DEBUG_ENABLE_IPC_WARNINGS
654 processes[group_size] = xp;
655 #endif
656 group_size ++; /* extra process in group */
658 /* Check whether the last process in the chain has a dependency. If it
659 * has not, the cycle cannot be closed and we are done.
661 if((src_dst_e = P_BLOCKEDON(xp)) == NONE)
662 return 0;
664 /* Now check if there is a cyclic dependency. For group sizes of two,
665 * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
666 * or other combinations indicate a deadlock.
668 if (src_dst_e == cp->p_endpoint) { /* possible deadlock */
669 if (group_size == 2) { /* caller and src_dst */
670 /* The function number is magically converted to flags. */
671 if ((xp->p_rts_flags ^ (function << 2)) & RTS_SENDING) {
672 return(0); /* not a deadlock */
675 #if DEBUG_ENABLE_IPC_WARNINGS
677 int i;
678 printf("deadlock between these processes:\n");
679 for(i = 0; i < group_size; i++) {
680 printf(" %10s ", processes[i]->p_name);
682 printf("\n\n");
683 for(i = 0; i < group_size; i++) {
684 print_proc(processes[i]);
685 proc_stacktrace(processes[i]);
688 #endif
689 return(group_size); /* deadlock found */
692 return(0); /* not a deadlock */
695 /*===========================================================================*
696 * has_pending *
697 *===========================================================================*/
698 static int has_pending(sys_map_t *map, int src_p, int asynm)
700 /* Check to see if there is a pending message from the desired source
701 * available.
704 int src_id;
705 sys_id_t id = NULL_PRIV_ID;
706 #ifdef CONFIG_SMP
707 struct proc * p;
708 #endif
710 /* Either check a specific bit in the mask map, or find the first bit set in
711 * it (if any), depending on whether the receive was called on a specific
712 * source endpoint.
714 if (src_p != ANY) {
715 src_id = nr_to_id(src_p);
716 if (get_sys_bit(*map, src_id)) {
717 #ifdef CONFIG_SMP
718 p = proc_addr(id_to_nr(src_id));
719 if (asynm && RTS_ISSET(p, RTS_VMINHIBIT))
720 p->p_misc_flags |= MF_SENDA_VM_MISS;
721 else
722 #endif
723 id = src_id;
725 } else {
726 /* Find a source with a pending message */
727 for (src_id = 0; src_id < NR_SYS_PROCS; src_id += BITCHUNK_BITS) {
728 if (get_sys_bits(*map, src_id) != 0) {
729 #ifdef CONFIG_SMP
730 while (src_id < NR_SYS_PROCS) {
731 while (!get_sys_bit(*map, src_id)) {
732 if (src_id == NR_SYS_PROCS)
733 goto quit_search;
734 src_id++;
736 p = proc_addr(id_to_nr(src_id));
738 * We must not let kernel fiddle with pages of a
739 * process which are currently being changed by
740 * VM. It is dangerous! So do not report such a
741 * process as having pending async messages.
742 * Skip it.
744 if (asynm && RTS_ISSET(p, RTS_VMINHIBIT)) {
745 p->p_misc_flags |= MF_SENDA_VM_MISS;
746 src_id++;
747 } else
748 goto quit_search;
750 #else
751 while (!get_sys_bit(*map, src_id)) src_id++;
752 goto quit_search;
753 #endif
757 quit_search:
758 if (src_id < NR_SYS_PROCS) /* Found one */
759 id = src_id;
762 return(id);
765 /*===========================================================================*
766 * has_pending_notify *
767 *===========================================================================*/
768 int has_pending_notify(struct proc * caller, int src_p)
770 sys_map_t * map = &priv(caller)->s_notify_pending;
771 return has_pending(map, src_p, 0);
774 /*===========================================================================*
775 * has_pending_asend *
776 *===========================================================================*/
777 int has_pending_asend(struct proc * caller, int src_p)
779 sys_map_t * map = &priv(caller)->s_asyn_pending;
780 return has_pending(map, src_p, 1);
783 /*===========================================================================*
784 * unset_notify_pending *
785 *===========================================================================*/
786 void unset_notify_pending(struct proc * caller, int src_p)
788 sys_map_t * map = &priv(caller)->s_notify_pending;
789 unset_sys_bit(*map, src_p);
792 /*===========================================================================*
793 * mini_send *
794 *===========================================================================*/
795 int mini_send(
796 register struct proc *caller_ptr, /* who is trying to send a message? */
797 endpoint_t dst_e, /* to whom is message being sent? */
798 message *m_ptr, /* pointer to message buffer */
799 const int flags
802 /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
803 * for this message, copy the message to it and unblock 'dst'. If 'dst' is
804 * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
806 register struct proc *dst_ptr;
807 register struct proc **xpp;
808 int dst_p;
809 dst_p = _ENDPOINT_P(dst_e);
810 dst_ptr = proc_addr(dst_p);
812 if (RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT))
814 return EDEADSRCDST;
817 /* Check if 'dst' is blocked waiting for this message. The destination's
818 * RTS_SENDING flag may be set when its SENDREC call blocked while sending.
