etc/protocols - sync with NetBSD-8
[minix.git] / sys / ufs / chfs / chfs_nodeops.c
blob5407f74dd903f323cd3fb6131c7ef9e016a64fa2
1 /* $NetBSD: chfs_nodeops.c,v 1.4 2013/12/09 09:35:17 wiz Exp $ */
3 /*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 * University of Szeged, Hungary
6 * Copyright (C) 2010 David Tengeri <dtengeri@inf.u-szeged.hu>
7 * Copyright (C) 2010 Tamas Toth <ttoth@inf.u-szeged.hu>
8 * Copyright (C) 2010 Adam Hoka <ahoka@NetBSD.org>
9 * All rights reserved.
11 * This code is derived from software contributed to The NetBSD Foundation
12 * by the Department of Software Engineering, University of Szeged, Hungary
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
36 #include "chfs.h"
39 * chfs_update_eb_dirty - updates dirty and free space, first and
40 * last node references
41 * Returns zero in case of success, 1 in case of fail.
43 int
44 chfs_update_eb_dirty(struct chfs_mount *chmp,
45 struct chfs_eraseblock *cheb, uint32_t size)
47 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
48 KASSERT(!mutex_owned(&chmp->chm_lock_sizes));
50 if (!size)
51 return 0;
53 if (size > cheb->free_size) {
54 chfs_err("free_size (%d) is less than dirty space (%d) "
55 "on block (%d)\n", cheb->free_size, size, cheb->lnr);
56 return 1;
58 mutex_enter(&chmp->chm_lock_sizes);
59 chfs_change_size_free(chmp, cheb, -size);
60 chfs_change_size_dirty(chmp, cheb, size);
61 mutex_exit(&chmp->chm_lock_sizes);
62 return 0;
66 * chfs_add_node_to_list - adds a data node ref to vnode cache's dnode list
67 * This function inserts a data node ref to the list of vnode cache.
68 * The list is sorted by data node's lnr and offset.
70 void
71 chfs_add_node_to_list(struct chfs_mount *chmp,
72 struct chfs_vnode_cache *vc,
73 struct chfs_node_ref *new, struct chfs_node_ref **list)
75 KASSERT(mutex_owned(&chmp->chm_lock_vnocache));
77 struct chfs_node_ref *nextref = *list;
78 struct chfs_node_ref *prevref = NULL;
80 while (nextref && nextref != (struct chfs_node_ref *)vc &&
81 (nextref->nref_lnr <= new->nref_lnr)) {
82 if (nextref->nref_lnr == new->nref_lnr) {
83 while (nextref && nextref !=
84 (struct chfs_node_ref *)vc &&
85 (CHFS_GET_OFS(nextref->nref_offset) <
86 CHFS_GET_OFS(new->nref_offset))) {
87 prevref = nextref;
88 nextref = nextref->nref_next;
90 break;
92 prevref = nextref;
93 nextref = nextref->nref_next;
96 if (nextref && nextref != (struct chfs_node_ref *)vc &&
97 nextref->nref_lnr == new->nref_lnr &&
98 CHFS_GET_OFS(nextref->nref_offset) ==
99 CHFS_GET_OFS(new->nref_offset)) {
100 new->nref_next = nextref->nref_next;
101 chfs_mark_node_obsolete(chmp, nextref);
102 } else {
103 new->nref_next = nextref;
106 KASSERT(new->nref_next != NULL);
108 if (prevref) {
109 prevref->nref_next = new;
110 } else {
111 *list = new;
116 * chfs_remove_node_from_list - removes a node from a list
117 * Usually used for removing data nodes.
119 void
120 chfs_remove_node_from_list(struct chfs_mount *chmp,
121 struct chfs_vnode_cache *vc,
122 struct chfs_node_ref *old_nref, struct chfs_node_ref **list)
124 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
125 KASSERT(mutex_owned(&chmp->chm_lock_vnocache));
127 struct chfs_node_ref *tmpnref;
129 if (*list == (struct chfs_node_ref *)vc) {
130 /* list is empty */
131 return;
134 KASSERT(old_nref->nref_next != NULL);
136 if (*list == old_nref) {
137 *list = old_nref->nref_next;
138 } else {
139 tmpnref = *list;
140 while (tmpnref->nref_next &&
141 tmpnref->nref_next != (struct chfs_node_ref *)vc) {
142 if (tmpnref->nref_next == old_nref) {
143 tmpnref->nref_next = old_nref->nref_next;
144 break;
146 tmpnref = tmpnref->nref_next;
152 * chfs_remove_and_obsolete - removes a node from a list and obsoletes the nref
153 * We should use this function carefully on data nodes,
154 * because removing a frag will also obsolete the node ref.
