etc/protocols - sync with NetBSD-8
[minix.git] / external / bsd / libpcap / dist / optimize.c
blobb60ca327e072aea91953557af5dbc15dd2e66b06
1 /* $NetBSD: optimize.c,v 1.8 2015/03/31 21:39:42 christos Exp $ */
3 /*
4 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that: (1) source code distributions
9 * retain the above copyright notice and this paragraph in its entirety, (2)
10 * distributions including binary code include the above copyright notice and
11 * this paragraph in its entirety in the documentation or other materials
12 * provided with the distribution, and (3) all advertising materials mentioning
13 * features or use of this software display the following acknowledgement:
14 * ``This product includes software developed by the University of California,
15 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
16 * the University nor the names of its contributors may be used to endorse
17 * or promote products derived from this software without specific prior
18 * written permission.
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23 * Optimization module for tcpdump intermediate representation.
26 #include <sys/cdefs.h>
27 __RCSID("$NetBSD: optimize.c,v 1.8 2015/03/31 21:39:42 christos Exp $");
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
33 #ifdef WIN32
34 #include <pcap-stdinc.h>
35 #else /* WIN32 */
36 #if HAVE_INTTYPES_H
37 #include <inttypes.h>
38 #elif HAVE_STDINT_H
39 #include <stdint.h>
40 #endif
41 #ifdef HAVE_SYS_BITYPES_H
42 #include <sys/bitypes.h>
43 #endif
44 #include <sys/types.h>
45 #endif /* WIN32 */
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <memory.h>
50 #include <string.h>
52 #include <errno.h>
54 #include "pcap-int.h"
56 #include "gencode.h"
58 #ifdef HAVE_OS_PROTO_H
59 #include "os-proto.h"
60 #endif
62 #ifdef BDEBUG
63 extern int dflag;
64 #endif
66 #if defined(MSDOS) && !defined(__DJGPP__)
67 extern int _w32_ffs (int mask);
68 #define ffs _w32_ffs
69 #endif
71 #if defined(WIN32) && defined (_MSC_VER)
72 int ffs(int mask);
73 #endif
76 * Represents a deleted instruction.
78 #define NOP -1
81 * Register numbers for use-def values.
82 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
83 * location. A_ATOM is the accumulator and X_ATOM is the index
84 * register.
86 #define A_ATOM BPF_MEMWORDS
87 #define X_ATOM (BPF_MEMWORDS+1)
90 * This define is used to represent *both* the accumulator and
91 * x register in use-def computations.
92 * Currently, the use-def code assumes only one definition per instruction.
94 #define AX_ATOM N_ATOMS
97 * A flag to indicate that further optimization is needed.
98 * Iterative passes are continued until a given pass yields no
99 * branch movement.
101 static int done;
104 * A block is marked if only if its mark equals the current mark.
105 * Rather than traverse the code array, marking each item, 'cur_mark' is
106 * incremented. This automatically makes each element unmarked.
108 static int cur_mark;
109 #define isMarked(p) ((p)->mark == cur_mark)
110 #define unMarkAll() cur_mark += 1
111 #define Mark(p) ((p)->mark = cur_mark)
113 static void opt_init(struct block *);
114 static void opt_cleanup(void);
116 static void intern_blocks(struct block *);
118 static void find_inedges(struct block *);
119 #ifdef BDEBUG
120 static void opt_dump(struct block *);
121 #endif
123 static int n_blocks;
124 struct block **blocks;
125 static int n_edges;
126 struct edge **edges;
129 * A bit vector set representation of the dominators.
130 * We round up the set size to the next power of two.
132 static int nodewords;
133 static int edgewords;
134 struct block **levels;
135 bpf_u_int32 *space;
136 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
138 * True if a is in uset {p}
140 #define SET_MEMBER(p, a) \
141 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
144 * Add 'a' to uset p.
146 #define SET_INSERT(p, a) \
147 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
150 * Delete 'a' from uset p.
152 #define SET_DELETE(p, a) \
153 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
156 * a := a intersect b
158 #define SET_INTERSECT(a, b, n)\
160 register bpf_u_int32 *_x = a, *_y = b;\
161 register int _n = n;\
162 while (--_n >= 0) *_x++ &= *_y++;\
166 * a := a - b
168 #define SET_SUBTRACT(a, b, n)\
170 register bpf_u_int32 *_x = a, *_y = b;\
171 register int _n = n;\
172 while (--_n >= 0) *_x++ &=~ *_y++;\
176 * a := a union b
178 #define SET_UNION(a, b, n)\
180 register bpf_u_int32 *_x = a, *_y = b;\
181 register int _n = n;\
182 while (--_n >= 0) *_x++ |= *_y++;\
185 static uset all_dom_sets;
186 static uset all_closure_sets;
187 static uset all_edge_sets;
189 #ifndef MAX
190 #define MAX(a,b) ((a)>(b)?(a):(b))
191 #endif
193 static void
194 find_levels_r(struct block *b)
196 int level;
198 if (isMarked(b))
199 return;
201 Mark(b);
202 b->link = 0;
204 if (JT(b)) {
205 find_levels_r(JT(b));
206 find_levels_r(JF(b));
207 level = MAX(JT(b)->level, JF(b)->level) + 1;
208 } else
209 level = 0;
210 b->level = level;
211 b->link = levels[level];
212 levels[level] = b;
216 * Level graph. The levels go from 0 at the leaves to
217 * N_LEVELS at the root. The levels[] array points to the
218 * first node of the level list, whose elements are linked
219 * with the 'link' field of the struct block.
221 static void
222 find_levels(struct block *root)
224 memset((char *)levels, 0, n_blocks * sizeof(*levels));
225 unMarkAll();
226 find_levels_r(root);
230 * Find dominator relationships.
231 * Assumes graph has been leveled.
233 static void
234 find_dom(struct block *root)
236 int i;
237 struct block *b;
238 bpf_u_int32 *x;
241 * Initialize sets to contain all nodes.
243 x = all_dom_sets;
244 i = n_blocks * nodewords;
245 while (--i >= 0)
246 *x++ = ~0;
247 /* Root starts off empty. */
248 for (i = nodewords; --i >= 0;)
249 root->dom[i] = 0;
251 /* root->level is the highest level no found. */
252 for (i = root->level; i >= 0; --i) {
253 for (b = levels[i]; b; b = b->link) {
254 SET_INSERT(b->dom, b->id);
255 if (JT(b) == 0)
256 continue;
257 SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
258 SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
263 static void
264 propedom(struct edge *ep)
266 SET_INSERT(ep->edom, ep->id);
267 if (ep->succ) {
268 SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
269 SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
274 * Compute edge dominators.
275 * Assumes graph has been leveled and predecessors established.
277 static void
278 find_edom(struct block *root)
280 int i;
281 uset x;
282 struct block *b;
284 x = all_edge_sets;
285 for (i = n_edges * edgewords; --i >= 0; )
286 x[i] = ~0;
288 /* root->level is the highest level no found. */
289 memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
290 memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
291 for (i = root->level; i >= 0; --i) {
292 for (b = levels[i]; b != 0; b = b->link) {
293 propedom(&b->et);
294 propedom(&b->ef);
300 * Find the backwards transitive closure of the flow graph. These sets
301 * are backwards in the sense that we find the set of nodes that reach
302 * a given node, not the set of nodes that can be reached by a node.
304 * Assumes graph has been leveled.
306 static void
307 find_closure(struct block *root)
309 int i;
310 struct block *b;
313 * Initialize sets to contain no nodes.