820 if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint)) {
821 int call;
822 /* Destination is indeed waiting for this message. */
823 assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));
825 if (!(flags & FROM_KERNEL)) {
826 if(copy_msg_from_user(m_ptr, &dst_ptr->p_delivermsg))
827 return EFAULT;
828 } else {
829 dst_ptr->p_delivermsg = *m_ptr;
830 IPC_STATUS_ADD_FLAGS(dst_ptr, IPC_FLG_MSG_FROM_KERNEL);
833 dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
834 dst_ptr->p_misc_flags |= MF_DELIVERMSG;
836 call = (caller_ptr->p_misc_flags & MF_REPLY_PEND ? SENDREC
837 : (flags & NON_BLOCKING ? SENDNB : SEND));
838 IPC_STATUS_ADD_CALL(dst_ptr, call);
840 if (dst_ptr->p_misc_flags & MF_REPLY_PEND)
841 dst_ptr->p_misc_flags &= ~MF_REPLY_PEND;
843 RTS_UNSET(dst_ptr, RTS_RECEIVING);
845 #if DEBUG_IPC_HOOK
846 hook_ipc_msgsend(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
847 hook_ipc_msgrecv(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
848 #endif
849 } else {
850 if(flags & NON_BLOCKING) {
851 return(ENOTREADY);
854 /* Check for a possible deadlock before actually blocking. */
855 if (deadlock(SEND, caller_ptr, dst_e)) {
856 return(ELOCKED);
859 /* Destination is not waiting. Block and dequeue caller. */
860 if (!(flags & FROM_KERNEL)) {
861 if(copy_msg_from_user(m_ptr, &caller_ptr->p_sendmsg))
862 return EFAULT;
863 } else {
864 caller_ptr->p_sendmsg = *m_ptr;
866 * we need to remember that this message is from kernel so we
867 * can set the delivery status flags when the message is
868 * actually delivered
870 caller_ptr->p_misc_flags |= MF_SENDING_FROM_KERNEL;
873 RTS_SET(caller_ptr, RTS_SENDING);
874 caller_ptr->p_sendto_e = dst_e;
876 /* Process is now blocked. Put in on the destination's queue. */
877 assert(caller_ptr->p_q_link == NULL);
878 xpp = &dst_ptr->p_caller_q; /* find end of list */
879 while (*xpp) xpp = &(*xpp)->p_q_link;
880 *xpp = caller_ptr; /* add caller to end */
882 #if DEBUG_IPC_HOOK
883 hook_ipc_msgsend(&caller_ptr->p_sendmsg, caller_ptr, dst_ptr);
884 #endif
886 return(OK);
889 /*===========================================================================*
890 * mini_receive *
891 *===========================================================================*/
892 static int mini_receive(struct proc * caller_ptr,
893 endpoint_t src_e, /* which message source is wanted */
894 message * m_buff_usr, /* pointer to message buffer */
895 const int flags)
897 /* A process or task wants to get a message. If a message is already queued,
898 * acquire it and deblock the sender. If no message from the desired source
899 * is available block the caller.
901 register struct proc **xpp;
902 int r, src_id, src_proc_nr, src_p;
904 assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
906 /* This is where we want our message. */
907 caller_ptr->p_delivermsg_vir = (vir_bytes) m_buff_usr;
909 if(src_e == ANY) src_p = ANY;
910 else
912 okendpt(src_e, &src_p);
913 if (RTS_ISSET(proc_addr(src_p), RTS_NO_ENDPOINT))
915 return EDEADSRCDST;
920 /* Check to see if a message from desired source is already available. The
921 * caller's RTS_SENDING flag may be set if SENDREC couldn't send. If it is
922 * set, the process should be blocked.
924 if (!RTS_ISSET(caller_ptr, RTS_SENDING)) {
926 /* Check if there are pending notifications, except for SENDREC. */
927 if (! (caller_ptr->p_misc_flags & MF_REPLY_PEND)) {
929 /* Check for pending notifications */
930 if ((src_id = has_pending_notify(caller_ptr, src_p)) != NULL_PRIV_ID) {
931 endpoint_t hisep;
933 src_proc_nr = id_to_nr(src_id); /* get source proc */
934 #if DEBUG_ENABLE_IPC_WARNINGS
935 if(src_proc_nr == NONE) {
936 printf("mini_receive: sending notify from NONE\n");
938 #endif
939 assert(src_proc_nr != NONE);
940 unset_notify_pending(caller_ptr, src_id); /* no longer pending */
942 /* Found a suitable source, deliver the notification message. */
943 hisep = proc_addr(src_proc_nr)->p_endpoint;
944 assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
945 assert(src_e == ANY || hisep == src_e);
947 /* assemble message */
948 BuildNotifyMessage(&caller_ptr->p_delivermsg, src_proc_nr, caller_ptr);