156 void
157 chfs_remove_and_obsolete(struct chfs_mount *chmp,
158 struct chfs_vnode_cache *vc,
159 struct chfs_node_ref *old_nref, struct chfs_node_ref **list)
161 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
162 KASSERT(mutex_owned(&chmp->chm_lock_vnocache));
164 chfs_remove_node_from_list(chmp, vc, old_nref, list);
166 dbg("[MARK] vno: %llu lnr: %u ofs: %u\n", vc->vno, old_nref->nref_lnr,
167 old_nref->nref_offset);
168 chfs_mark_node_obsolete(chmp, old_nref);
171 /* chfs_add_fd_to_inode - adds a directory entry to an inode */
172 void
173 chfs_add_fd_to_inode(struct chfs_mount *chmp,
174 struct chfs_inode *parent, struct chfs_dirent *new)
176 struct chfs_dirent *fd, *tmpfd;
178 /* update highest version */
179 if (new->version > parent->chvc->highest_version) {
180 parent->chvc->highest_version = new->version;
183 TAILQ_FOREACH_SAFE(fd, &parent->dents, fds, tmpfd) {
184 if (fd->nhash > new->nhash) {
185 /* insert new before fd */
186 TAILQ_INSERT_BEFORE(fd, new, fds);
187 return;
188 } else if (fd->nhash == new->nhash &&
189 !strcmp(fd->name, new->name)) {
190 if (new->version > fd->version) {
191 /* replace fd with new */
192 TAILQ_INSERT_BEFORE(fd, new, fds);
193 TAILQ_REMOVE(&parent->dents, fd, fds);
194 if (fd->nref) {
195 mutex_enter(&chmp->chm_lock_vnocache);
196 chfs_remove_and_obsolete(chmp, parent->chvc, fd->nref,
197 &parent->chvc->dirents);
198 mutex_exit(&chmp->chm_lock_vnocache);
200 chfs_free_dirent(fd);
201 } else {
202 /* new is older (normally it's not an option) */
203 chfs_mark_node_obsolete(chmp, new->nref);
204 chfs_free_dirent(new);
206 return;
209 /* if we couldnt fit it elsewhere, lets add to the end */
210 /* FIXME insert tail or insert head? */
211 TAILQ_INSERT_HEAD(&parent->dents, new, fds);
215 /* chfs_add_vnode_ref_to_vc - adds a vnode info to the vnode cache */
216 void
217 chfs_add_vnode_ref_to_vc(struct chfs_mount *chmp,
218 struct chfs_vnode_cache *vc, struct chfs_node_ref *new)
220 KASSERT(mutex_owned(&chmp->chm_lock_vnocache));
221 struct chfs_node_ref *nref;
223 /* store only the last one, drop the others */
224 while (vc->v != (struct chfs_node_ref *)vc) {
225 nref = vc->v;
226 chfs_remove_and_obsolete(chmp, vc, nref, &vc->v);
229 new->nref_next = (struct chfs_node_ref *)vc;
230 vc->v = new;
233 /* chfs_nref_next - step to the next in-memory nref */
234 struct chfs_node_ref *
235 chfs_nref_next(struct chfs_node_ref *nref)
237 nref++;
238 if (nref->nref_lnr == REF_LINK_TO_NEXT) {
239 /* end of chain */
240 if (!nref->nref_next)
241 return NULL;
243 /* link to the next block */
244 nref = nref->nref_next;
246 /* end of chain */
247 if (nref->nref_lnr == REF_EMPTY_NODE)
248 return NULL;
250 return nref;
253 /* chfs_nref_len - calculates the length of an nref */
255 chfs_nref_len(struct chfs_mount *chmp,
256 struct chfs_eraseblock *cheb, struct chfs_node_ref *nref)
258 struct chfs_node_ref *next;
260 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
262 if (!cheb)
263 cheb = &chmp->chm_blocks[nref->nref_lnr];
265 next = chfs_nref_next(nref);
267 if (!next) {
268 return chmp->chm_ebh->eb_size - cheb->free_size -
269 CHFS_GET_OFS(nref->nref_offset);
