1 /* $NetBSD: lfs_segment.c,v 1.260 2015/10/03 08:28:16 dholland Exp $ */
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant@hhhh.org>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.260 2015/10/03 08:28:16 dholland Exp $");
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_flag & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
72 # define vndebug(vp, str)
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
77 #if defined(_KERNEL_OPT)
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
98 #include <ufs/lfs/ulfs_inode.h>
99 #include <ufs/lfs/ulfsmount.h>
100 #include <ufs/lfs/ulfs_extern.h>
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_accessors.h>
104 #include <ufs/lfs/lfs_kernel.h>
105 #include <ufs/lfs/lfs_extern.h>
108 #include <uvm/uvm_extern.h>
110 MALLOC_JUSTDEFINE(M_SEGMENT
, "LFS segment", "Segment for LFS");
112 static void lfs_generic_callback(struct buf
*, void (*)(struct buf
*));
113 static void lfs_free_aiodone(struct buf
*);
114 static void lfs_super_aiodone(struct buf
*);
115 static void lfs_cluster_aiodone(struct buf
*);
116 static void lfs_cluster_callback(struct buf
*);
119 * Determine if it's OK to start a partial in this segment, or if we need
120 * to go on to a new segment.
122 #define LFS_PARTIAL_FITS(fs) \
123 (lfs_sb_getfsbpseg(fs) - \
124 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \
128 * Figure out whether we should do a checkpoint write or go ahead with
131 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
132 ((flags & SEGM_CLEAN) == 0 && \
133 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
134 (flags & SEGM_CKP) || \
135 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE)))
137 int lfs_match_fake(struct lfs
*, struct buf
*);
138 void lfs_newseg(struct lfs
*);
139 void lfs_supercallback(struct buf
*);
140 void lfs_updatemeta(struct segment
*);
141 void lfs_writesuper(struct lfs
*, daddr_t
);
142 int lfs_writevnodes(struct lfs
*fs
, struct mount
*mp
,
143 struct segment
*sp
, int dirops
);
145 static void lfs_shellsort(struct lfs
*, struct buf
**, union lfs_blocks
*,
148 int lfs_allclean_wakeup
; /* Cleaner wakeup address. */
149 int lfs_writeindir
= 1; /* whether to flush indir on non-ckp */
150 int lfs_clean_vnhead
= 0; /* Allow freeing to head of vn list */
151 int lfs_dirvcount
= 0; /* # active dirops */
153 /* Statistics Counters */
155 struct lfs_stats lfs_stats
;
157 /* op values to lfs_writevnodes */
164 * XXX KS - Set modification time on the Ifile, so the cleaner can
165 * read the fs mod time off of it. We don't set IN_UPDATE here,
166 * since we don't really need this to be flushed to disk (and in any
167 * case that wouldn't happen to the Ifile until we checkpoint).
170 lfs_imtime(struct lfs
*fs
)
175 ASSERT_MAYBE_SEGLOCK(fs
);
177 ip
= VTOI(fs
->lfs_ivnode
);
178 lfs_dino_setmtime(fs
, ip
->i_din
, ts
.tv_sec
);
179 lfs_dino_setmtimensec(fs
, ip
->i_din
, ts
.tv_nsec
);
183 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
184 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
185 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
186 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
189 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
192 lfs_vflush(struct vnode
*vp
)
197 struct buf
*bp
, *nbp
, *tbp
, *tnbp
;
203 fs
= VFSTOULFS(vp
->v_mount
)->um_lfs
;
207 KASSERT(mutex_owned(vp
->v_interlock
) == false);
208 KASSERT(mutex_owned(&lfs_lock
) == false);
209 KASSERT(mutex_owned(&bufcache_lock
) == false);
210 ASSERT_NO_SEGLOCK(fs
);
211 if (ip
->i_flag
& IN_CLEANING
) {
212 ivndebug(vp
,"vflush/in_cleaning");
213 mutex_enter(&lfs_lock
);
214 LFS_CLR_UINO(ip
, IN_CLEANING
);
215 LFS_SET_UINO(ip
, IN_MODIFIED
);
216 mutex_exit(&lfs_lock
);
219 * Toss any cleaning buffers that have real counterparts
220 * to avoid losing new data.
222 mutex_enter(vp
->v_interlock
);
223 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
224 nbp
= LIST_NEXT(bp
, b_vnbufs
);
225 if (!LFS_IS_MALLOC_BUF(bp
))
228 * Look for pages matching the range covered
229 * by cleaning blocks. It's okay if more dirty
230 * pages appear, so long as none disappear out
233 if (bp
->b_lblkno
> 0 && vp
->v_type
== VREG
&&
234 vp
!= fs
->lfs_ivnode
) {
238 for (off
= lfs_lblktosize(fs
, bp
->b_lblkno
);
239 off
< lfs_lblktosize(fs
, bp
->b_lblkno
+ 1);
241 pg
= uvm_pagelookup(&vp
->v_uobj
, off
);
244 if ((pg
->flags
& PG_CLEAN
) == 0 ||
245 pmap_is_modified(pg
)) {
249 wakeup(&fs
->lfs_availsleep
);
250 mutex_exit(vp
->v_interlock
);
252 mutex_enter(vp
->v_interlock
);
258 for (tbp
= LIST_FIRST(&vp
->v_dirtyblkhd
); tbp
;
261 tnbp
= LIST_NEXT(tbp
, b_vnbufs
);
262 if (tbp
->b_vp
== bp
->b_vp
263 && tbp
->b_lblkno
== bp
->b_lblkno
266 lfs_sb_addavail(fs
, lfs_btofsb(fs
,
268 wakeup(&fs
->lfs_availsleep
);