949 caller_ptr->p_delivermsg.m_source = hisep;
950 caller_ptr->p_misc_flags |= MF_DELIVERMSG;
952 IPC_STATUS_ADD_CALL(caller_ptr, NOTIFY);
954 goto receive_done;
958 /* Check for pending asynchronous messages */
959 if (has_pending_asend(caller_ptr, src_p) != NULL_PRIV_ID) {
960 if (src_p != ANY)
961 r = try_one(proc_addr(src_p), caller_ptr);
962 else
963 r = try_async(caller_ptr);
965 if (r == OK) {
966 IPC_STATUS_ADD_CALL(caller_ptr, SENDA);
967 goto receive_done;
971 /* Check caller queue. Use pointer pointers to keep code simple. */
972 xpp = &caller_ptr->p_caller_q;
973 while (*xpp) {
974 struct proc * sender = *xpp;
976 if (src_e == ANY || src_p == proc_nr(sender)) {
977 int call;
978 assert(!RTS_ISSET(sender, RTS_SLOT_FREE));
979 assert(!RTS_ISSET(sender, RTS_NO_ENDPOINT));
981 /* Found acceptable message. Copy it and update status. */
982 assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
983 caller_ptr->p_delivermsg = sender->p_sendmsg;
984 caller_ptr->p_delivermsg.m_source = sender->p_endpoint;
985 caller_ptr->p_misc_flags |= MF_DELIVERMSG;
986 RTS_UNSET(sender, RTS_SENDING);
988 call = (sender->p_misc_flags & MF_REPLY_PEND ? SENDREC : SEND);
989 IPC_STATUS_ADD_CALL(caller_ptr, call);
992 * if the message is originaly from the kernel on behalf of this
993 * process, we must send the status flags accordingly
995 if (sender->p_misc_flags & MF_SENDING_FROM_KERNEL) {
996 IPC_STATUS_ADD_FLAGS(caller_ptr, IPC_FLG_MSG_FROM_KERNEL);
997 /* we can clean the flag now, not need anymore */
998 sender->p_misc_flags &= ~MF_SENDING_FROM_KERNEL;
1000 if (sender->p_misc_flags & MF_SIG_DELAY)
1001 sig_delay_done(sender);
1003 #if DEBUG_IPC_HOOK
1004 hook_ipc_msgrecv(&caller_ptr->p_delivermsg, *xpp, caller_ptr);
1005 #endif
1007 *xpp = sender->p_q_link; /* remove from queue */
1008 sender->p_q_link = NULL;
1009 goto receive_done;
1011 xpp = &sender->p_q_link; /* proceed to next */
1015 /* No suitable message is available or the caller couldn't send in SENDREC.
1016 * Block the process trying to receive, unless the flags tell otherwise.
1018 if ( ! (flags & NON_BLOCKING)) {
1019 /* Check for a possible deadlock before actually blocking. */
1020 if (deadlock(RECEIVE, caller_ptr, src_e)) {
1021 return(ELOCKED);
1024 caller_ptr->p_getfrom_e = src_e;
1025 RTS_SET(caller_ptr, RTS_RECEIVING);
1026 return(OK);
1027 } else {
1028 return(ENOTREADY);
1031 receive_done:
1032 if (caller_ptr->p_misc_flags & MF_REPLY_PEND)
1033 caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
1034 return OK;
1037 /*===========================================================================*
1038 * mini_notify *
1039 *===========================================================================*/
1040 int mini_notify(
1041 const struct proc *caller_ptr, /* sender of the notification */
1042 endpoint_t dst_e /* which process to notify */
1045 register struct proc *dst_ptr;
1046 int src_id; /* source id for late delivery */
1047 int dst_p;
1049 if (!isokendpt(dst_e, &dst_p)) {
1050 util_stacktrace();
1051 printf("mini_notify: bogus endpoint %d\n", dst_e);
1052 return EDEADSRCDST;
1055 dst_ptr = proc_addr(dst_p);
1057 /* Check to see if target is blocked waiting for this message. A process
1058 * can be both sending and receiving during a SENDREC system call.
1060 if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
1061 ! (dst_ptr->p_misc_flags & MF_REPLY_PEND)) {
1062 /* Destination is indeed waiting for a message. Assemble a notification
1063 * message and deliver it. Copy from pseudo-source HARDWARE, since the
1064 * message is in the kernel's address space.
1066 assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));
1068 BuildNotifyMessage(&dst_ptr->p_delivermsg, proc_nr(caller_ptr), dst_ptr);
1069 dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
1070 dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1072 IPC_STATUS_ADD_CALL(dst_ptr, NOTIFY);
1073 RTS_UNSET(dst_ptr, RTS_RECEIVING);
1075 return(OK);
1078 /* Destination is not ready to receive the notification. Add it to the
1079 * bit map with pending notifications. Note the indirectness: the privilege id
1080 * instead of the process number is used in the pending bit map.