315 memset((char *)all_closure_sets, 0,
316 n_blocks * nodewords * sizeof(*all_closure_sets));
318 /* root->level is the highest level no found. */
319 for (i = root->level; i >= 0; --i) {
320 for (b = levels[i]; b; b = b->link) {
321 SET_INSERT(b->closure, b->id);
322 if (JT(b) == 0)
323 continue;
324 SET_UNION(JT(b)->closure, b->closure, nodewords);
325 SET_UNION(JF(b)->closure, b->closure, nodewords);
331 * Return the register number that is used by s. If A and X are both
332 * used, return AX_ATOM. If no register is used, return -1.
334 * The implementation should probably change to an array access.
336 static int
337 atomuse(struct stmt *s)
339 register int c = s->code;
341 if (c == NOP)
342 return -1;
344 switch (BPF_CLASS(c)) {
346 case BPF_RET:
347 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
348 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
350 case BPF_LD:
351 case BPF_LDX:
352 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
353 (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
355 case BPF_ST:
356 return A_ATOM;
358 case BPF_STX:
359 return X_ATOM;
361 case BPF_JMP:
362 case BPF_ALU:
363 if (BPF_SRC(c) == BPF_X)
364 return AX_ATOM;
365 return A_ATOM;
367 case BPF_MISC:
368 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
370 abort();
371 /* NOTREACHED */
375 * Return the register number that is defined by 's'. We assume that
376 * a single stmt cannot define more than one register. If no register
377 * is defined, return -1.
379 * The implementation should probably change to an array access.
381 static int
382 atomdef(struct stmt *s)
384 if (s->code == NOP)
385 return -1;
387 switch (BPF_CLASS(s->code)) {
389 case BPF_LD:
390 case BPF_ALU:
391 return A_ATOM;
393 case BPF_LDX:
394 return X_ATOM;
396 case BPF_ST:
397 case BPF_STX:
398 return s->k;
400 case BPF_MISC:
401 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
403 return -1;
407 * Compute the sets of registers used, defined, and killed by 'b'.
409 * "Used" means that a statement in 'b' uses the register before any
410 * statement in 'b' defines it, i.e. it uses the value left in
411 * that register by a predecessor block of this block.
412 * "Defined" means that a statement in 'b' defines it.
413 * "Killed" means that a statement in 'b' defines it before any
414 * statement in 'b' uses it, i.e. it kills the value left in that
415 * register by a predecessor block of this block.
417 static void
418 compute_local_ud(struct block *b)
420 struct slist *s;
421 atomset def = 0, use = 0, kill = 0;
422 int atom;
424 for (s = b->stmts; s; s = s->next) {
425 if (s->s.code == NOP)
426 continue;
427 atom = atomuse(&s->s);
428 if (atom >= 0) {
429 if (atom == AX_ATOM) {
430 if (!ATOMELEM(def, X_ATOM))
431 use |= ATOMMASK(X_ATOM);
432 if (!ATOMELEM(def, A_ATOM))
433 use |= ATOMMASK(A_ATOM);
435 else if (atom < N_ATOMS) {
436 if (!ATOMELEM(def, atom))
437 use |= ATOMMASK(atom);
439 else
440 abort();
442 atom = atomdef(&s->s);
443 if (atom >= 0) {
444 if (!ATOMELEM(use, atom))
445 kill |= ATOMMASK(atom);
446 def |= ATOMMASK(atom);
449 if (BPF_CLASS(b->s.code) == BPF_JMP) {
451 * XXX - what about RET?
453 atom = atomuse(&b->s);
454 if (atom >= 0) {
455 if (atom == AX_ATOM) {
456 if (!ATOMELEM(def, X_ATOM))
457 use |= ATOMMASK(X_ATOM);
458 if (!ATOMELEM(def, A_ATOM))
459 use |= ATOMMASK(A_ATOM);
461 else if (atom < N_ATOMS) {
462 if (!ATOMELEM(def, atom))
463 use |= ATOMMASK(atom);
465 else
466 abort();
470 b->def = def;
471 b->kill = kill;
472 b->in_use = use;
476 * Assume graph is already leveled.
478 static void
479 find_ud(struct block *root)
481 int i, maxlevel;
482 struct block *p;
485 * root->level is the highest level no found;
486 * count down from there.
488 maxlevel = root->level;
489 for (i = maxlevel; i >= 0; --i)
490 for (p = levels[i]; p; p = p->link) {
491 compute_local_ud(p);
492 p->out_use = 0;
495 for (i = 1; i <= maxlevel; ++i) {
496 for (p = levels[i]; p; p = p->link) {
497 p->out_use |= JT(p)->in_use | JF(p)->in_use;
498 p->in_use |= p->out_use &~ p->kill;
504 * These data structures are used in a Cocke and Shwarz style
505 * value numbering scheme. Since the flowgraph is acyclic,
506 * exit values can be propagated from a node's predecessors
507 * provided it is uniquely defined.
509 struct valnode {
510 int code;
511 int v0, v1;
512 int val;
513 struct valnode *next;
516 #define MODULUS 213
517 static struct valnode *hashtbl[MODULUS];
518 static int curval;
519 static int maxval;
521 /* Integer constants mapped with the load immediate opcode. */
522 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
524 struct vmapinfo {
525 int is_const;
526 bpf_int32 const_val;
529 struct vmapinfo *vmap;
530 struct valnode *vnode_base;
531 struct valnode *next_vnode;
533 static void
534 init_val(void)
536 curval = 0;
537 next_vnode = vnode_base;
538 memset((char *)vmap, 0, maxval * sizeof(*vmap));
539 memset((char *)hashtbl, 0, sizeof hashtbl);
542 /* Because we really don't have an IR, this stuff is a little messy. */
543 static int
544 F(int code, int v0, int v1)
546 u_int hash;
547 int val;
548 struct valnode *p;
550 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
551 hash %= MODULUS;
553 for (p = hashtbl[hash]; p; p = p->next)
554 if (p->code == code && p->v0 == v0 && p->v1 == v1)
555 return p->val;
557 val = ++curval;
558 if (BPF_MODE(code) == BPF_IMM &&
559 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
560 vmap[val].const_val = v0;
561 vmap[val].is_const = 1;
563 p = next_vnode++;
564 p->val = val;
565 p->code = code;
566 p->v0 = v0;
567 p->v1 = v1;
568 p->next = hashtbl[hash];
569 hashtbl[hash] = p;
571 return val;
574 static inline void
575 vstore(struct stmt *s, int *valp, int newval, int alter)
577 if (alter && *valp == newval)
578 s->code = NOP;
579 else
580 *valp = newval;
584 * Do constant-folding on binary operators.
585 * (Unary operators are handled elsewhere.)
587 static void
588 fold_op(struct stmt *s, int v0, int v1)
590 bpf_u_int32 a, b;
592 a = vmap[v0].const_val;
593 b = vmap[v1].const_val;
595 switch (BPF_OP(s->code)) {
596 case BPF_ADD:
597 a += b;
598 break;
600 case BPF_SUB:
601 a -= b;
602 break;
604 case BPF_MUL:
605 a *= b;
606 break;
608 case BPF_DIV:
609 if (b == 0)
610 bpf_error("division by zero");
611 a /= b;
612 break;
614 case BPF_MOD:
615 if (b == 0)
616 bpf_error("modulus by zero");
617 a %= b;
618 break;
620 case BPF_AND:
621 a &= b;
622 break;
624 case BPF_OR:
625 a |= b;
626 break;
628 case BPF_XOR:
629 a ^= b;
630 break;
632 case BPF_LSH:
633 a <<= b;
634 break;
636 case BPF_RSH:
637 a >>= b;
638 break;
640 default:
641 abort();
643 s->k = a;
644 s->code = BPF_LD|BPF_IMM;
645 done = 0;
648 static inline struct slist *
649 this_op(struct slist *s)
651 while (s != 0 && s->s.code == NOP)
652 s = s->next;
653 return s;
656 static void
657 opt_not(struct block *b)
659 struct block *tmp = JT(b);
661 JT(b) = JF(b);
662 JF(b) = tmp;
665 static void
666 opt_peep(struct block *b)
668 struct slist *s;
669 struct slist *next, *last;
670 int val;
672 s = b->stmts;
673 if (s == 0)
674 return;
676 last = s;
677 for (/*empty*/; /*empty*/; s = next) {
679 * Skip over nops.