271 return CHFS_GET_OFS(next->nref_offset) -
272 CHFS_GET_OFS(nref->nref_offset);
275 /* chfs_mark_node_obsolete - marks a node as obsolete */
276 void
277 chfs_mark_node_obsolete(struct chfs_mount *chmp,
278 struct chfs_node_ref *nref)
280 int len;
281 struct chfs_eraseblock *cheb;
283 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
285 KASSERT(!CHFS_REF_OBSOLETE(nref));
287 KASSERT(nref->nref_lnr <= chmp->chm_ebh->peb_nr);
288 cheb = &chmp->chm_blocks[nref->nref_lnr];
290 #ifdef DIAGNOSTIC
291 if (cheb->used_size + cheb->free_size + cheb->dirty_size +
292 cheb->unchecked_size + cheb->wasted_size != chmp->chm_ebh->eb_size) {
293 dbg("eraseblock leak detected!\nused: %u\nfree: %u\n"
294 "dirty: %u\nunchecked: %u\nwasted: %u\ntotal: %u\nshould be: %zu\n",
295 cheb->used_size, cheb->free_size, cheb->dirty_size,
296 cheb->unchecked_size, cheb->wasted_size, cheb->used_size + cheb->free_size +
297 cheb->dirty_size + cheb->unchecked_size + cheb->wasted_size,
298 chmp->chm_ebh->eb_size);
300 #endif
302 len = chfs_nref_len(chmp, cheb, nref);
304 mutex_enter(&chmp->chm_lock_sizes);
306 if (CHFS_REF_FLAGS(nref) == CHFS_UNCHECKED_NODE_MASK) {
307 chfs_change_size_unchecked(chmp, cheb, -len);
308 } else {
309 chfs_change_size_used(chmp, cheb, -len);
311 KASSERT(cheb->used_size <= chmp->chm_ebh->eb_size);
313 chfs_change_size_dirty(chmp, cheb, len);
315 #ifdef DIAGNOSTIC
316 if (cheb->used_size + cheb->free_size + cheb->dirty_size +
317 cheb->unchecked_size + cheb->wasted_size != chmp->chm_ebh->eb_size) {
318 panic("eraseblock leak detected!\nused: %u\nfree: %u\n"
319 "dirty: %u\nunchecked: %u\nwasted: %u\ntotal: %u\nshould be: %zu\n",
320 cheb->used_size, cheb->free_size, cheb->dirty_size,
321 cheb->unchecked_size, cheb->wasted_size, cheb->used_size + cheb->free_size +
322 cheb->dirty_size + cheb->unchecked_size + cheb->wasted_size,
323 chmp->chm_ebh->eb_size);
325 #endif
326 nref->nref_offset = CHFS_GET_OFS(nref->nref_offset) |
327 CHFS_OBSOLETE_NODE_MASK;
329 if (chmp->chm_flags & CHFS_MP_FLAG_SCANNING) {
330 /*Scan is in progress, do nothing now*/
331 mutex_exit(&chmp->chm_lock_sizes);
332 return;
335 if (cheb == chmp->chm_nextblock) {
336 dbg("Not moving nextblock to dirty/erase_pending list\n");
337 } else if (!cheb->used_size && !cheb->unchecked_size) {
338 if (cheb == chmp->chm_gcblock) {
339 dbg("gcblock is completely dirtied\n");
340 chmp->chm_gcblock = NULL;
341 } else {
342 /* remove from a tailq, but we don't know which tailq contains this cheb
343 * so we remove it from the dirty list now */
344 //TAILQ_REMOVE(&chmp->chm_dirty_queue, cheb, queue);
345 int removed = 0;
346 struct chfs_eraseblock *eb, *tmpeb;
347 //XXX ugly code
348 TAILQ_FOREACH_SAFE(eb, &chmp->chm_free_queue, queue, tmpeb) {
349 if (eb == cheb) {
350 TAILQ_REMOVE(&chmp->chm_free_queue, cheb, queue);
351 removed = 1;
352 break;
355 if (removed == 0) {
356 TAILQ_FOREACH_SAFE(eb, &chmp->chm_dirty_queue, queue, tmpeb) {
357 if (eb == cheb) {
358 TAILQ_REMOVE(&chmp->chm_dirty_queue, cheb, queue);
359 removed = 1;
360 break;
364 if (removed == 0) {
365 TAILQ_FOREACH_SAFE(eb, &chmp->chm_very_dirty_queue, queue, tmpeb) {
366 if (eb == cheb) {