269 mutex_exit(vp
->v_interlock
);
271 mutex_enter(vp
->v_interlock
);
278 mutex_enter(vp
->v_interlock
);
281 /* If the node is being written, wait until that is done */
282 while (WRITEINPROG(vp
)) {
283 ivndebug(vp
,"vflush/writeinprog");
284 cv_wait(&vp
->v_cv
, vp
->v_interlock
);
286 error
= vdead_check(vp
, VDEAD_NOWAIT
);
287 mutex_exit(vp
->v_interlock
);
289 /* Protect against deadlock in vinvalbuf() */
290 lfs_seglock(fs
, SEGM_SYNC
| ((error
!= 0) ? SEGM_RECLAIM
: 0));
292 fs
->lfs_reclino
= ip
->i_number
;
295 /* If we're supposed to flush a freed inode, just toss it */
296 if (ip
->i_lfs_iflags
& LFSI_DELETED
) {
297 DLOG((DLOG_VNODE
, "lfs_vflush: ino %d freed, not flushing\n",
299 /* Drain v_numoutput */
300 mutex_enter(vp
->v_interlock
);
301 while (vp
->v_numoutput
> 0) {
302 cv_wait(&vp
->v_cv
, vp
->v_interlock
);
304 KASSERT(vp
->v_numoutput
== 0);
305 mutex_exit(vp
->v_interlock
);
307 mutex_enter(&bufcache_lock
);
308 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
309 nbp
= LIST_NEXT(bp
, b_vnbufs
);
311 KASSERT((bp
->b_flags
& B_GATHERED
) == 0);
312 if (bp
->b_oflags
& BO_DELWRI
) { /* XXX always true? */
313 lfs_sb_addavail(fs
, lfs_btofsb(fs
, bp
->b_bcount
));
314 wakeup(&fs
->lfs_availsleep
);
316 /* Copied from lfs_writeseg */
317 if (bp
->b_iodone
!= NULL
) {
318 mutex_exit(&bufcache_lock
);
320 mutex_enter(&bufcache_lock
);
324 mutex_enter(vp
->v_interlock
);
325 bp
->b_flags
&= ~(B_READ
| B_GATHERED
);
326 bp
->b_oflags
= (bp
->b_oflags
& ~BO_DELWRI
) | BO_DONE
;
329 mutex_exit(vp
->v_interlock
);
333 mutex_exit(&bufcache_lock
);
334 LFS_CLR_UINO(ip
, IN_CLEANING
);
335 LFS_CLR_UINO(ip
, IN_MODIFIED
| IN_ACCESSED
);
336 ip
->i_flag
&= ~IN_ALLMOD
;
337 DLOG((DLOG_VNODE
, "lfs_vflush: done not flushing ino %d\n",
341 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
346 fs
->lfs_flushvp
= vp
;
347 if (LFS_SHOULD_CHECKPOINT(fs
, fs
->lfs_sp
->seg_flags
)) {
348 error
= lfs_segwrite(vp
->v_mount
, SEGM_CKP
| SEGM_SYNC
);
349 fs
->lfs_flushvp
= NULL
;
350 KASSERT(fs
->lfs_flushvp_fakevref
== 0);
353 /* Make sure that any pending buffers get written */
354 mutex_enter(vp
->v_interlock
);
355 while (vp
->v_numoutput
> 0) {
356 cv_wait(&vp
->v_cv
, vp
->v_interlock
);
358 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
359 KASSERT(vp
->v_numoutput
== 0);
360 mutex_exit(vp
->v_interlock
);
368 lfs_writevnodes(fs
, vp
->v_mount
, sp
, VN_EMPTY
);
370 } else if ((ip
->i_flag
& IN_CLEANING
) &&
371 (fs
->lfs_sp
->seg_flags
& SEGM_CLEAN
)) {
372 ivndebug(vp
,"vflush/clean");
373 lfs_writevnodes(fs
, vp
->v_mount
, sp
, VN_CLEAN
);
375 } else if (lfs_dostats
) {
376 if (!VPISEMPTY(vp
) || (VTOI(vp
)->i_flag
& IN_ALLMOD
))
377 ++lfs_stats
.vflush_invoked
;
378 ivndebug(vp
,"vflush");
382 if (vp
->v_uflag
& VU_DIROP
) {
383 DLOG((DLOG_VNODE
, "lfs_vflush: flushing VU_DIROP\n"));
384 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
393 if (LIST_FIRST(&vp
->v_dirtyblkhd
) != NULL
) {
394 relock
= lfs_writefile(fs
, sp
, vp
);
395 if (relock
&& vp
!= fs
->lfs_ivnode
) {
397 * Might have to wait for the
398 * cleaner to run; but we're
399 * still not done with this vnode.
400 * XXX we can do better than this.
402 KDASSERT(ip
->i_number
!= LFS_IFILE_INUM
);
403 lfs_writeinode(fs
, sp
, ip
);
404 mutex_enter(&lfs_lock
);
405 LFS_SET_UINO(ip
, IN_MODIFIED
);
406 mutex_exit(&lfs_lock
);
407 lfs_writeseg(fs
, sp
);
409 lfs_segunlock_relock(fs
);
414 * If we begin a new segment in the middle of writing
415 * the Ifile, it creates an inconsistent checkpoint,
416 * since the Ifile information for the new segment
417 * is not up-to-date. Take care of this here by
418 * sending the Ifile through again in case there
419 * are newly dirtied blocks. But wait, there's more!
420 * This second Ifile write could *also* cross a segment
421 * boundary, if the first one was large. The second
422 * one is guaranteed to be no more than 8 blocks,
423 * though (two segment blocks and supporting indirects)
424 * so the third write *will not* cross the boundary.
426 if (vp
== fs
->lfs_ivnode
) {
427 lfs_writefile(fs
, sp
, vp
);
428 lfs_writefile(fs
, sp
, vp
);
432 log(LOG_NOTICE
, "lfs_vflush: looping count=%d\n", loopcount
);
434 } while (lfs_writeinode(fs
, sp
, ip
));
435 } while (lfs_writeseg(fs
, sp
) && ip
->i_number
== LFS_IFILE_INUM
);
439 if (sp
->seg_flags
& SEGM_SYNC
)
440 ++lfs_stats
.nsync_writes
;
441 if (sp
->seg_flags
& SEGM_CKP
)
442 ++lfs_stats
.ncheckpoints
;
445 * If we were called from somewhere that has already held the seglock
446 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
447 * the write to complete because we are still locked.
448 * Since lfs_vflush() must return the vnode with no dirty buffers,
449 * we must explicitly wait, if that is the case.