681 s = this_op(s);
682 if (s == 0)
683 break; /* nothing left in the block */
686 * Find the next real instruction after that one
687 * (skipping nops).
689 next = this_op(s->next);
690 if (next == 0)
691 break; /* no next instruction */
692 last = next;
695 * st M[k] --> st M[k]
696 * ldx M[k] tax
698 if (s->s.code == BPF_ST &&
699 next->s.code == (BPF_LDX|BPF_MEM) &&
700 s->s.k == next->s.k) {
701 done = 0;
702 next->s.code = BPF_MISC|BPF_TAX;
705 * ld #k --> ldx #k
706 * tax txa
708 if (s->s.code == (BPF_LD|BPF_IMM) &&
709 next->s.code == (BPF_MISC|BPF_TAX)) {
710 s->s.code = BPF_LDX|BPF_IMM;
711 next->s.code = BPF_MISC|BPF_TXA;
712 done = 0;
715 * This is an ugly special case, but it happens
716 * when you say tcp[k] or udp[k] where k is a constant.
718 if (s->s.code == (BPF_LD|BPF_IMM)) {
719 struct slist *add, *tax, *ild;
722 * Check that X isn't used on exit from this
723 * block (which the optimizer might cause).
724 * We know the code generator won't generate
725 * any local dependencies.
727 if (ATOMELEM(b->out_use, X_ATOM))
728 continue;
731 * Check that the instruction following the ldi
732 * is an addx, or it's an ldxms with an addx
733 * following it (with 0 or more nops between the
734 * ldxms and addx).
736 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
737 add = next;
738 else
739 add = this_op(next->next);
740 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
741 continue;
744 * Check that a tax follows that (with 0 or more
745 * nops between them).
747 tax = this_op(add->next);
748 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
749 continue;
752 * Check that an ild follows that (with 0 or more
753 * nops between them).
755 ild = this_op(tax->next);
756 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
757 BPF_MODE(ild->s.code) != BPF_IND)
758 continue;
760 * We want to turn this sequence:
762 * (004) ldi #0x2 {s}
763 * (005) ldxms [14] {next} -- optional
764 * (006) addx {add}
765 * (007) tax {tax}
766 * (008) ild [x+0] {ild}
768 * into this sequence:
770 * (004) nop
771 * (005) ldxms [14]
772 * (006) nop
773 * (007) nop
774 * (008) ild [x+2]
776 * XXX We need to check that X is not
777 * subsequently used, because we want to change
778 * what'll be in it after this sequence.
780 * We know we can eliminate the accumulator
781 * modifications earlier in the sequence since
782 * it is defined by the last stmt of this sequence
783 * (i.e., the last statement of the sequence loads
784 * a value into the accumulator, so we can eliminate
785 * earlier operations on the accumulator).
787 ild->s.k += s->s.k;
788 s->s.code = NOP;
789 add->s.code = NOP;
790 tax->s.code = NOP;
791 done = 0;
795 * If the comparison at the end of a block is an equality
796 * comparison against a constant, and nobody uses the value
797 * we leave in the A register at the end of a block, and
798 * the operation preceding the comparison is an arithmetic
799 * operation, we can sometime optimize it away.
801 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
802 !ATOMELEM(b->out_use, A_ATOM)) {
804 * We can optimize away certain subtractions of the
805 * X register.
807 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
808 val = b->val[X_ATOM];
809 if (vmap[val].is_const) {
811 * If we have a subtract to do a comparison,
812 * and the X register is a known constant,
813 * we can merge this value into the
814 * comparison:
816 * sub x -> nop
817 * jeq #y jeq #(x+y)
819 b->s.k += vmap[val].const_val;
820 last->s.code = NOP;
821 done = 0;
822 } else if (b->s.k == 0) {
824 * If the X register isn't a constant,
825 * and the comparison in the test is
826 * against 0, we can compare with the
827 * X register, instead:
829 * sub x -> nop
830 * jeq #0 jeq x
832 last->s.code = NOP;
833 b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
834 done = 0;
838 * Likewise, a constant subtract can be simplified:
840 * sub #x -> nop
841 * jeq #y -> jeq #(x+y)
843 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
844 last->s.code = NOP;
845 b->s.k += last->s.k;
846 done = 0;
849 * And, similarly, a constant AND can be simplified
850 * if we're testing against 0, i.e.:
852 * and #k nop
853 * jeq #0 -> jset #k
855 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
856 b->s.k == 0) {
857 b->s.k = last->s.k;
858 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
859 last->s.code = NOP;
860 done = 0;
861 opt_not(b);
865 * jset #0 -> never
866 * jset #ffffffff -> always
868 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
869 if (b->s.k == 0)
870 JT(b) = JF(b);
871 if (b->s.k == (int)0xffffffff)
872 JF(b) = JT(b);
875 * If we're comparing against the index register, and the index
876 * register is a known constant, we can just compare against that
877 * constant.
879 val = b->val[X_ATOM];
880 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
881 bpf_int32 v = vmap[val].const_val;
882 b->s.code &= ~BPF_X;
883 b->s.k = v;
886 * If the accumulator is a known constant, we can compute the
887 * comparison result.
889 val = b->val[A_ATOM];
890 if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
891 bpf_int32 v = vmap[val].const_val;
892 switch (BPF_OP(b->s.code)) {
894 case BPF_JEQ:
895 v = v == b->s.k;
896 break;
898 case BPF_JGT:
899 v = (unsigned)v > (unsigned)b->s.k;
900 break;
902 case BPF_JGE:
903 v = (unsigned)v >= (unsigned)b->s.k;
904 break;
906 case BPF_JSET:
907 v &= b->s.k;
908 break;
910 default:
911 abort();
913 if (JF(b) != JT(b))
914 done = 0;
915 if (v)
916 JF(b) = JT(b);
917 else
918 JT(b) = JF(b);
923 * Compute the symbolic value of expression of 's', and update
924 * anything it defines in the value table 'val'. If 'alter' is true,
925 * do various optimizations. This code would be cleaner if symbolic
926 * evaluation and code transformations weren't folded together.