367 TAILQ_REMOVE(&chmp->chm_very_dirty_queue, cheb, queue);
368 removed = 1;
369 break;
373 if (removed == 0) {
374 TAILQ_FOREACH_SAFE(eb, &chmp->chm_clean_queue, queue, tmpeb) {
375 if (eb == cheb) {
376 TAILQ_REMOVE(&chmp->chm_clean_queue, cheb, queue);
377 removed = 1;
378 break;
383 if (chmp->chm_wbuf_len) {
384 dbg("Adding block to erasable pending wbuf queue\n");
385 TAILQ_INSERT_TAIL(&chmp->chm_erasable_pending_wbuf_queue,
386 cheb, queue);
387 } else {
388 TAILQ_INSERT_TAIL(&chmp->chm_erase_pending_queue,
389 cheb, queue);
390 chmp->chm_nr_erasable_blocks++;
392 chfs_remap_leb(chmp);
393 } else if (cheb == chmp->chm_gcblock) {
394 dbg("Not moving gcblock to dirty list\n");
395 } else if (cheb->dirty_size > MAX_DIRTY_TO_CLEAN &&
396 cheb->dirty_size - len <= MAX_DIRTY_TO_CLEAN) {
397 dbg("Freshly dirtied, remove it from clean queue and "
398 "add it to dirty\n");
399 TAILQ_REMOVE(&chmp->chm_clean_queue, cheb, queue);
400 TAILQ_INSERT_TAIL(&chmp->chm_dirty_queue, cheb, queue);
401 } else if (VERY_DIRTY(chmp, cheb->dirty_size) &&
402 !VERY_DIRTY(chmp, cheb->dirty_size - len)) {
403 dbg("Becomes now very dirty, remove it from dirty "
404 "queue and add it to very dirty\n");
405 TAILQ_REMOVE(&chmp->chm_dirty_queue, cheb, queue);
406 TAILQ_INSERT_TAIL(&chmp->chm_very_dirty_queue, cheb, queue);
407 } else {
408 dbg("Leave cheb where it is\n");
410 mutex_exit(&chmp->chm_lock_sizes);
411 return;
415 * chfs_close_eraseblock - close an eraseblock
417 * This function close the physical chain of the nodes on the eraseblock,
418 * convert its free size to dirty and add it to clean, dirty or very dirty list.
421 chfs_close_eraseblock(struct chfs_mount *chmp,
422 struct chfs_eraseblock *cheb)
424 uint32_t offset;
425 struct chfs_node_ref *nref;
427 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
429 offset = chmp->chm_ebh->eb_size - cheb->free_size;
431 // Close the chain
432 nref = chfs_alloc_node_ref(cheb);
433 if (!nref)
434 return ENOMEM;
436 nref->nref_next = NULL;
437 nref->nref_offset = offset;
439 // Mark space as dirty
440 chfs_update_eb_dirty(chmp, cheb, cheb->free_size);
442 if (cheb->dirty_size < MAX_DIRTY_TO_CLEAN) {
443 TAILQ_INSERT_TAIL(&chmp->chm_clean_queue, cheb, queue);
444 } else if (VERY_DIRTY(chmp, cheb->dirty_size)) {
445 TAILQ_INSERT_TAIL(&chmp->chm_very_dirty_queue, cheb, queue);
446 } else {
447 TAILQ_INSERT_TAIL(&chmp->chm_dirty_queue, cheb, queue);
449 return 0;
453 * chfs_reserve_space_normal -
454 * checks available space and calls chfs_reserve_space
455 * used during writing
458 chfs_reserve_space_normal(struct chfs_mount *chmp, uint32_t size, int prio)
460 int ret;
462 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
464 mutex_enter(&chmp->chm_lock_sizes);
465 while (chmp->chm_nr_free_blocks + chmp->chm_nr_erasable_blocks < chmp->chm_resv_blocks_write) {
466 dbg("free: %d, erasable: %d, resv: %d\n", chmp->chm_nr_free_blocks, chmp->chm_nr_erasable_blocks, chmp->chm_resv_blocks_write);
467 uint32_t avail, dirty;
468 if (prio == ALLOC_DELETION && chmp->chm_nr_free_blocks + chmp->chm_nr_erasable_blocks >= chmp->chm_resv_blocks_deletion)
469 break;
471 dirty = chmp->chm_dirty_size - chmp->chm_nr_erasable_blocks * chmp->chm_ebh->eb_size + chmp->chm_unchecked_size;