451 * We compare the iocount against 1, not 0, because it is
452 * artificially incremented by lfs_seglock().
454 mutex_enter(&lfs_lock
);
455 if (fs
->lfs_seglock
> 1) {
456 while (fs
->lfs_iocount
> 1)
457 (void)mtsleep(&fs
->lfs_iocount
, PRIBIO
+ 1,
458 "lfs_vflush", 0, &lfs_lock
);
460 mutex_exit(&lfs_lock
);
464 /* Wait for these buffers to be recovered by aiodoned */
465 mutex_enter(vp
->v_interlock
);
466 while (vp
->v_numoutput
> 0) {
467 cv_wait(&vp
->v_cv
, vp
->v_interlock
);
469 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
470 KASSERT(vp
->v_numoutput
== 0);
471 mutex_exit(vp
->v_interlock
);
473 fs
->lfs_flushvp
= NULL
;
474 KASSERT(fs
->lfs_flushvp_fakevref
== 0);
479 struct lfs_writevnodes_ctx
{
484 lfs_writevnodes_selector(void *cl
, struct vnode
*vp
)
486 struct lfs_writevnodes_ctx
*c
= cl
;
487 struct inode
*ip
= VTOI(vp
);
490 if (ip
== NULL
|| vp
->v_type
== VNON
)
492 if ((op
== VN_DIROP
&& !(vp
->v_uflag
& VU_DIROP
)) ||
493 (op
!= VN_DIROP
&& op
!= VN_CLEAN
&& (vp
->v_uflag
& VU_DIROP
))) {
494 vndebug(vp
, "dirop");
497 if (op
== VN_EMPTY
&& !VPISEMPTY(vp
)) {
501 if (op
== VN_CLEAN
&& ip
->i_number
!= LFS_IFILE_INUM
&&
502 vp
!= c
->fs
->lfs_flushvp
&& !(ip
->i_flag
& IN_CLEANING
)) {
503 vndebug(vp
,"cleaning");
506 mutex_enter(&lfs_lock
);
507 if (vp
== c
->fs
->lfs_unlockvp
) {
508 mutex_exit(&lfs_lock
);
511 mutex_exit(&lfs_lock
);
517 lfs_writevnodes(struct lfs
*fs
, struct mount
*mp
, struct segment
*sp
, int op
)
521 struct vnode_iterator
*marker
;
522 struct lfs_writevnodes_ctx ctx
;
523 int inodes_written
= 0;
527 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist.
528 * XXX The rationale is unclear, the initial commit had no information.
529 * XXX If the order really matters we have to sort the vnodes first.
533 vfs_vnode_iterator_init(mp
, &marker
);
536 while ((vp
= vfs_vnode_iterator_next(marker
,
537 lfs_writevnodes_selector
, &ctx
)) != NULL
) {
541 * Write the inode/file if dirty and it's not the IFILE.
543 if (((ip
->i_flag
& IN_ALLMOD
) || !VPISEMPTY(vp
)) &&
544 ip
->i_number
!= LFS_IFILE_INUM
) {
545 error
= lfs_writefile(fs
, sp
, vp
);
548 if (error
== EAGAIN
) {
550 * This error from lfs_putpages
551 * indicates we need to drop
552 * the segment lock and start
553 * over after the cleaner has
554 * had a chance to run.
556 lfs_writeinode(fs
, sp
, ip
);
557 lfs_writeseg(fs
, sp
);
558 if (!VPISEMPTY(vp
) &&
560 !(ip
->i_flag
& IN_ALLMOD
)) {
561 mutex_enter(&lfs_lock
);
562 LFS_SET_UINO(ip
, IN_MODIFIED
);
563 mutex_exit(&lfs_lock
);
567 error
= 0; /* XXX not quite right */
571 if (!VPISEMPTY(vp
)) {
572 if (WRITEINPROG(vp
)) {
573 ivndebug(vp
,"writevnodes/write2");
574 } else if (!(ip
->i_flag
& IN_ALLMOD
)) {
575 mutex_enter(&lfs_lock
);
576 LFS_SET_UINO(ip
, IN_MODIFIED
);
577 mutex_exit(&lfs_lock
);
580 (void) lfs_writeinode(fs
, sp
, ip
);
585 vfs_vnode_iterator_destroy(marker
);
593 lfs_segwrite(struct mount
*mp
, int flags
)
601 int do_ckp
, did_ckp
, error
;
602 unsigned n
, segleft
, maxseg
, sn
, i
, curseg
;
609 fs
= VFSTOULFS(mp
)->um_lfs
;
610 ASSERT_MAYBE_SEGLOCK(fs
);
618 * Allocate a segment structure and enough space to hold pointers to
619 * the maximum possible number of buffers which can be described in a
620 * single summary block.
622 do_ckp
= LFS_SHOULD_CHECKPOINT(fs
, flags
);
624 /* We can't do a partial write and checkpoint at the same time. */
626 flags
&= ~SEGM_SINGLE
;
628 lfs_seglock(fs
, flags
| (do_ckp
? SEGM_CKP
: 0));
630 if (sp
->seg_flags
& (SEGM_CLEAN
| SEGM_CKP
))
634 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
635 * in which case we have to flush *all* buffers off of this vnode.
636 * We don't care about other nodes, but write any non-dirop nodes
637 * anyway in anticipation of another getnewvnode().
639 * If we're cleaning we only write cleaning and ifile blocks, and
640 * no dirops, since otherwise we'd risk corruption in a crash.
642 if (sp
->seg_flags
& SEGM_CLEAN
)
643 lfs_writevnodes(fs
, mp
, sp
, VN_CLEAN
);
644 else if (!(sp
->seg_flags
& SEGM_FORCE_CKP
)) {
646 um_error
= lfs_writevnodes(fs
, mp
, sp
, VN_REG
);
647 if ((sp
->seg_flags
& SEGM_SINGLE
) &&
648 lfs_sb_getcurseg(fs
) != fs
->lfs_startseg
) {
649 DLOG((DLOG_SEG
, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs
)));
653 if (do_ckp
|| fs
->lfs_dirops
== 0) {
655 lfs_writer_enter(fs
, "lfs writer");
658 error
= lfs_writevnodes(fs
, mp
, sp
, VN_DIROP
);
661 /* In case writevnodes errored out */
662 lfs_flush_dirops(fs
);
663 ssp
= (SEGSUM
*)(sp
->segsum
);
664 lfs_ss_setflags(fs
, ssp
,
665 lfs_ss_getflags(fs
, ssp
) & ~(SS_CONT
));
666 lfs_finalize_fs_seguse(fs
);
668 if (do_ckp
&& um_error
) {
669 lfs_segunlock_relock(fs
);
672 } while (do_ckp
&& um_error
!= 0);
676 * If we are doing a checkpoint, mark everything since the
677 * last checkpoint as no longer ACTIVE.