928 static void
929 opt_stmt(struct stmt *s, int val[], int alter)
931 int op;
932 int v;
934 switch (s->code) {
936 case BPF_LD|BPF_ABS|BPF_W:
937 case BPF_LD|BPF_ABS|BPF_H:
938 case BPF_LD|BPF_ABS|BPF_B:
939 v = F(s->code, s->k, 0L);
940 vstore(s, &val[A_ATOM], v, alter);
941 break;
943 case BPF_LD|BPF_IND|BPF_W:
944 case BPF_LD|BPF_IND|BPF_H:
945 case BPF_LD|BPF_IND|BPF_B:
946 v = val[X_ATOM];
947 if (alter && vmap[v].is_const) {
948 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
949 s->k += vmap[v].const_val;
950 v = F(s->code, s->k, 0L);
951 done = 0;
953 else
954 v = F(s->code, s->k, v);
955 vstore(s, &val[A_ATOM], v, alter);
956 break;
958 case BPF_LD|BPF_LEN:
959 v = F(s->code, 0L, 0L);
960 vstore(s, &val[A_ATOM], v, alter);
961 break;
963 case BPF_LD|BPF_IMM:
964 v = K(s->k);
965 vstore(s, &val[A_ATOM], v, alter);
966 break;
968 case BPF_LDX|BPF_IMM:
969 v = K(s->k);
970 vstore(s, &val[X_ATOM], v, alter);
971 break;
973 case BPF_LDX|BPF_MSH|BPF_B:
974 v = F(s->code, s->k, 0L);
975 vstore(s, &val[X_ATOM], v, alter);
976 break;
978 case BPF_ALU|BPF_NEG:
979 if (alter && vmap[val[A_ATOM]].is_const) {
980 s->code = BPF_LD|BPF_IMM;
981 s->k = -vmap[val[A_ATOM]].const_val;
982 val[A_ATOM] = K(s->k);
984 else
985 val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
986 break;
988 case BPF_ALU|BPF_ADD|BPF_K:
989 case BPF_ALU|BPF_SUB|BPF_K:
990 case BPF_ALU|BPF_MUL|BPF_K:
991 case BPF_ALU|BPF_DIV|BPF_K:
992 case BPF_ALU|BPF_MOD|BPF_K:
993 case BPF_ALU|BPF_AND|BPF_K:
994 case BPF_ALU|BPF_OR|BPF_K:
995 case BPF_ALU|BPF_XOR|BPF_K:
996 case BPF_ALU|BPF_LSH|BPF_K:
997 case BPF_ALU|BPF_RSH|BPF_K:
998 op = BPF_OP(s->code);
999 if (alter) {
1000 if (s->k == 0) {
1001 /* don't optimize away "sub #0"
1002 * as it may be needed later to
1003 * fixup the generated math code */
1004 if (op == BPF_ADD ||
1005 op == BPF_LSH || op == BPF_RSH ||
1006 op == BPF_OR || op == BPF_XOR) {
1007 s->code = NOP;
1008 break;
1010 if (op == BPF_MUL || op == BPF_AND) {
1011 s->code = BPF_LD|BPF_IMM;
1012 val[A_ATOM] = K(s->k);
1013 break;
1016 if (vmap[val[A_ATOM]].is_const) {
1017 fold_op(s, val[A_ATOM], K(s->k));
1018 val[A_ATOM] = K(s->k);
1019 break;
1022 val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1023 break;
1025 case BPF_ALU|BPF_ADD|BPF_X:
1026 case BPF_ALU|BPF_SUB|BPF_X:
1027 case BPF_ALU|BPF_MUL|BPF_X:
1028 case BPF_ALU|BPF_DIV|BPF_X:
1029 case BPF_ALU|BPF_MOD|BPF_X:
1030 case BPF_ALU|BPF_AND|BPF_X:
1031 case BPF_ALU|BPF_OR|BPF_X:
1032 case BPF_ALU|BPF_XOR|BPF_X:
1033 case BPF_ALU|BPF_LSH|BPF_X:
1034 case BPF_ALU|BPF_RSH|BPF_X:
1035 op = BPF_OP(s->code);
1036 if (alter && vmap[val[X_ATOM]].is_const) {
1037 if (vmap[val[A_ATOM]].is_const) {
1038 fold_op(s, val[A_ATOM], val[X_ATOM]);
1039 val[A_ATOM] = K(s->k);
1041 else {
1042 s->code = BPF_ALU|BPF_K|op;
1043 s->k = vmap[val[X_ATOM]].const_val;
1044 done = 0;
1045 val[A_ATOM] =
1046 F(s->code, val[A_ATOM], K(s->k));
1048 break;
1051 * Check if we're doing something to an accumulator
1052 * that is 0, and simplify. This may not seem like
1053 * much of a simplification but it could open up further
1054 * optimizations.
1055 * XXX We could also check for mul by 1, etc.
1057 if (alter && vmap[val[A_ATOM]].is_const
1058 && vmap[val[A_ATOM]].const_val == 0) {
1059 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1060 s->code = BPF_MISC|BPF_TXA;
1061 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1062 break;
1064 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1065 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1066 s->code = BPF_LD|BPF_IMM;
1067 s->k = 0;
1068 vstore(s, &val[A_ATOM], K(s->k), alter);
1069 break;
1071 else if (op == BPF_NEG) {
1072 s->code = NOP;
1073 break;
1076 val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1077 break;
1079 case BPF_MISC|BPF_TXA:
1080 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1081 break;
1083 case BPF_LD|BPF_MEM:
1084 v = val[s->k];
1085 if (alter && vmap[v].is_const) {
1086 s->code = BPF_LD|BPF_IMM;
1087 s->k = vmap[v].const_val;
1088 done = 0;
1090 vstore(s, &val[A_ATOM], v, alter);
1091 break;
1093 case BPF_MISC|BPF_TAX:
1094 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1095 break;
1097 case BPF_LDX|BPF_MEM:
1098 v = val[s->k];
1099 if (alter && vmap[v].is_const) {
1100 s->code = BPF_LDX|BPF_IMM;
1101 s->k = vmap[v].const_val;
1102 done = 0;
1104 vstore(s, &val[X_ATOM], v, alter);
1105 break;
1107 case BPF_ST:
1108 vstore(s, &val[s->k], val[A_ATOM], alter);
1109 break;
1111 case BPF_STX:
1112 vstore(s, &val[s->k], val[X_ATOM], alter);
1113 break;
1117 static void
1118 deadstmt(register struct stmt *s, register struct stmt *last[])
1120 register int atom;
1122 atom = atomuse(s);
1123 if (atom >= 0) {
1124 if (atom == AX_ATOM) {
1125 last[X_ATOM] = 0;
1126 last[A_ATOM] = 0;
1128 else
1129 last[atom] = 0;
1131 atom = atomdef(s);
1132 if (atom >= 0) {
1133 if (last[atom]) {
1134 done = 0;
1135 last[atom]->code = NOP;
1137 last[atom] = s;
1141 static void
1142 opt_deadstores(register struct block *b)
1144 register struct slist *s;
1145 register int atom;
1146 struct stmt *last[N_ATOMS];
1148 memset((char *)last, 0, sizeof last);
1150 for (s = b->stmts; s != 0; s = s->next)
1151 deadstmt(&s->s, last);
1152 deadstmt(&b->s, last);
1154 for (atom = 0; atom < N_ATOMS; ++atom)
1155 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1156 last[atom]->code = NOP;
1157 done = 0;
1161 static void
1162 opt_blk(struct block *b, int do_stmts)
1164 struct slist *s;
1165 struct edge *p;
1166 int i;
1167 bpf_int32 aval, xval;
1169 #if 0
1170 for (s = b->stmts; s && s->next; s = s->next)
1171 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1172 do_stmts = 0;
1173 break;
1175 #endif
1178 * Initialize the atom values.
1180 p = b->in_edges;
1181 if (p == 0) {
1183 * We have no predecessors, so everything is undefined
1184 * upon entry to this block.
1186 memset((char *)b->val, 0, sizeof(b->val));
1187 } else {
1189 * Inherit values from our predecessors.
1191 * First, get the values from the predecessor along the
1192 * first edge leading to this node.
1194 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1196 * Now look at all the other nodes leading to this node.
1197 * If, for the predecessor along that edge, a register
1198 * has a different value from the one we have (i.e.,
1199 * control paths are merging, and the merging paths
1200 * assign different values to that register), give the
1201 * register the undefined value of 0.