1082 src_id = priv(caller_ptr)->s_id;
1083 set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
1084 return(OK);
1087 #define ASCOMPLAIN(caller, entry, field) \
1088 printf("kernel:%s:%d: asyn failed for %s in %s " \
1089 "(%d/%d, tab 0x%lx)\n",__FILE__,__LINE__, \
1090 field, caller->p_name, entry, priv(caller)->s_asynsize, priv(caller)->s_asyntab)
1092 #define A_RETR_FLD(entry, field) \
1093 if(data_copy(caller_ptr->p_endpoint, \
1094 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
1095 KERNEL, (vir_bytes) &tabent.field, \
1096 sizeof(tabent.field)) != OK) {\
1097 ASCOMPLAIN(caller_ptr, entry, #field); \
1098 r = EFAULT; \
1099 goto asyn_error; \
1102 #define A_RETR(entry) do { \
1103 if (data_copy( \
1104 caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
1105 KERNEL, (vir_bytes) &tabent, \
1106 sizeof(tabent)) != OK) { \
1107 ASCOMPLAIN(caller_ptr, entry, "message entry"); \
1108 r = EFAULT; \
1109 goto asyn_error; \
1111 } while(0)
1113 #define A_INSRT_FLD(entry, field) \
1114 if(data_copy(KERNEL, (vir_bytes) &tabent.field, \
1115 caller_ptr->p_endpoint, \
1116 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
1117 sizeof(tabent.field)) != OK) {\
1118 ASCOMPLAIN(caller_ptr, entry, #field); \
1119 r = EFAULT; \
1120 goto asyn_error; \
1123 #define A_INSRT(entry) do { \
1124 if (data_copy(KERNEL, (vir_bytes) &tabent, \
1125 caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
1126 sizeof(tabent)) != OK) { \
1127 ASCOMPLAIN(caller_ptr, entry, "message entry"); \
1128 r = EFAULT; \
1129 goto asyn_error; \
1131 } while(0)
1133 /*===========================================================================*
1134 * try_deliver_senda *
1135 *===========================================================================*/
1136 int try_deliver_senda(struct proc *caller_ptr,
1137 asynmsg_t *table,
1138 size_t size)
1140 int r, dst_p, done, do_notify;
1141 unsigned int i;
1142 unsigned flags;
1143 endpoint_t dst;
1144 struct proc *dst_ptr;
1145 struct priv *privp;
1146 asynmsg_t tabent;
1147 const vir_bytes table_v = (vir_bytes) table;
1149 privp = priv(caller_ptr);
1151 /* Clear table */
1152 privp->s_asyntab = -1;
1153 privp->s_asynsize = 0;
1155 if (size == 0) return(OK); /* Nothing to do, just return */
1157 /* Scan the table */
1158 do_notify = FALSE;
1159 done = TRUE;
1161 /* Limit size to something reasonable. An arbitrary choice is 16
1162 * times the number of process table entries.
1164 * (this check has been duplicated in sys_call but is left here
1165 * as a sanity check)
1167 if (size > 16*(NR_TASKS + NR_PROCS)) {
1168 r = EDOM;
1169 return r;
1172 for (i = 0; i < size; i++) {
1173 /* Process each entry in the table and store the result in the table.
1174 * If we're done handling a message, copy the result to the sender. */
1176 dst = NONE;
1177 /* Copy message to kernel */
1178 A_RETR(i);
1179 flags = tabent.flags;
1180 dst = tabent.dst;
1182 if (flags == 0) continue; /* Skip empty entries */
1184 /* 'flags' field must contain only valid bits */
1185 if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR)) {
1186 r = EINVAL;
1187 goto asyn_error;
1189 if (!(flags & AMF_VALID)) { /* Must contain message */
1190 r = EINVAL;
1191 goto asyn_error;
1193 if (flags & AMF_DONE) continue; /* Already done processing */
1195 r = OK;
1196 if (!isokendpt(tabent.dst, &dst_p))
1197 r = EDEADSRCDST; /* Bad destination, report the error */
1198 else if (iskerneln(dst_p))
1199 r = ECALLDENIED; /* Asyn sends to the kernel are not allowed */
1200 else if (!may_send_to(caller_ptr, dst_p))
1201 r = ECALLDENIED; /* Send denied by IPC mask */
1202 else /* r == OK */
1203 dst_ptr = proc_addr(dst_p);
1205 /* XXX: RTS_NO_ENDPOINT should be removed */
1206 if (r == OK && RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT)) {
1207 r = EDEADSRCDST;
1210 /* Check if 'dst' is blocked waiting for this message.
1211 * If AMF_NOREPLY is set, do not satisfy the receiving part of
1212 * a SENDREC.
1214 if (r == OK && WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
1215 (!(flags&AMF_NOREPLY) || !(dst_ptr->p_misc_flags&MF_REPLY_PEND))) {
1216 /* Destination is indeed waiting for this message. */
1217 dst_ptr->p_delivermsg = tabent.msg;
1218 dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
1219 dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1220 IPC_STATUS_ADD_CALL(dst_ptr, SENDA);
1221 RTS_UNSET(dst_ptr, RTS_RECEIVING);
1222 } else if (r == OK) {
1223 /* Inform receiver that something is pending */
1224 set_sys_bit(priv(dst_ptr)->s_asyn_pending,
1225 priv(caller_ptr)->s_id);
1226 done = FALSE;
1227 continue;
1230 /* Store results */
1231 tabent.result = r;
1232 tabent.flags = flags | AMF_DONE;
1233 if (flags & AMF_NOTIFY)
1234 do_notify = TRUE;
1235 else if (r != OK && (flags & AMF_NOTIFY_ERR))
1236 do_notify = TRUE;
1237 A_INSRT(i); /* Copy results to caller */
1238 continue;
1240 asyn_error:
1241 if (dst != NONE)
1242 printf("KERNEL senda error %d to %d\n", r, dst);
1243 else
1244 printf("KERNEL senda error %d\n", r);
1247 if (do_notify)
1248 mini_notify(proc_addr(ASYNCM), caller_ptr->p_endpoint);
1250 if (!done) {
1251 privp->s_asyntab = (vir_bytes) table;
1252 privp->s_asynsize = size;
1255 return(OK);
1258 /*===========================================================================*
1259 * mini_senda *
1260 *===========================================================================*/
1261 static int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t size)
1263 struct priv *privp;
1265 privp = priv(caller_ptr);
1266 if (!(privp->s_flags & SYS_PROC)) {
1267 printf( "mini_senda: warning caller has no privilege structure\n");
1268 return(EPERM);
1271 return try_deliver_senda(caller_ptr, table, size);