679 if (do_ckp
|| fs
->lfs_doifile
) {
680 segleft
= lfs_sb_getnseg(fs
);
682 for (n
= 0; n
< lfs_sb_getsegtabsz(fs
); n
++) {
684 if (bread(fs
->lfs_ivnode
, lfs_sb_getcleansz(fs
) + n
,
685 lfs_sb_getbsize(fs
), B_MODIFY
, &bp
))
686 panic("lfs_segwrite: ifile read");
687 segusep
= (SEGUSE
*)bp
->b_data
;
688 maxseg
= min(segleft
, lfs_sb_getsepb(fs
));
689 for (i
= 0; i
< maxseg
; i
++) {
691 if (sn
!= lfs_dtosn(fs
, lfs_sb_getcurseg(fs
)) &&
692 segusep
->su_flags
& SEGUSE_ACTIVE
) {
693 segusep
->su_flags
&= ~SEGUSE_ACTIVE
;
697 fs
->lfs_suflags
[fs
->lfs_activesb
][sn
] =
699 if (lfs_sb_getversion(fs
) > 1)
703 ((SEGUSE_V1
*)segusep
+ 1);
707 error
= LFS_BWRITE_LOG(bp
); /* Ifile */
710 segleft
-= lfs_sb_getsepb(fs
);
711 curseg
+= lfs_sb_getsepb(fs
);
715 KASSERT(LFS_SEGLOCK_HELD(fs
));
718 if (do_ckp
|| fs
->lfs_doifile
) {
725 LFS_ENTER_LOG("pretend", __FILE__
, __LINE__
, 0, 0, curproc
->p_pid
);
727 mutex_enter(&lfs_lock
);
728 fs
->lfs_flags
&= ~LFS_IFDIRTY
;
729 mutex_exit(&lfs_lock
);
733 if (LIST_FIRST(&vp
->v_dirtyblkhd
) != NULL
) {
735 * Ifile has no pages, so we don't need
736 * to check error return here.
738 lfs_writefile(fs
, sp
, vp
);
740 * Ensure the Ifile takes the current segment
741 * into account. See comment in lfs_vflush.
743 lfs_writefile(fs
, sp
, vp
);
744 lfs_writefile(fs
, sp
, vp
);
747 if (ip
->i_flag
& IN_ALLMOD
)
750 redo
= (do_ckp
? lfs_writeinode(fs
, sp
, ip
) : 0);
752 redo
= lfs_writeinode(fs
, sp
, ip
);
754 redo
+= lfs_writeseg(fs
, sp
);
755 mutex_enter(&lfs_lock
);
756 redo
+= (fs
->lfs_flags
& LFS_IFDIRTY
);
757 mutex_exit(&lfs_lock
);
760 log(LOG_NOTICE
, "lfs_segwrite: looping count=%d\n",
763 } while (redo
&& do_ckp
);
766 * Unless we are unmounting, the Ifile may continue to have
767 * dirty blocks even after a checkpoint, due to changes to
768 * inodes' atime. If we're checkpointing, it's "impossible"
769 * for other parts of the Ifile to be dirty after the loop
770 * above, since we hold the segment lock.
772 mutex_enter(vp
->v_interlock
);
773 if (LIST_EMPTY(&vp
->v_dirtyblkhd
)) {
774 LFS_CLR_UINO(ip
, IN_ALLMOD
);
779 LIST_FOREACH(bp
, &vp
->v_dirtyblkhd
, b_vnbufs
) {
780 if (bp
->b_lblkno
< lfs_sb_getcleansz(fs
) +
781 lfs_sb_getsegtabsz(fs
) &&
782 !(bp
->b_flags
& B_GATHERED
)) {
783 printf("ifile lbn %ld still dirty (flags %lx)\n",
790 panic("dirty blocks");
793 mutex_exit(vp
->v_interlock
);
795 (void) lfs_writeseg(fs
, sp
);
798 /* Note Ifile no longer needs to be written */
801 lfs_writer_leave(fs
);
804 * If we didn't write the Ifile, we didn't really do anything.
805 * That means that (1) there is a checkpoint on disk and (2)
806 * nothing has changed since it was written.
808 * Take the flags off of the segment so that lfs_segunlock
809 * doesn't have to write the superblock either.
811 if (do_ckp
&& !did_ckp
) {
812 sp
->seg_flags
&= ~SEGM_CKP
;
817 if (sp
->seg_flags
& SEGM_SYNC
)
818 ++lfs_stats
.nsync_writes
;
819 if (sp
->seg_flags
& SEGM_CKP
)
820 ++lfs_stats
.ncheckpoints
;
827 * Write the dirty blocks associated with a vnode.
830 lfs_writefile(struct lfs
*fs
, struct segment
*sp
, struct vnode
*vp
)
841 lfs_acquire_finfo(fs
, ip
->i_number
, ip
->i_gen
);
843 if (vp
->v_uflag
& VU_DIROP
) {
844 ssp
= (SEGSUM
*)sp
->segsum
;
845 lfs_ss_setflags(fs
, ssp
,
846 lfs_ss_getflags(fs
, ssp
) | (SS_DIROP
|SS_CONT
));
849 if (sp
->seg_flags
& SEGM_CLEAN
) {
850 lfs_gather(fs
, sp
, vp
, lfs_match_fake
);
852 * For a file being flushed, we need to write *all* blocks.
853 * This means writing the cleaning blocks first, and then
854 * immediately following with any non-cleaning blocks.
855 * The same is true of the Ifile since checkpoints assume
856 * that all valid Ifile blocks are written.