1203 while ((p = p->next) != NULL) {
1204 for (i = 0; i < N_ATOMS; ++i)
1205 if (b->val[i] != p->pred->val[i])
1206 b->val[i] = 0;
1209 aval = b->val[A_ATOM];
1210 xval = b->val[X_ATOM];
1211 for (s = b->stmts; s; s = s->next)
1212 opt_stmt(&s->s, b->val, do_stmts);
1215 * This is a special case: if we don't use anything from this
1216 * block, and we load the accumulator or index register with a
1217 * value that is already there, or if this block is a return,
1218 * eliminate all the statements.
1220 * XXX - what if it does a store?
1222 * XXX - why does it matter whether we use anything from this
1223 * block? If the accumulator or index register doesn't change
1224 * its value, isn't that OK even if we use that value?
1226 * XXX - if we load the accumulator with a different value,
1227 * and the block ends with a conditional branch, we obviously
1228 * can't eliminate it, as the branch depends on that value.
1229 * For the index register, the conditional branch only depends
1230 * on the index register value if the test is against the index
1231 * register value rather than a constant; if nothing uses the
1232 * value we put into the index register, and we're not testing
1233 * against the index register's value, and there aren't any
1234 * other problems that would keep us from eliminating this
1235 * block, can we eliminate it?
1237 if (do_stmts &&
1238 ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1239 xval != 0 && b->val[X_ATOM] == xval) ||
1240 BPF_CLASS(b->s.code) == BPF_RET)) {
1241 if (b->stmts != 0) {
1242 b->stmts = 0;
1243 done = 0;
1245 } else {
1246 opt_peep(b);
1247 opt_deadstores(b);
1250 * Set up values for branch optimizer.
1252 if (BPF_SRC(b->s.code) == BPF_K)
1253 b->oval = K(b->s.k);
1254 else
1255 b->oval = b->val[X_ATOM];
1256 b->et.code = b->s.code;
1257 b->ef.code = -b->s.code;
1261 * Return true if any register that is used on exit from 'succ', has
1262 * an exit value that is different from the corresponding exit value
1263 * from 'b'.
1265 static int
1266 use_conflict(struct block *b, struct block *succ)
1268 int atom;
1269 atomset use = succ->out_use;
1271 if (use == 0)
1272 return 0;
1274 for (atom = 0; atom < N_ATOMS; ++atom)
1275 if (ATOMELEM(use, atom))
1276 if (b->val[atom] != succ->val[atom])
1277 return 1;
1278 return 0;
1281 static struct block *
1282 fold_edge(struct block *child, struct edge *ep)
1284 int sense;
1285 int aval0, aval1, oval0, oval1;
1286 int code = ep->code;
1288 if (code < 0) {
1289 code = -code;
1290 sense = 0;
1291 } else
1292 sense = 1;
1294 if (child->s.code != code)
1295 return 0;
1297 aval0 = child->val[A_ATOM];
1298 oval0 = child->oval;
1299 aval1 = ep->pred->val[A_ATOM];
1300 oval1 = ep->pred->oval;
1302 if (aval0 != aval1)
1303 return 0;
1305 if (oval0 == oval1)
1307 * The operands of the branch instructions are
1308 * identical, so the result is true if a true
1309 * branch was taken to get here, otherwise false.
1311 return sense ? JT(child) : JF(child);
1313 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1315 * At this point, we only know the comparison if we
1316 * came down the true branch, and it was an equality
1317 * comparison with a constant.
1319 * I.e., if we came down the true branch, and the branch
1320 * was an equality comparison with a constant, we know the
1321 * accumulator contains that constant. If we came down
1322 * the false branch, or the comparison wasn't with a
1323 * constant, we don't know what was in the accumulator.
1325 * We rely on the fact that distinct constants have distinct
1326 * value numbers.
1328 return JF(child);
1330 return 0;
1333 static void
1334 opt_j(struct edge *ep)
1336 register int i, k;
1337 register struct block *target;
1339 if (JT(ep->succ) == 0)
1340 return;
1342 if (JT(ep->succ) == JF(ep->succ)) {
1344 * Common branch targets can be eliminated, provided
1345 * there is no data dependency.
1347 if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1348 done = 0;
1349 ep->succ = JT(ep->succ);
1353 * For each edge dominator that matches the successor of this
1354 * edge, promote the edge successor to the its grandchild.
1356 * XXX We violate the set abstraction here in favor a reasonably
1357 * efficient loop.
1359 top:
1360 for (i = 0; i < edgewords; ++i) {
1361 register bpf_u_int32 x = ep->edom[i];
1363 while (x != 0) {
1364 k = ffs(x) - 1;
1365 x &=~ (1 << k);
1366 k += i * BITS_PER_WORD;
1368 target = fold_edge(ep->succ, edges[k]);
1370 * Check that there is no data dependency between
1371 * nodes that will be violated if we move the edge.
1373 if (target != 0 && !use_conflict(ep->pred, target)) {
1374 done = 0;
1375 ep->succ = target;
1376 if (JT(target) != 0)
1378 * Start over unless we hit a leaf.
1380 goto top;
1381 return;
1388 static void
1389 or_pullup(struct block *b)
1391 int val, at_top;
1392 struct block *pull;
1393 struct block **diffp, **samep;
1394 struct edge *ep;
1396 ep = b->in_edges;
1397 if (ep == 0)
1398 return;
1401 * Make sure each predecessor loads the same value.
1402 * XXX why?
1404 val = ep->pred->val[A_ATOM];
1405 for (ep = ep->next; ep != 0; ep = ep->next)
1406 if (val != ep->pred->val[A_ATOM])
1407 return;
1409 if (JT(b->in_edges->pred) == b)
1410 diffp = &JT(b->in_edges->pred);
1411 else
1412 diffp = &JF(b->in_edges->pred);
1414 at_top = 1;
1415 while (1) {
1416 if (*diffp == 0)
1417 return;
1419 if (JT(*diffp) != JT(b))
1420 return;
1422 if (!SET_MEMBER((*diffp)->dom, b->id))
1423 return;
1425 if ((*diffp)->val[A_ATOM] != val)
1426 break;
1428 diffp = &JF(*diffp);
1429 at_top = 0;
1431 samep = &JF(*diffp);
1432 while (1) {
1433 if (*samep == 0)
1434 return;
1436 if (JT(*samep) != JT(b))
1437 return;
1439 if (!SET_MEMBER((*samep)->dom, b->id))
1440 return;
1442 if ((*samep)->val[A_ATOM] == val)
1443 break;
1445 /* XXX Need to check that there are no data dependencies
1446 between dp0 and dp1. Currently, the code generator
1447 will not produce such dependencies. */
1448 samep = &JF(*samep);
1450 #ifdef notdef
1451 /* XXX This doesn't cover everything. */
1452 for (i = 0; i < N_ATOMS; ++i)
1453 if ((*samep)->val[i] != pred->val[i])
1454 return;
1455 #endif
1456 /* Pull up the node. */
1457 pull = *samep;
1458 *samep = JF(pull);
1459 JF(pull) = *diffp;
1462 * At the top of the chain, each predecessor needs to point at the
1463 * pulled up node. Inside the chain, there is only one predecessor
1464 * to worry about.
1466 if (at_top) {
1467 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1468 if (JT(ep->pred) == b)
1469 JT(ep->pred) = pull;
1470 else
1471 JF(ep->pred) = pull;
1474 else
1475 *diffp = pull;
1477 done = 0;
1480 static void
1481 and_pullup(struct block *b)
1483 int val, at_top;
1484 struct block *pull;
1485 struct block **diffp, **samep;
1486 struct edge *ep;
1488 ep = b->in_edges;
1489 if (ep == 0)
1490 return;
1493 * Make sure each predecessor loads the same value.