1275 /*===========================================================================*
1276 * try_async *
1277 *===========================================================================*/
1278 static int try_async(caller_ptr)
1279 struct proc *caller_ptr;
1281 int r;
1282 struct priv *privp;
1283 struct proc *src_ptr;
1284 sys_map_t *map;
1286 map = &priv(caller_ptr)->s_asyn_pending;
1288 /* Try all privilege structures */
1289 for (privp = BEG_PRIV_ADDR; privp < END_PRIV_ADDR; ++privp) {
1290 if (privp->s_proc_nr == NONE)
1291 continue;
1293 if (!get_sys_bit(*map, privp->s_id))
1294 continue;
1296 src_ptr = proc_addr(privp->s_proc_nr);
1298 #ifdef CONFIG_SMP
1300 * Do not copy from a process which does not have a stable address space
1301 * due to VM fiddling with it
1303 if (RTS_ISSET(src_ptr, RTS_VMINHIBIT)) {
1304 src_ptr->p_misc_flags |= MF_SENDA_VM_MISS;
1305 continue;
1307 #endif
1309 assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
1310 if ((r = try_one(src_ptr, caller_ptr)) == OK)
1311 return(r);
1314 return(ESRCH);
1318 /*===========================================================================*
1319 * try_one *
1320 *===========================================================================*/
1321 static int try_one(struct proc *src_ptr, struct proc *dst_ptr)
1323 /* Try to receive an asynchronous message from 'src_ptr' */
1324 int r = EAGAIN, done, do_notify;
1325 unsigned int flags, i;
1326 size_t size;
1327 endpoint_t dst;
1328 struct proc *caller_ptr;
1329 struct priv *privp;
1330 asynmsg_t tabent;
1331 vir_bytes table_v;
1333 privp = priv(src_ptr);
1334 if (!(privp->s_flags & SYS_PROC)) return(EPERM);
1335 size = privp->s_asynsize;
1336 table_v = privp->s_asyntab;
1338 /* Clear table pending message flag. We're done unless we're not. */
1339 unset_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1341 if (size == 0) return(EAGAIN);
1342 if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return(ECALLDENIED);
1344 caller_ptr = src_ptr; /* Needed for A_ macros later on */
1346 /* Scan the table */
1347 do_notify = FALSE;
1348 done = TRUE;
1350 for (i = 0; i < size; i++) {
1351 /* Process each entry in the table and store the result in the table.
1352 * If we're done handling a message, copy the result to the sender.
1353 * Some checks done in mini_senda are duplicated here, as the sender
1354 * could've altered the contents of the table in the meantime.
1357 /* Copy message to kernel */
1358 A_RETR(i);
1359 flags = tabent.flags;
1360 dst = tabent.dst;
1362 if (flags == 0) continue; /* Skip empty entries */
1364 /* 'flags' field must contain only valid bits */
1365 if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR))
1366 r = EINVAL;
1367 else if (!(flags & AMF_VALID)) /* Must contain message */
1368 r = EINVAL;
1369 else if (flags & AMF_DONE) continue; /* Already done processing */
1371 /* Clear done flag. The sender is done sending when all messages in the
1372 * table are marked done or empty. However, we will know that only
1373 * the next time we enter this function or when the sender decides to
1374 * send additional asynchronous messages and manages to deliver them
1375 * all.
1377 done = FALSE;
1379 if (r == EINVAL)
1380 goto store_result;
1382 /* Message must be directed at receiving end */
1383 if (dst != dst_ptr->p_endpoint) continue;
1385 /* If AMF_NOREPLY is set, then this message is not a reply to a
1386 * SENDREC and thus should not satisfy the receiving part of the
1387 * SENDREC. This message is to be delivered later.
1389 if ((flags & AMF_NOREPLY) && (dst_ptr->p_misc_flags & MF_REPLY_PEND))
1390 continue;
1392 /* Destination is ready to receive the message; deliver it */
1393 r = OK;
1394 dst_ptr->p_delivermsg = tabent.msg;
1395 dst_ptr->p_delivermsg.m_source = src_ptr->p_endpoint;
1396 dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1398 store_result:
1399 /* Store results for sender */
1400 tabent.result = r;
1401 tabent.flags = flags | AMF_DONE;
1402 if (flags & AMF_NOTIFY) do_notify = TRUE;
1403 else if (r != OK && (flags & AMF_NOTIFY_ERR)) do_notify = TRUE;
1404 A_INSRT(i); /* Copy results to sender */
1406 break;
1409 if (do_notify)
1410 mini_notify(proc_addr(ASYNCM), src_ptr->p_endpoint);
1412 if (done) {
1413 privp->s_asyntab = -1;
1414 privp->s_asynsize = 0;
1415 } else {
1416 set_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1419 asyn_error:
1420 return(r);
1423 /*===========================================================================*
1424 * cancel_async *
1425 *===========================================================================*/
1426 int cancel_async(struct proc *src_ptr, struct proc *dst_ptr)
1428 /* Cancel asynchronous messages from src to dst, because dst is not interested
1429 * in them (e.g., dst has been restarted) */
1430 int done, do_notify;
1431 unsigned int flags, i;
1432 size_t size;
1433 endpoint_t dst;
1434 struct proc *caller_ptr;
1435 struct priv *privp;
1436 asynmsg_t tabent;
1437 vir_bytes table_v;
1439 privp = priv(src_ptr);
1440 if (!(privp->s_flags & SYS_PROC)) return(EPERM);
1441 size = privp->s_asynsize;
1442 table_v = privp->s_asyntab;
1444 /* Clear table pending message flag. We're done unless we're not. */
1445 privp->s_asyntab = -1;
1446 privp->s_asynsize = 0;
1447 unset_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1449 if (size == 0) return(EAGAIN);
1450 if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return(ECALLDENIED);
1452 caller_ptr = src_ptr; /* Needed for A_ macros later on */
1454 /* Scan the table */
1455 do_notify = FALSE;
1456 done = TRUE;
1459 for (i = 0; i < size; i++) {
1460 /* Process each entry in the table and store the result in the table.