858 if (IS_FLUSHING(fs
, vp
) || vp
== fs
->lfs_ivnode
) {
859 lfs_gather(fs
, sp
, vp
, lfs_match_data
);
861 * Don't call VOP_PUTPAGES: if we're flushing,
862 * we've already done it, and the Ifile doesn't
863 * use the page cache.
867 lfs_gather(fs
, sp
, vp
, lfs_match_data
);
869 * If we're flushing, we've already called VOP_PUTPAGES
870 * so don't do it again. Otherwise, we want to write
871 * everything we've got.
873 if (!IS_FLUSHING(fs
, vp
)) {
874 mutex_enter(vp
->v_interlock
);
875 error
= VOP_PUTPAGES(vp
, 0, 0,
876 PGO_CLEANIT
| PGO_ALLPAGES
| PGO_LOCKED
);
881 * It may not be necessary to write the meta-data blocks at this point,
882 * as the roll-forward recovery code should be able to reconstruct the
885 * We have to write them anyway, though, under two conditions: (1) the
886 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
889 * BUT if we are cleaning, we might have indirect blocks that refer to
890 * new blocks not being written yet, in addition to fragments being
891 * moved out of a cleaned segment. If that is the case, don't
892 * write the indirect blocks, or the finfo will have a small block
893 * in the middle of it!
894 * XXX in this case isn't the inode size wrong too?
897 if (sp
->seg_flags
& SEGM_CLEAN
) {
898 for (i
= 0; i
< ULFS_NDADDR
; i
++)
899 if (ip
->i_lfs_fragsize
[i
] > 0 &&
900 ip
->i_lfs_fragsize
[i
] < lfs_sb_getbsize(fs
))
905 panic("lfs_writefile: more than one fragment!");
907 if (IS_FLUSHING(fs
, vp
) ||
908 (frag
== 0 && (lfs_writeindir
|| (sp
->seg_flags
& SEGM_CKP
)))) {
909 lfs_gather(fs
, sp
, vp
, lfs_match_indir
);
910 lfs_gather(fs
, sp
, vp
, lfs_match_dindir
);
911 lfs_gather(fs
, sp
, vp
, lfs_match_tindir
);
913 lfs_release_finfo(fs
);
919 * Update segment accounting to reflect this inode's change of address.
922 lfs_update_iaddr(struct lfs
*fs
, struct segment
*sp
, struct inode
*ip
, daddr_t ndaddr
)
935 * If updating the ifile, update the super-block. Update the disk
936 * address and access times for this inode in the ifile.
939 if (ino
== LFS_IFILE_INUM
) {
940 daddr
= lfs_sb_getidaddr(fs
);
941 lfs_sb_setidaddr(fs
, LFS_DBTOFSB(fs
, ndaddr
));
943 LFS_IENTRY(ifp
, fs
, ino
, bp
);
944 daddr
= lfs_if_getdaddr(fs
, ifp
);
945 lfs_if_setdaddr(fs
, ifp
, LFS_DBTOFSB(fs
, ndaddr
));
946 (void)LFS_BWRITE_LOG(bp
); /* Ifile */
950 * If this is the Ifile and lfs_offset is set to the first block
951 * in the segment, dirty the new segment's accounting block
952 * (XXX should already be dirty?) and tell the caller to do it again.
954 if (ip
->i_number
== LFS_IFILE_INUM
) {
955 sn
= lfs_dtosn(fs
, lfs_sb_getoffset(fs
));
956 if (lfs_sntod(fs
, sn
) + lfs_btofsb(fs
, lfs_sb_getsumsize(fs
)) ==
957 lfs_sb_getoffset(fs
)) {
958 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
959 KASSERT(bp
->b_oflags
& BO_DELWRI
);
960 LFS_WRITESEGENTRY(sup
, fs
, sn
, bp
);
961 /* fs->lfs_flags |= LFS_IFDIRTY; */
967 * The inode's last address should not be in the current partial
968 * segment, except under exceptional circumstances (lfs_writevnodes
969 * had to start over, and in the meantime more blocks were written
970 * to a vnode). Both inodes will be accounted to this segment
971 * in lfs_writeseg so we need to subtract the earlier version
972 * here anyway. The segment count can temporarily dip below
973 * zero here; keep track of how many duplicates we have in
974 * "dupino" so we don't panic below.
976 if (daddr
>= lfs_sb_getlastpseg(fs
) && daddr
<= lfs_sb_getoffset(fs
)) {
978 DLOG((DLOG_SEG
, "lfs_writeinode: last inode addr in current pseg "
979 "(ino %d daddr 0x%llx) ndupino=%d\n", ino
,
980 (long long)daddr
, sp
->ndupino
));
983 * Account the inode: it no longer belongs to its former segment,
984 * though it will not belong to the new segment until that segment
985 * is actually written.