1495 val = ep->pred->val[A_ATOM];
1496 for (ep = ep->next; ep != 0; ep = ep->next)
1497 if (val != ep->pred->val[A_ATOM])
1498 return;
1500 if (JT(b->in_edges->pred) == b)
1501 diffp = &JT(b->in_edges->pred);
1502 else
1503 diffp = &JF(b->in_edges->pred);
1505 at_top = 1;
1506 while (1) {
1507 if (*diffp == 0)
1508 return;
1510 if (JF(*diffp) != JF(b))
1511 return;
1513 if (!SET_MEMBER((*diffp)->dom, b->id))
1514 return;
1516 if ((*diffp)->val[A_ATOM] != val)
1517 break;
1519 diffp = &JT(*diffp);
1520 at_top = 0;
1522 samep = &JT(*diffp);
1523 while (1) {
1524 if (*samep == 0)
1525 return;
1527 if (JF(*samep) != JF(b))
1528 return;
1530 if (!SET_MEMBER((*samep)->dom, b->id))
1531 return;
1533 if ((*samep)->val[A_ATOM] == val)
1534 break;
1536 /* XXX Need to check that there are no data dependencies
1537 between diffp and samep. Currently, the code generator
1538 will not produce such dependencies. */
1539 samep = &JT(*samep);
1541 #ifdef notdef
1542 /* XXX This doesn't cover everything. */
1543 for (i = 0; i < N_ATOMS; ++i)
1544 if ((*samep)->val[i] != pred->val[i])
1545 return;
1546 #endif
1547 /* Pull up the node. */
1548 pull = *samep;
1549 *samep = JT(pull);
1550 JT(pull) = *diffp;
1553 * At the top of the chain, each predecessor needs to point at the
1554 * pulled up node. Inside the chain, there is only one predecessor
1555 * to worry about.
1557 if (at_top) {
1558 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1559 if (JT(ep->pred) == b)
1560 JT(ep->pred) = pull;
1561 else
1562 JF(ep->pred) = pull;
1565 else
1566 *diffp = pull;
1568 done = 0;
1571 static void
1572 opt_blks(struct block *root, int do_stmts)
1574 int i, maxlevel;
1575 struct block *p;
1577 init_val();
1578 maxlevel = root->level;
1580 find_inedges(root);
1581 for (i = maxlevel; i >= 0; --i)
1582 for (p = levels[i]; p; p = p->link)
1583 opt_blk(p, do_stmts);
1585 if (do_stmts)
1587 * No point trying to move branches; it can't possibly
1588 * make a difference at this point.
1590 return;
1592 for (i = 1; i <= maxlevel; ++i) {
1593 for (p = levels[i]; p; p = p->link) {
1594 opt_j(&p->et);
1595 opt_j(&p->ef);
1599 find_inedges(root);
1600 for (i = 1; i <= maxlevel; ++i) {
1601 for (p = levels[i]; p; p = p->link) {
1602 or_pullup(p);
1603 and_pullup(p);
1608 static inline void
1609 link_inedge(struct edge *parent, struct block *child)
1611 parent->next = child->in_edges;
1612 child->in_edges = parent;
1615 static void
1616 find_inedges(struct block *root)
1618 int i;
1619 struct block *b;
1621 for (i = 0; i < n_blocks; ++i)
1622 blocks[i]->in_edges = 0;
1625 * Traverse the graph, adding each edge to the predecessor
1626 * list of its successors. Skip the leaves (i.e. level 0).
1628 for (i = root->level; i > 0; --i) {
1629 for (b = levels[i]; b != 0; b = b->link) {
1630 link_inedge(&b->et, JT(b));
1631 link_inedge(&b->ef, JF(b));
1636 static void
1637 opt_root(struct block **b)
1639 struct slist *tmp, *s;
1641 s = (*b)->stmts;
1642 (*b)->stmts = 0;
1643 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1644 *b = JT(*b);
1646 tmp = (*b)->stmts;
1647 if (tmp != 0)
1648 sappend(s, tmp);
1649 (*b)->stmts = s;
1652 * If the root node is a return, then there is no
1653 * point executing any statements (since the bpf machine
1654 * has no side effects).
1656 if (BPF_CLASS((*b)->s.code) == BPF_RET)
1657 (*b)->stmts = 0;
1660 static void
1661 opt_loop(struct block *root, int do_stmts)
1664 #ifdef BDEBUG
1665 if (dflag > 1) {
1666 printf("opt_loop(root, %d) begin\n", do_stmts);
1667 opt_dump(root);
1669 #endif
1670 do {
1671 done = 1;
1672 find_levels(root);
1673 find_dom(root);
1674 find_closure(root);
1675 find_ud(root);
1676 find_edom(root);
1677 opt_blks(root, do_stmts);
1678 #ifdef BDEBUG
1679 if (dflag > 1) {
1680 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1681 opt_dump(root);
1683 #endif
1684 } while (!done);
1688 * Optimize the filter code in its dag representation.
1690 void
1691 bpf_optimize(struct block **rootp)
1693 struct block *root;
1695 root = *rootp;
1697 opt_init(root);
1698 opt_loop(root, 0);
1699 opt_loop(root, 1);
1700 intern_blocks(root);
1701 #ifdef BDEBUG
1702 if (dflag > 1) {
1703 printf("after intern_blocks()\n");
1704 opt_dump(root);
1706 #endif
1707 opt_root(rootp);
1708 #ifdef BDEBUG
1709 if (dflag > 1) {
1710 printf("after opt_root()\n");
1711 opt_dump(root);
1713 #endif
1714 opt_cleanup();
1717 static void
1718 make_marks(struct block *p)
1720 if (!isMarked(p)) {
1721 Mark(p);
1722 if (BPF_CLASS(p->s.code) != BPF_RET) {
1723 make_marks(JT(p));
1724 make_marks(JF(p));
1730 * Mark code array such that isMarked(i) is true
1731 * only for nodes that are alive.
1733 static void
1734 mark_code(struct block *p)
1736 cur_mark += 1;
1737 make_marks(p);
1741 * True iff the two stmt lists load the same value from the packet into
1742 * the accumulator.
1744 static int
1745 eq_slist(struct slist *x, struct slist *y)
1747 while (1) {
1748 while (x && x->s.code == NOP)
1749 x = x->next;
1750 while (y && y->s.code == NOP)
1751 y = y->next;
1752 if (x == 0)
1753 return y == 0;
1754 if (y == 0)
1755 return x == 0;
1756 if (x->s.code != y->s.code || x->s.k != y->s.k)
1757 return 0;
1758 x = x->next;
1759 y = y->next;
1763 static inline int
1764 eq_blk(struct block *b0, struct block *b1)
1766 if (b0->s.code == b1->s.code &&
1767 b0->s.k == b1->s.k &&
1768 b0->et.succ == b1->et.succ &&
1769 b0->ef.succ == b1->ef.succ)
1770 return eq_slist(b0->stmts, b1->stmts);
1771 return 0;
1774 static void
1775 intern_blocks(struct block *root)
1777 struct block *p;
1778 int i, j;
1779 int done1; /* don't shadow global */
1780 top:
1781 done1 = 1;
1782 for (i = 0; i < n_blocks; ++i)
1783 blocks[i]->link = 0;
1785 mark_code(root);
1787 for (i = n_blocks - 1; --i >= 0; ) {
1788 if (!isMarked(blocks[i]))
1789 continue;
1790 for (j = i + 1; j < n_blocks; ++j) {
1791 if (!isMarked(blocks[j]))
1792 continue;
1793 if (eq_blk(blocks[i], blocks[j])) {
1794 blocks[i]->link = blocks[j]->link ?