472 if (dirty < chmp->chm_nospc_dirty) {
473 dbg("dirty: %u < nospc_dirty: %u\n", dirty, chmp->chm_nospc_dirty);
474 ret = ENOSPC;
475 mutex_exit(&chmp->chm_lock_sizes);
476 goto out;
479 avail = chmp->chm_free_size - (chmp->chm_resv_blocks_write * chmp->chm_ebh->eb_size);
480 if (size > avail) {
481 dbg("size: %u > avail: %u\n", size, avail);
482 ret = ENOSPC;
483 mutex_exit(&chmp->chm_lock_sizes);
484 goto out;
487 mutex_exit(&chmp->chm_lock_sizes);
488 ret = chfs_gcollect_pass(chmp);
489 mutex_enter(&chmp->chm_lock_sizes);
491 if (chmp->chm_nr_erasable_blocks ||
492 !TAILQ_EMPTY(&chmp->chm_erasable_pending_wbuf_queue) ||
493 ret == EAGAIN) {
494 ret = chfs_remap_leb(chmp);
497 if (ret) {
498 mutex_exit(&chmp->chm_lock_sizes);
499 goto out;
503 mutex_exit(&chmp->chm_lock_sizes);
504 ret = chfs_reserve_space(chmp, size);
505 out:
506 return ret;
510 /* chfs_reserve_space_gc - tries to reserve space for GC */
512 chfs_reserve_space_gc(struct chfs_mount *chmp, uint32_t size)
514 int ret;
516 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
518 mutex_enter(&chmp->chm_lock_sizes);
519 chfs_remap_leb(chmp);
521 if (size > chmp->chm_free_size) {
522 dbg("size: %u\n", size);
523 mutex_exit(&chmp->chm_lock_sizes);
524 return ENOSPC;
527 mutex_exit(&chmp->chm_lock_sizes);
528 ret = chfs_reserve_space(chmp, size);
529 return ret;
533 * chfs_reserve_space - finds a block which free size is >= requested size
534 * Returns zero in case of success, error code in case of fail.
537 chfs_reserve_space(struct chfs_mount *chmp, uint32_t size)
539 //TODO define minimum reserved blocks, which is needed for writing
540 //TODO check we have enough free blocks to write
541 //TODO if no: need erase and GC
543 int err;
544 struct chfs_eraseblock *cheb;
546 KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
547 KASSERT(!mutex_owned(&chmp->chm_lock_sizes));
549 cheb = chmp->chm_nextblock;
550 if (cheb && size > cheb->free_size) {
551 dbg("size: %u > free_size: %u\n", size, cheb->free_size);
553 * There isn't enough space on this eraseblock, we mark this as
554 * dirty and close the physical chain of the node refs.
556 //Write out pending data if any
557 if (chmp->chm_wbuf_len) {
558 chfs_flush_pending_wbuf(chmp);
559 //FIXME need goto restart here?
562 while (chmp->chm_wbuf_ofs < chmp->chm_ebh->eb_size) {
563 dbg("wbuf ofs: %zu - eb_size: %zu\n",
564 chmp->chm_wbuf_ofs, chmp->chm_ebh->eb_size);
565 chfs_flush_pending_wbuf(chmp);
568 if (!(chmp->chm_wbuf_ofs % chmp->chm_ebh->eb_size) && !chmp->chm_wbuf_len)
569 chmp->chm_wbuf_ofs = 0xffffffff;
571 err = chfs_close_eraseblock(chmp, cheb);
572 if (err)
573 return err;
575 cheb = NULL;
577 if (!cheb) {
578 //get a block for nextblock
579 if (TAILQ_EMPTY(&chmp->chm_free_queue)) {
580 // If this succeeds there will be a block on free_queue
581 dbg("cheb remap (free: %d)\n", chmp->chm_nr_free_blocks);
582 err = chfs_remap_leb(chmp);
583 if (err)
584 return err;
586 cheb = TAILQ_FIRST(&chmp->chm_free_queue);
587 TAILQ_REMOVE(&chmp->chm_free_queue, cheb, queue);
588 chmp->chm_nextblock = cheb;
589 chmp->chm_nr_free_blocks--;
592 return 0;