987 if (daddr
!= LFS_UNUSED_DADDR
) {
988 u_int32_t oldsn
= lfs_dtosn(fs
, daddr
);
990 int ndupino
= (sp
->seg_number
== oldsn
) ? sp
->ndupino
: 0;
992 LFS_SEGENTRY(sup
, fs
, oldsn
, bp
);
994 if (sup
->su_nbytes
+ DINOSIZE(fs
) * ndupino
< DINOSIZE(fs
)) {
995 printf("lfs_writeinode: negative bytes "
996 "(segment %" PRIu32
" short by %d, "
997 "oldsn=%" PRIu32
", cursn=%" PRIu32
998 ", daddr=%" PRId64
", su_nbytes=%u, "
1000 lfs_dtosn(fs
, daddr
),
1002 (1 - sp
->ndupino
) - sup
->su_nbytes
,
1003 oldsn
, sp
->seg_number
, daddr
,
1004 (unsigned int)sup
->su_nbytes
,
1006 panic("lfs_writeinode: negative bytes");
1007 sup
->su_nbytes
= DINOSIZE(fs
);
1010 DLOG((DLOG_SU
, "seg %d -= %d for ino %d inode\n",
1011 lfs_dtosn(fs
, daddr
), DINOSIZE(fs
), ino
));
1012 sup
->su_nbytes
-= DINOSIZE(fs
);
1014 (ino
== LFS_IFILE_INUM
&& !(bp
->b_flags
& B_GATHERED
));
1016 mutex_enter(&lfs_lock
);
1017 fs
->lfs_flags
|= LFS_IFDIRTY
;
1018 mutex_exit(&lfs_lock
);
1019 /* Don't double-account */
1020 lfs_sb_setidaddr(fs
, 0x0);
1022 LFS_WRITESEGENTRY(sup
, fs
, oldsn
, bp
); /* Ifile */
1029 lfs_writeinode(struct lfs
*fs
, struct segment
*sp
, struct inode
*ip
)
1032 union lfs_dinode
*cdp
;
1033 struct vnode
*vp
= ITOV(ip
);
1043 if (!(ip
->i_flag
& IN_ALLMOD
) && !(vp
->v_uflag
& VU_DIROP
))
1046 /* Can't write ifile when writer is not set */
1047 KASSERT(ip
->i_number
!= LFS_IFILE_INUM
|| fs
->lfs_writer
> 0 ||
1048 (sp
->seg_flags
& SEGM_CLEAN
));
1051 * If this is the Ifile, see if writing it here will generate a
1052 * temporary misaccounting. If it will, do the accounting and write
1053 * the blocks, postponing the inode write until the accounting is
1057 while (vp
== fs
->lfs_ivnode
) {
1060 if (sp
->idp
== NULL
&& sp
->ibp
== NULL
&&
1061 (sp
->seg_bytes_left
< lfs_sb_getibsize(fs
) ||
1062 sp
->sum_bytes_left
< sizeof(int32_t))) {
1063 (void) lfs_writeseg(fs
, sp
);
1067 /* Look for dirty Ifile blocks */
1068 LIST_FOREACH(bp
, &fs
->lfs_ivnode
->v_dirtyblkhd
, b_vnbufs
) {
1069 if (!(bp
->b_flags
& B_GATHERED
)) {
1076 redo
= lfs_update_iaddr(fs
, sp
, ip
, 0x0);
1081 lfs_dino_setinumber(fs
, sp
->idp
, 0);
1086 log(LOG_NOTICE
, "lfs_writeinode: looping count=%d\n", count
);
1087 lfs_writefile(fs
, sp
, fs
->lfs_ivnode
);
1090 /* Allocate a new inode block if necessary. */
1091 if ((ip
->i_number
!= LFS_IFILE_INUM
|| sp
->idp
== NULL
) &&
1093 /* Allocate a new segment if necessary. */
1094 if (sp
->seg_bytes_left
< lfs_sb_getibsize(fs
) ||
1095 sp
->sum_bytes_left
< sizeof(int32_t))
1096 (void) lfs_writeseg(fs
, sp
);
1098 /* Get next inode block. */
1099 daddr
= lfs_sb_getoffset(fs
);
1100 lfs_sb_addoffset(fs
, lfs_btofsb(fs
, lfs_sb_getibsize(fs
)));
1101 sp
->ibp
= *sp
->cbpp
++ =
1102 getblk(VTOI(fs
->lfs_ivnode
)->i_devvp
,
1103 LFS_FSBTODB(fs
, daddr
), lfs_sb_getibsize(fs
), 0, 0);
1106 /* Zero out inode numbers */
1107 for (i
= 0; i
< LFS_INOPB(fs
); ++i
) {
1108 union lfs_dinode
*tmpdi
;
1110 tmpdi
= (union lfs_dinode
*)((char *)sp
->ibp
->b_data
+
1112 lfs_dino_setinumber(fs
, tmpdi
, 0);
1116 lfs_sb_subavail(fs
, lfs_btofsb(fs
, lfs_sb_getibsize(fs
)));
1117 /* Set remaining space counters. */
1118 sp
->seg_bytes_left
-= lfs_sb_getibsize(fs
);
1119 sp
->sum_bytes_left
-= sizeof(int32_t);
1121 /* Store the address in the segment summary. */
1122 iip
= NTH_IINFO(fs
, sp
->segsum
, sp
->ninodes
/ LFS_INOPB(fs
));
1123 lfs_ii_setblock(fs
, iip
, daddr
);
1126 /* Check VU_DIROP in case there is a new file with no data blocks */
1127 if (vp
->v_uflag
& VU_DIROP
) {
1128 ssp
= (SEGSUM
*)sp
->segsum
;
1129 lfs_ss_setflags(fs
, ssp
,
1130 lfs_ss_getflags(fs
, ssp
) | (SS_DIROP
|SS_CONT
));
1133 /* Update the inode times and copy the inode onto the inode page. */
1134 /* XXX kludge --- don't redirty the ifile just to put times on it */
1135 if (ip
->i_number
!= LFS_IFILE_INUM
)
1136 LFS_ITIMES(ip
, NULL
, NULL
, NULL
);
1139 * If this is the Ifile, and we've already written the Ifile in this
1140 * partial segment, just overwrite it (it's not on disk yet) and
1143 * XXX we know that the bp that we get the second time around has
1144 * already been gathered.
1146 if (ip
->i_number
== LFS_IFILE_INUM
&& sp
->idp
) {
1147 lfs_copy_dinode(fs
, sp
->idp
, ip
->i_din
);
1148 ip
->i_lfs_osize
= ip
->i_size
;
1153 cdp
= DINO_IN_BLOCK(fs
, bp
->b_data
, sp
->ninodes
% LFS_INOPB(fs
));
1154 lfs_copy_dinode(fs
, cdp
, ip
->i_din
);
1157 * This inode is on its way to disk; clear its VU_DIROP status when
1158 * the write is complete.
1160 if (vp
->v_uflag
& VU_DIROP
) {
1161 if (!(sp
->seg_flags
& SEGM_CLEAN
))
1162 ip
->i_flag
|= IN_CDIROP
;
1164 DLOG((DLOG_DIROP
, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip
->i_number
));
1169 * If cleaning, link counts and directory file sizes cannot change,
1170 * since those would be directory operations---even if the file
1171 * we are writing is marked VU_DIROP we should write the old values.
1172 * If we're not cleaning, of course, update the values so we get
1173 * current values the next time we clean.