1795 blocks[j]->link : blocks[j];
1796 break;
1800 for (i = 0; i < n_blocks; ++i) {
1801 p = blocks[i];
1802 if (JT(p) == 0)
1803 continue;
1804 if (JT(p)->link) {
1805 done1 = 0;
1806 JT(p) = JT(p)->link;
1808 if (JF(p)->link) {
1809 done1 = 0;
1810 JF(p) = JF(p)->link;
1813 if (!done1)
1814 goto top;
1817 static void
1818 opt_cleanup(void)
1820 free((void *)vnode_base);
1821 free((void *)vmap);
1822 free((void *)edges);
1823 free((void *)space);
1824 free((void *)levels);
1825 free((void *)blocks);
1829 * Return the number of stmts in 's'.
1831 static u_int
1832 slength(struct slist *s)
1834 u_int n = 0;
1836 for (; s; s = s->next)
1837 if (s->s.code != NOP)
1838 ++n;
1839 return n;
1843 * Return the number of nodes reachable by 'p'.
1844 * All nodes should be initially unmarked.
1846 static int
1847 count_blocks(struct block *p)
1849 if (p == 0 || isMarked(p))
1850 return 0;
1851 Mark(p);
1852 return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1856 * Do a depth first search on the flow graph, numbering the
1857 * the basic blocks, and entering them into the 'blocks' array.`
1859 static void
1860 number_blks_r(struct block *p)
1862 int n;
1864 if (p == 0 || isMarked(p))
1865 return;
1867 Mark(p);
1868 n = n_blocks++;
1869 p->id = n;
1870 blocks[n] = p;
1872 number_blks_r(JT(p));
1873 number_blks_r(JF(p));
1877 * Return the number of stmts in the flowgraph reachable by 'p'.
1878 * The nodes should be unmarked before calling.
1880 * Note that "stmts" means "instructions", and that this includes
1882 * side-effect statements in 'p' (slength(p->stmts));
1884 * statements in the true branch from 'p' (count_stmts(JT(p)));
1886 * statements in the false branch from 'p' (count_stmts(JF(p)));
1888 * the conditional jump itself (1);
1890 * an extra long jump if the true branch requires it (p->longjt);
1892 * an extra long jump if the false branch requires it (p->longjf).
1894 static u_int
1895 count_stmts(struct block *p)
1897 u_int n;
1899 if (p == 0 || isMarked(p))
1900 return 0;
1901 Mark(p);
1902 n = count_stmts(JT(p)) + count_stmts(JF(p));
1903 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1907 * Allocate memory. All allocation is done before optimization
1908 * is begun. A linear bound on the size of all data structures is computed
1909 * from the total number of blocks and/or statements.
1911 static void
1912 opt_init(struct block *root)
1914 bpf_u_int32 *p;
1915 int i, n, max_stmts;
1918 * First, count the blocks, so we can malloc an array to map
1919 * block number to block. Then, put the blocks into the array.
1921 unMarkAll();
1922 n = count_blocks(root);
1923 blocks = (struct block **)calloc(n, sizeof(*blocks));
1924 if (blocks == NULL)
1925 bpf_error("malloc");
1926 unMarkAll();
1927 n_blocks = 0;
1928 number_blks_r(root);
1930 n_edges = 2 * n_blocks;
1931 edges = (struct edge **)calloc(n_edges, sizeof(*edges));
1932 if (edges == NULL)
1933 bpf_error("malloc");
1936 * The number of levels is bounded by the number of nodes.
1938 levels = (struct block **)calloc(n_blocks, sizeof(*levels));
1939 if (levels == NULL)
1940 bpf_error("malloc");
1942 edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1943 nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1945 /* XXX */
1946 space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1947 + n_edges * edgewords * sizeof(*space));
1948 if (space == NULL)
1949 bpf_error("malloc");
1950 p = space;
1951 all_dom_sets = p;
1952 for (i = 0; i < n; ++i) {
1953 blocks[i]->dom = p;
1954 p += nodewords;
1956 all_closure_sets = p;
1957 for (i = 0; i < n; ++i) {
1958 blocks[i]->closure = p;
1959 p += nodewords;
1961 all_edge_sets = p;
1962 for (i = 0; i < n; ++i) {
1963 register struct block *b = blocks[i];
1965 b->et.edom = p;
1966 p += edgewords;
1967 b->ef.edom = p;
1968 p += edgewords;
1969 b->et.id = i;
1970 edges[i] = &b->et;
1971 b->ef.id = n_blocks + i;
1972 edges[n_blocks + i] = &b->ef;
1973 b->et.pred = b;
1974 b->ef.pred = b;
1976 max_stmts = 0;
1977 for (i = 0; i < n; ++i)
1978 max_stmts += slength(blocks[i]->stmts) + 1;
1980 * We allocate at most 3 value numbers per statement,
1981 * so this is an upper bound on the number of valnodes
1982 * we'll need.
1984 maxval = 3 * max_stmts;
1985 vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
1986 vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
1987 if (vmap == NULL || vnode_base == NULL)
1988 bpf_error("malloc");
1992 * Some pointers used to convert the basic block form of the code,
1993 * into the array form that BPF requires. 'fstart' will point to
1994 * the malloc'd array while 'ftail' is used during the recursive traversal.
1996 static struct bpf_insn *fstart;
1997 static struct bpf_insn *ftail;
1999 #ifdef BDEBUG
2000 int bids[1000];
2001 #endif
2004 * Returns true if successful. Returns false if a branch has
2005 * an offset that is too large. If so, we have marked that
2006 * branch so that on a subsequent iteration, it will be treated
2007 * properly.
2009 static int
2010 convert_code_r(struct block *p)
2012 struct bpf_insn *dst;
2013 struct slist *src;
2014 u_int slen;
2015 u_int off;
2016 int extrajmps; /* number of extra jumps inserted */
2017 struct slist **offset = NULL;
2019 if (p == 0 || isMarked(p))
2020 return (1);
2021 Mark(p);
2023 if (convert_code_r(JF(p)) == 0)
2024 return (0);
2025 if (convert_code_r(JT(p)) == 0)
2026 return (0);
2028 slen = slength(p->stmts);
2029 dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2030 /* inflate length by any extra jumps */
2032 p->offset = dst - fstart;
2034 /* generate offset[] for convenience */
2035 if (slen) {
2036 offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2037 if (!offset) {
2038 bpf_error("not enough core");
2039 /*NOTREACHED*/
2042 src = p->stmts;
2043 for (off = 0; off < slen && src; off++) {
2044 #if 0
2045 printf("off=%d src=%x\n", off, src);
2046 #endif
2047 offset[off] = src;
2048 src = src->next;
2051 off = 0;
2052 for (src = p->stmts; src; src = src->next) {
2053 if (src->s.code == NOP)
2054 continue;
2055 dst->code = (u_short)src->s.code;
2056 dst->k = src->s.k;
2058 /* fill block-local relative jump */
2059 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2060 #if 0
2061 if (src->s.jt || src->s.jf) {
2062 bpf_error("illegal jmp destination");
2063 /*NOTREACHED*/
2065 #endif
2066 goto filled;
2068 if (off == slen - 2) /*???*/
2069 goto filled;
2072 u_int i;
2073 int jt, jf;
2074 static const char ljerr[] = "%s for block-local relative jump: off=%d";
2076 #if 0
2077 printf("code=%x off=%d %x %x\n", src->s.code,
2078 off, src->s.jt, src->s.jf);
2079 #endif
2081 if (!src->s.jt || !src->s.jf) {
2082 bpf_error(ljerr, "no jmp destination", off);
2083 /*NOTREACHED*/
2086 jt = jf = 0;
2087 for (i = 0; i < slen; i++) {
2088 if (offset[i] == src->s.jt) {
2089 if (jt) {
2090 bpf_error(ljerr, "multiple matches", off);
2091 /*NOTREACHED*/
2094 dst->jt = i - off - 1;
2095 jt++;
2097 if (offset[i] == src->s.jf) {
2098 if (jf) {
2099 bpf_error(ljerr, "multiple matches", off);
2100 /*NOTREACHED*/
2102 dst->jf = i - off - 1;
2103 jf++;
2106 if (!jt || !jf) {
2107 bpf_error(ljerr, "no destination found", off);
2108 /*NOTREACHED*/
2111 filled:
2112 ++dst;
2113 ++off;
2115 if (offset)
2116 free(offset);
2118 #ifdef BDEBUG
2119 bids[dst - fstart] = p->id + 1;
2120 #endif
2121 dst->code = (u_short)p->s.code;
2122 dst->k = p->s.k;
2123 if (JT(p)) {
2124 extrajmps = 0;
2125 off = JT(p)->offset - (p->offset + slen) - 1;
2126 if (off >= 256) {
2127 /* offset too large for branch, must add a jump */
2128 if (p->longjt == 0) {
2129 /* mark this instruction and retry */
2130 p->longjt++;
2131 return(0);
2133 /* branch if T to following jump */
2134 dst->jt = extrajmps;
2135 extrajmps++;
2136 dst[extrajmps].code = BPF_JMP|BPF_JA;
2137 dst[extrajmps].k = off - extrajmps;
2139 else
2140 dst->jt = off;
2141 off = JF(p)->offset - (p->offset + slen) - 1;
2142 if (off >= 256) {
2143 /* offset too large for branch, must add a jump */
2144 if (p->longjf == 0) {
2145 /* mark this instruction and retry */
2146 p->longjf++;
2147 return(0);
2149 /* branch if F to following jump */
2150 /* if two jumps are inserted, F goes to second one */
2151 dst->jf = extrajmps;
2152 extrajmps++;
2153 dst[extrajmps].code = BPF_JMP|BPF_JA;
2154 dst[extrajmps].k = off - extrajmps;
2156 else
2157 dst->jf = off;
2159 return (1);
2164 * Convert flowgraph intermediate representation to the
2165 * BPF array representation. Set *lenp to the number of instructions.