1461 * If we're done handling a message, copy the result to the sender.
1462 * Some checks done in mini_senda are duplicated here, as the sender
1463 * could've altered the contents of the table in the mean time.
1466 int r = EDEADSRCDST; /* Cancel delivery due to dead dst */
1468 /* Copy message to kernel */
1469 A_RETR(i);
1470 flags = tabent.flags;
1471 dst = tabent.dst;
1473 if (flags == 0) continue; /* Skip empty entries */
1475 /* 'flags' field must contain only valid bits */
1476 if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR))
1477 r = EINVAL;
1478 else if (!(flags & AMF_VALID)) /* Must contain message */
1479 r = EINVAL;
1480 else if (flags & AMF_DONE) continue; /* Already done processing */
1482 /* Message must be directed at receiving end */
1483 if (dst != dst_ptr->p_endpoint) {
1484 done = FALSE;
1485 continue;
1488 /* Store results for sender */
1489 tabent.result = r;
1490 tabent.flags = flags | AMF_DONE;
1491 if (flags & AMF_NOTIFY) do_notify = TRUE;
1492 else if (r != OK && (flags & AMF_NOTIFY_ERR)) do_notify = TRUE;
1493 A_INSRT(i); /* Copy results to sender */
1496 if (do_notify)
1497 mini_notify(proc_addr(ASYNCM), src_ptr->p_endpoint);
1499 if (!done) {
1500 privp->s_asyntab = table_v;
1501 privp->s_asynsize = size;
1504 asyn_error:
1505 return(OK);
1508 /*===========================================================================*
1509 * enqueue *
1510 *===========================================================================*/
1511 void enqueue(
1512 register struct proc *rp /* this process is now runnable */
1515 /* Add 'rp' to one of the queues of runnable processes. This function is
1516 * responsible for inserting a process into one of the scheduling queues.
1517 * The mechanism is implemented here. The actual scheduling policy is
1518 * defined in sched() and pick_proc().
1520 * This function can be used x-cpu as it always uses the queues of the cpu the
1521 * process is assigned to.
1523 int q = rp->p_priority; /* scheduling queue to use */
1524 struct proc **rdy_head, **rdy_tail;
1526 assert(proc_is_runnable(rp));
1528 assert(q >= 0);
1530 rdy_head = get_cpu_var(rp->p_cpu, run_q_head);
1531 rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1533 /* Now add the process to the queue. */
1534 if (!rdy_head[q]) { /* add to empty queue */
1535 rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
1536 rp->p_nextready = NULL; /* mark new end */
1538 else { /* add to tail of queue */
1539 rdy_tail[q]->p_nextready = rp; /* chain tail of queue */
1540 rdy_tail[q] = rp; /* set new queue tail */
1541 rp->p_nextready = NULL; /* mark new end */
1544 if (cpuid == rp->p_cpu) {
1546 * enqueueing a process with a higher priority than the current one,
1547 * it gets preempted. The current process must be preemptible. Testing
1548 * the priority also makes sure that a process does not preempt itself
1550 struct proc * p;
1551 p = get_cpulocal_var(proc_ptr);
1552 assert(p);
1553 if((p->p_priority > rp->p_priority) &&
1554 (priv(p)->s_flags & PREEMPTIBLE))
1555 RTS_SET(p, RTS_PREEMPTED); /* calls dequeue() */
1557 #ifdef CONFIG_SMP
1559 * if the process was enqueued on a different cpu and the cpu is idle, i.e.