1175 if (sp
->seg_flags
& SEGM_CLEAN
) {
1176 if (vp
->v_uflag
& VU_DIROP
) {
1177 lfs_dino_setnlink(fs
, cdp
, ip
->i_lfs_odnlink
);
1178 /* if (vp->v_type == VDIR) */
1179 lfs_dino_setsize(fs
, cdp
, ip
->i_lfs_osize
);
1182 ip
->i_lfs_odnlink
= lfs_dino_getnlink(fs
, cdp
);
1183 ip
->i_lfs_osize
= ip
->i_size
;
1187 /* We can finish the segment accounting for truncations now */
1188 lfs_finalize_ino_seguse(fs
, ip
);
1191 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1192 * addresses to disk; possibly change the on-disk record of
1193 * the inode size, either by reverting to the previous size
1194 * (in the case of cleaning) or by verifying the inode's block
1195 * holdings (in the case of files being allocated as they are being
1197 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1198 * XXX count on disk wrong by the same amount. We should be
1199 * XXX able to "borrow" from lfs_avail and return it after the
1200 * XXX Ifile is written. See also in lfs_writeseg.
1203 /* Check file size based on highest allocated block */
1204 if (((lfs_dino_getmode(fs
, ip
->i_din
) & LFS_IFMT
) == LFS_IFREG
||
1205 (lfs_dino_getmode(fs
, ip
->i_din
) & LFS_IFMT
) == LFS_IFDIR
) &&
1206 ip
->i_size
> ((ip
->i_lfs_hiblk
+ 1) << lfs_sb_getbshift(fs
))) {
1207 lfs_dino_setsize(fs
, cdp
, (ip
->i_lfs_hiblk
+ 1) << lfs_sb_getbshift(fs
));
1208 DLOG((DLOG_SEG
, "lfs_writeinode: ino %d size %" PRId64
" -> %"
1209 PRId64
"\n", (int)ip
->i_number
, ip
->i_size
, lfs_dino_getsize(fs
, cdp
)));
1211 if (ip
->i_lfs_effnblks
!= lfs_dino_getblocks(fs
, ip
->i_din
)) {
1212 DLOG((DLOG_SEG
, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)"
1213 " at %jx\n", ip
->i_number
, (intmax_t)ip
->i_lfs_effnblks
,
1214 lfs_dino_getblocks(fs
, ip
->i_din
), (uintmax_t)lfs_sb_getoffset(fs
)));
1215 for (i
=0; i
<ULFS_NDADDR
; i
++) {
1216 if (lfs_dino_getdb(fs
, cdp
, i
) == UNWRITTEN
) {
1217 DLOG((DLOG_SEG
, "lfs_writeinode: wiping UNWRITTEN\n"));
1218 lfs_dino_setdb(fs
, cdp
, i
, 0);
1221 for (i
=0; i
<ULFS_NIADDR
; i
++) {
1222 if (lfs_dino_getib(fs
, cdp
, i
) == UNWRITTEN
) {
1223 DLOG((DLOG_SEG
, "lfs_writeinode: wiping UNWRITTEN\n"));
1224 lfs_dino_setib(fs
, cdp
, i
, 0);
1231 * Check dinode held blocks against dinode size.
1232 * This should be identical to the check in lfs_vget().
1234 for (i
= (lfs_dino_getsize(fs
, cdp
) + lfs_sb_getbsize(fs
) - 1) >> lfs_sb_getbshift(fs
);
1235 i
< ULFS_NDADDR
; i
++) {
1237 if ((lfs_dino_getmode(fs
, cdp
) & LFS_IFMT
) == LFS_IFLNK
)
1239 if (((lfs_dino_getmode(fs
, cdp
) & LFS_IFMT
) == LFS_IFBLK
||
1240 (lfs_dino_getmode(fs
, cdp
) & LFS_IFMT
) == LFS_IFCHR
) && i
== 0)
1242 if (lfs_dino_getdb(fs
, cdp
, i
) != 0) {
1244 lfs_dump_dinode(fs
, cdp
);
1246 panic("writing inconsistent inode");
1249 #endif /* DIAGNOSTIC */
1251 if (ip
->i_flag
& IN_CLEANING
)
1252 LFS_CLR_UINO(ip
, IN_CLEANING
);
1255 LFS_CLR_UINO(ip
, IN_ACCESSED
| IN_ACCESS
| IN_CHANGE
|
1256 IN_UPDATE
| IN_MODIFY
);
1257 if (ip
->i_lfs_effnblks
== lfs_dino_getblocks(fs
, ip
->i_din
))
1258 LFS_CLR_UINO(ip
, IN_MODIFIED
);
1260 DLOG((DLOG_VNODE
, "lfs_writeinode: ino %d: real "
1261 "blks=%d, eff=%jd\n", ip
->i_number
,
1262 lfs_dino_getblocks(fs
, ip
->i_din
), (intmax_t)ip
->i_lfs_effnblks
));
1266 if (ip
->i_number
== LFS_IFILE_INUM
) {
1267 /* We know sp->idp == NULL */
1268 sp
->idp
= DINO_IN_BLOCK(fs
, bp
, sp
->ninodes
% LFS_INOPB(fs
));
1270 /* Not dirty any more */
1271 mutex_enter(&lfs_lock
);
1272 fs
->lfs_flags
&= ~LFS_IFDIRTY
;
1273 mutex_exit(&lfs_lock
);
1277 mutex_enter(&bufcache_lock
);
1280 mutex_exit(&bufcache_lock
);
1283 /* Increment inode count in segment summary block. */
1285 ssp
= (SEGSUM
*)sp
->segsum
;
1286 lfs_ss_setninos(fs
, ssp
, lfs_ss_getninos(fs
, ssp
) + 1);
1288 /* If this page is full, set flag to allocate a new page. */
1289 if (++sp
->ninodes
% LFS_INOPB(fs
) == 0)
1292 redo_ifile
= lfs_update_iaddr(fs
, sp
, ip
, bp
->b_blkno
);
1294 KASSERT(redo_ifile
== 0);
1295 return (redo_ifile
);
1299 lfs_gatherblock(struct segment
*sp
, struct buf
*bp
, kmutex_t
*mptr
)
1305 ASSERT_SEGLOCK(sp
->fs
);
1307 * If full, finish this segment. We may be doing I/O, so
1308 * release and reacquire the splbio().