2167 * This routine does *NOT* leak the memory pointed to by fp. It *must
2168 * not* do free(fp) before returning fp; doing so would make no sense,
2169 * as the BPF array pointed to by the return value of icode_to_fcode()
2170 * must be valid - it's being returned for use in a bpf_program structure.
2172 * If it appears that icode_to_fcode() is leaking, the problem is that
2173 * the program using pcap_compile() is failing to free the memory in
2174 * the BPF program when it's done - the leak is in the program, not in
2175 * the routine that happens to be allocating the memory. (By analogy, if
2176 * a program calls fopen() without ever calling fclose() on the FILE *,
2177 * it will leak the FILE structure; the leak is not in fopen(), it's in
2178 * the program.) Change the program to use pcap_freecode() when it's
2179 * done with the filter program. See the pcap man page.
2181 struct bpf_insn *
2182 icode_to_fcode(struct block *root, u_int *lenp)
2184 u_int n;
2185 struct bpf_insn *fp;
2188 * Loop doing convert_code_r() until no branches remain
2189 * with too-large offsets.
2191 while (1) {
2192 unMarkAll();
2193 n = *lenp = count_stmts(root);
2195 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2196 if (fp == NULL)
2197 bpf_error("malloc");
2198 memset((char *)fp, 0, sizeof(*fp) * n);
2199 fstart = fp;
2200 ftail = fp + n;
2202 unMarkAll();
2203 if (convert_code_r(root))
2204 break;
2205 free(fp);
2208 return fp;
2212 * Make a copy of a BPF program and put it in the "fcode" member of
2213 * a "pcap_t".
2215 * If we fail to allocate memory for the copy, fill in the "errbuf"
2216 * member of the "pcap_t" with an error message, and return -1;
2217 * otherwise, return 0.
2220 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2222 size_t prog_size;
2225 * Validate the program.
2227 if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2228 snprintf(p->errbuf, sizeof(p->errbuf),
2229 "BPF program is not valid");
2230 return (-1);
2234 * Free up any already installed program.
2236 pcap_freecode(&p->fcode);
2238 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2239 p->fcode.bf_len = fp->bf_len;
2240 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2241 if (p->fcode.bf_insns == NULL) {
2242 snprintf(p->errbuf, sizeof(p->errbuf),
2243 "malloc: %s", pcap_strerror(errno));
2244 return (-1);
2246 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2247 return (0);
2250 #ifdef BDEBUG
2251 static void
2252 dot_dump_node(struct block *block, struct bpf_program *prog, FILE *out)
2254 int icount, noffset;
2255 int i;
2257 if (block == NULL || isMarked(block))
2258 return;
2259 Mark(block);
2261 icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2262 noffset = min(block->offset + icount, (int)prog->bf_len);
2264 fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
2265 for (i = block->offset; i < noffset; i++) {
2266 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2268 fprintf(out, "\" tooltip=\"");
2269 for (i = 0; i < BPF_MEMWORDS; i++)
2270 if (block->val[i] != 0)
2271 fprintf(out, "val[%d]=%d ", i, block->val[i]);
2272 fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2273 fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2274 fprintf(out, "\"");
2275 if (JT(block) == NULL)
2276 fprintf(out, ", peripheries=2");
2277 fprintf(out, "];\n");
2279 dot_dump_node(JT(block), prog, out);
2280 dot_dump_node(JF(block), prog, out);
2282 static void
2283 dot_dump_edge(struct block *block, FILE *out)
2285 if (block == NULL || isMarked(block))
2286 return;
2287 Mark(block);
2289 if (JT(block)) {
2290 fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2291 block->id, JT(block)->id);
2292 fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2293 block->id, JF(block)->id);
2295 dot_dump_edge(JT(block), out);
2296 dot_dump_edge(JF(block), out);
2298 /* Output the block CFG using graphviz/DOT language
2299 * In the CFG, block's code, value index for each registers at EXIT,
2300 * and the jump relationship is show.
2302 * example DOT for BPF `ip src host 1.1.1.1' is:
2303 digraph BPF {
2304 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2305 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2306 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2307 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2308 "block0":se -> "block1":n [label="T"];
2309 "block0":sw -> "block3":n [label="F"];
2310 "block1":se -> "block2":n [label="T"];
2311 "block1":sw -> "block3":n [label="F"];
2314 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2315 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2317 static void
2318 dot_dump(struct block *root)
2320 struct bpf_program f;
2321 FILE *out = stdout;
2323 memset(bids, 0, sizeof bids);
2324 f.bf_insns = icode_to_fcode(root, &f.bf_len);
2326 fprintf(out, "digraph BPF {\n");
2327 unMarkAll();
2328 dot_dump_node(root, &f, out);
2329 unMarkAll();
2330 dot_dump_edge(root, out);
2331 fprintf(out, "}\n");
2333 free((char *)f.bf_insns);
2336 static void
2337 plain_dump(struct block *root)
2339 struct bpf_program f;
2341 memset(bids, 0, sizeof bids);
2342 f.bf_insns = icode_to_fcode(root, &f.bf_len);
2343 bpf_dump(&f, 1);
2344 putchar('\n');
2345 free((char *)f.bf_insns);
2347 static void
2348 opt_dump(struct block *root)
2350 /* if optimizer debugging is enabled, output DOT graph
2351 * `dflag=4' is equivalent to -dddd to follow -d/-dd/-ddd
2352 * convention in tcpdump command line
2354 if (dflag > 3)
2355 dot_dump(root);
2356 else
2357 plain_dump(root);
2360 #endif