1560 * the time is off, we need to wake up that cpu and let it schedule this new
1561 * process
1563 else if (get_cpu_var(rp->p_cpu, cpu_is_idle)) {
1564 smp_schedule(rp->p_cpu);
1566 #endif
1568 /* Make note of when this process was added to queue */
1569 read_tsc_64(&(get_cpulocal_var(proc_ptr)->p_accounting.enter_queue));
1572 #if DEBUG_SANITYCHECKS
1573 assert(runqueues_ok_local());
1574 #endif
1577 /*===========================================================================*
1578 * enqueue_head *
1579 *===========================================================================*/
1581 * put a process at the front of its run queue. It comes handy when a process is
1582 * preempted and removed from run queue to not to have a currently not-runnable
1583 * process on a run queue. We have to put this process back at the fron to be
1584 * fair
1586 static void enqueue_head(struct proc *rp)
1588 const int q = rp->p_priority; /* scheduling queue to use */
1590 struct proc **rdy_head, **rdy_tail;
1592 assert(proc_ptr_ok(rp));
1593 assert(proc_is_runnable(rp));
1596 * the process was runnable without its quantum expired when dequeued. A
1597 * process with no time left should vahe been handled else and differently
1599 assert(!is_zero64(rp->p_cpu_time_left));
1601 assert(q >= 0);
1604 rdy_head = get_cpu_var(rp->p_cpu, run_q_head);
1605 rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1607 /* Now add the process to the queue. */
1608 if (!rdy_head[q]) { /* add to empty queue */
1609 rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
1610 rp->p_nextready = NULL; /* mark new end */
1612 else /* add to head of queue */
1613 rp->p_nextready = rdy_head[q]; /* chain head of queue */
1614 rdy_head[q] = rp; /* set new queue head */
1616 /* Make note of when this process was added to queue */
1617 read_tsc_64(&(get_cpulocal_var(proc_ptr->p_accounting.enter_queue)));
1620 /* Process accounting for scheduling */
1621 rp->p_accounting.dequeues--;
1622 rp->p_accounting.preempted++;
1624 #if DEBUG_SANITYCHECKS
1625 assert(runqueues_ok_local());
1626 #endif
1629 /*===========================================================================*
1630 * dequeue *
1631 *===========================================================================*/
1632 void dequeue(struct proc *rp)
1633 /* this process is no longer runnable */
1635 /* A process must be removed from the scheduling queues, for example, because
1636 * it has blocked. If the currently active process is removed, a new process
1637 * is picked to run by calling pick_proc().
1639 * This function can operate x-cpu as it always removes the process from the
1640 * queue of the cpu the process is currently assigned to.
1642 int q = rp->p_priority; /* queue to use */
1643 struct proc **xpp; /* iterate over queue */
1644 struct proc *prev_xp;
1645 u64_t tsc, tsc_delta;
1647 struct proc **rdy_tail;
1649 assert(proc_ptr_ok(rp));
1650 assert(!proc_is_runnable(rp));
1652 /* Side-effect for kernel: check if the task's stack still is ok? */
1653 assert (!iskernelp(rp) || *priv(rp)->s_stack_guard == STACK_GUARD);
1655 rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1657 /* Now make sure that the process is not in its ready queue. Remove the
1658 * process if it is found. A process can be made unready even if it is not
1659 * running by being sent a signal that kills it.
1661 prev_xp = NULL;
1662 for (xpp = get_cpu_var_ptr(rp->p_cpu, run_q_head[q]); *xpp;
1663 xpp = &(*xpp)->p_nextready) {
1664 if (*xpp == rp) { /* found process to remove */
1665 *xpp = (*xpp)->p_nextready; /* replace with next chain */
1666 if (rp == rdy_tail[q]) { /* queue tail removed */
1667 rdy_tail[q] = prev_xp; /* set new tail */
1670 break;
1672 prev_xp = *xpp; /* save previous in chain */
1676 /* Process accounting for scheduling */
1677 rp->p_accounting.dequeues++;
1679 /* this is not all that accurate on virtual machines, especially with
1680 IO bound processes that only spend a short amount of time in the queue
1681 at a time. */
1682 if (!is_zero64(rp->p_accounting.enter_queue)) {
1683 read_tsc_64(&tsc);
1684 tsc_delta = sub64(tsc, rp->p_accounting.enter_queue);
1685 rp->p_accounting.time_in_queue = add64(rp->p_accounting.time_in_queue,
1686 tsc_delta);
1687 make_zero64(rp->p_accounting.enter_queue);
1691 #if DEBUG_SANITYCHECKS
1692 assert(runqueues_ok_local());
1693 #endif
1696 /*===========================================================================*
1697 * pick_proc *
1698 *===========================================================================*/
1699 static struct proc * pick_proc(void)
1701 /* Decide who to run now. A new process is selected an returned.
1702 * When a billable process is selected, record it in 'bill_ptr', so that the
1703 * clock task can tell who to bill for system time.
1705 * This function always uses the run queues of the local cpu!
1707 register struct proc *rp; /* process to run */
1708 struct proc **rdy_head;
1709 int q; /* iterate over queues */
1711 /* Check each of the scheduling queues for ready processes. The number of
1712 * queues is defined in proc.h, and priorities are set in the task table.
1713 * If there are no processes ready to run, return NULL.
1715 rdy_head = get_cpulocal_var(run_q_head);
1716 for (q=0; q < NR_SCHED_QUEUES; q++) {
1717 if(!(rp = rdy_head[q])) {
1718 TRACE(VF_PICKPROC, printf("cpu %d queue %d empty\n", cpuid, q););
1719 continue;
1721 assert(proc_is_runnable(rp));
1722 if (priv(rp)->s_flags & BILLABLE)
1723 get_cpulocal_var(bill_ptr) = rp; /* bill for system time */
1724 return rp;
1726 return NULL;
1729 /*===========================================================================*
1730 * endpoint_lookup *
1731 *===========================================================================*/
1732 struct proc *endpoint_lookup(endpoint_t e)
1734 int n;
1736 if(!isokendpt(e, &n)) return NULL;
1738 return proc_addr(n);
1741 /*===========================================================================*
1742 * isokendpt_f *
1743 *===========================================================================*/
1744 #if DEBUG_ENABLE_IPC_WARNINGS
1745 int isokendpt_f(file, line, e, p, fatalflag)
1746 const char *file;
1747 int line;
1748 #else
1749 int isokendpt_f(e, p, fatalflag)
1750 #endif
1751 endpoint_t e;
1752 int *p;
1753 const int fatalflag;
1755 int ok = 0;
1756 /* Convert an endpoint number into a process number.
1757 * Return nonzero if the process is alive with the corresponding
1758 * generation number, zero otherwise.
1760 * This function is called with file and line number by the
1761 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
1762 * otherwise without. This allows us to print the where the
1763 * conversion was attempted, making the errors verbose without
1764 * adding code for that at every call.
1766 * If fatalflag is nonzero, we must panic if the conversion doesn't
1767 * succeed.
1769 *p = _ENDPOINT_P(e);
1770 ok = 0;
1771 if(isokprocn(*p) && !isemptyn(*p) && proc_addr(*p)->p_endpoint == e)
1772 ok = 1;
1773 if(!ok && fatalflag)
1774 panic("invalid endpoint: %d", e);
1775 return ok;
1778 static void notify_scheduler(struct proc *p)
1780 message m_no_quantum;
1781 int err;
1783 assert(!proc_kernel_scheduler(p));
1785 /* dequeue the process */
1786 RTS_SET(p, RTS_NO_QUANTUM);
1788 * Notify the process's scheduler that it has run out of
1789 * quantum. This is done by sending a message to the scheduler
1790 * on the process's behalf
1792 m_no_quantum.m_source = p->p_endpoint;
1793 m_no_quantum.m_type = SCHEDULING_NO_QUANTUM;
1794 m_no_quantum.SCHEDULING_ACNT_QUEUE = cpu_time_2_ms(p->p_accounting.time_in_queue);
1795 m_no_quantum.SCHEDULING_ACNT_DEQS = p->p_accounting.dequeues;
1796 m_no_quantum.SCHEDULING_ACNT_IPC_SYNC = p->p_accounting.ipc_sync;
1797 m_no_quantum.SCHEDULING_ACNT_IPC_ASYNC = p->p_accounting.ipc_async;
1798 m_no_quantum.SCHEDULING_ACNT_PREEMPT = p->p_accounting.preempted;
1799 m_no_quantum.SCHEDULING_ACNT_CPU = cpuid;
1800 m_no_quantum.SCHEDULING_ACNT_CPU_LOAD = cpu_load();
1802 /* Reset accounting */
1803 reset_proc_accounting(p);
1805 if ((err = mini_send(p, p->p_scheduler->p_endpoint,
1806 &m_no_quantum, FROM_KERNEL))) {
1807 panic("WARNING: Scheduling: mini_send returned %d\n", err);
1811 void proc_no_time(struct proc * p)
1813 if (!proc_kernel_scheduler(p) && priv(p)->s_flags & PREEMPTIBLE) {
1814 /* this dequeues the process */
1815 notify_scheduler(p);
1817 else {
1819 * non-preemptible processes only need their quantum to
1820 * be renewed. In fact, they by pass scheduling
1822 p->p_cpu_time_left = ms_2_cpu_time(p->p_quantum_size_ms);
1823 #if DEBUG_RACE
1824 RTS_SET(p, RTS_PREEMPTED);
1825 RTS_UNSET(p, RTS_PREEMPTED);
1826 #endif
1830 void reset_proc_accounting(struct proc *p)
1832 p->p_accounting.preempted = 0;
1833 p->p_accounting.ipc_sync = 0;
1834 p->p_accounting.ipc_async = 0;
1835 p->p_accounting.dequeues = 0;
1836 make_zero64(p->p_accounting.time_in_queue);
1837 make_zero64(p->p_accounting.enter_queue);
1840 void copr_not_available_handler(void)
1842 struct proc * p;
1843 struct proc ** local_fpu_owner;
1845 * Disable the FPU exception (both for the kernel and for the process
1846 * once it's scheduled), and initialize or restore the FPU state.
1849 disable_fpu_exception();
1851 p = get_cpulocal_var(proc_ptr);
1853 /* if FPU is not owned by anyone, do not store anything */
1854 local_fpu_owner = get_cpulocal_var_ptr(fpu_owner);
1855 if (*local_fpu_owner != NULL) {
1856 assert(*local_fpu_owner != p);
1857 save_local_fpu(*local_fpu_owner, FALSE /*retain*/);
1861 * restore the current process' state and let it run again, do not
1862 * schedule!
1864 if (restore_fpu(p) != OK) {
1865 /* Restoring FPU state failed. This is always the process's own
1866 * fault. Send a signal, and schedule another process instead.
1868 *local_fpu_owner = NULL; /* release FPU */
1869 cause_sig(proc_nr(p), SIGFPE);
1870 return;
1873 *local_fpu_owner = p;
1874 context_stop(proc_addr(KERNEL));
1875 restore_user_context(p);
1876 NOT_REACHABLE;
1879 void release_fpu(struct proc * p) {
1880 struct proc ** fpu_owner_ptr;
1882 fpu_owner_ptr = get_cpu_var_ptr(p->p_cpu, fpu_owner);
1884 if (*fpu_owner_ptr == p)
1885 *fpu_owner_ptr = NULL;