1312 panic ("lfs_gatherblock: Null vp in segment");
1315 blksinblk
= howmany(bp
->b_bcount
, lfs_sb_getbsize(fs
));
1316 if (sp
->sum_bytes_left
< sizeof(int32_t) * blksinblk
||
1317 sp
->seg_bytes_left
< bp
->b_bcount
) {
1322 vers
= lfs_fi_getversion(fs
, sp
->fip
);
1323 (void) lfs_writeseg(fs
, sp
);
1325 /* Add the current file to the segment summary. */
1326 lfs_acquire_finfo(fs
, VTOI(sp
->vp
)->i_number
, vers
);
1333 if (bp
->b_flags
& B_GATHERED
) {
1334 DLOG((DLOG_SEG
, "lfs_gatherblock: already gathered! Ino %ju,"
1335 " lbn %" PRId64
"\n",
1336 (uintmax_t)lfs_fi_getino(fs
, sp
->fip
), bp
->b_lblkno
));
1340 /* Insert into the buffer list, update the FINFO block. */
1341 bp
->b_flags
|= B_GATHERED
;
1344 for (j
= 0; j
< blksinblk
; j
++) {
1347 bn
= lfs_fi_getnblocks(fs
, sp
->fip
);
1348 lfs_fi_setnblocks(fs
, sp
->fip
, bn
+1);
1349 lfs_fi_setblock(fs
, sp
->fip
, bn
, bp
->b_lblkno
+ j
);
1350 /* This block's accounting moves from lfs_favail to lfs_avail */
1351 lfs_deregister_block(sp
->vp
, bp
->b_lblkno
+ j
);
1354 sp
->sum_bytes_left
-= sizeof(int32_t) * blksinblk
;
1355 sp
->seg_bytes_left
-= bp
->b_bcount
;
1360 lfs_gather(struct lfs
*fs
, struct segment
*sp
, struct vnode
*vp
,
1361 int (*match
)(struct lfs
*, struct buf
*))
1363 struct buf
*bp
, *nbp
;
1367 if (vp
->v_type
== VBLK
)
1369 KASSERT(sp
->vp
== NULL
);
1371 mutex_enter(&bufcache_lock
);
1373 #ifndef LFS_NO_BACKBUF_HACK
1374 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1375 # define BUF_OFFSET \
1376 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1377 # define BACK_BUF(BP) \
1378 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1379 # define BEG_OF_LIST \
1380 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1383 /* Find last buffer. */
1384 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
);
1385 bp
&& LIST_NEXT(bp
, b_vnbufs
) != NULL
;
1386 bp
= LIST_NEXT(bp
, b_vnbufs
))
1388 for (; bp
&& bp
!= BEG_OF_LIST
; bp
= nbp
) {
1390 #else /* LFS_NO_BACKBUF_HACK */
1392 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
1393 nbp
= LIST_NEXT(bp
, b_vnbufs
);
1394 #endif /* LFS_NO_BACKBUF_HACK */
1395 if ((bp
->b_cflags
& BC_BUSY
) != 0 ||
1396 (bp
->b_flags
& B_GATHERED
) != 0 || !match(fs
, bp
)) {
1398 if (vp
== fs
->lfs_ivnode
&&
1399 (bp
->b_cflags
& BC_BUSY
) != 0 &&
1400 (bp
->b_flags
& B_GATHERED
) == 0)
1401 log(LOG_NOTICE
, "lfs_gather: ifile lbn %"
1402 PRId64
" busy (%x) at 0x%jx",
1403 bp
->b_lblkno
, bp
->b_flags
,
1404 (uintmax_t)lfs_sb_getoffset(fs
));
1409 # ifdef LFS_USE_B_INVAL
1410 if ((bp
->b_flags
& BC_INVAL
) != 0 && bp
->b_iodone
== NULL
) {
1411 DLOG((DLOG_SEG
, "lfs_gather: lbn %" PRId64
1412 " is BC_INVAL\n", bp
->b_lblkno
));
1413 VOP_PRINT(bp
->b_vp
);
1415 # endif /* LFS_USE_B_INVAL */
1416 if (!(bp
->b_oflags
& BO_DELWRI
))
1417 panic("lfs_gather: bp not BO_DELWRI");
1418 if (!(bp
->b_flags
& B_LOCKED
)) {
1419 DLOG((DLOG_SEG
, "lfs_gather: lbn %" PRId64
1420 " blk %" PRId64
" not B_LOCKED\n",
1422 LFS_DBTOFSB(fs
, bp
->b_blkno
)));
1423 VOP_PRINT(bp
->b_vp
);
1424 panic("lfs_gather: bp not B_LOCKED");
1427 if (lfs_gatherblock(sp
, bp
, &bufcache_lock
)) {
1432 mutex_exit(&bufcache_lock
);
1434 KASSERT(sp
->vp
== vp
);
1440 # define DEBUG_OOFF(n) do { \
1442 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1443 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1444 ", was 0x0 (or %" PRId64 ")\n", \
1445 (n), ip->i_number, lbn, ndaddr, daddr)); \
1449 # define DEBUG_OOFF(n)
1453 * Change the given block's address to ndaddr, finding its previous
1454 * location using ulfs_bmaparray().
1456 * Account for this change in the segment table.
1458 * called with sp == NULL by roll-forwarding code.
1461 lfs_update_single(struct lfs
*fs
, struct segment
*sp
,
1462 struct vnode
*vp
, daddr_t lbn
, daddr_t ndaddr
, int size
)
1466 struct indir a
[ULFS_NIADDR
+ 2], *ap
;
1468 daddr_t daddr
, ooff
;
1473 KASSERT(sp
== NULL
|| sp
->vp
== vp
);
1476 error
= ulfs_bmaparray(vp
, lbn
, &daddr
, a
, &num
, NULL
, NULL
);
1478 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error
);
1480 KASSERT(daddr
<= LFS_MAX_DADDR(fs
));
1482 daddr
= LFS_DBTOFSB(fs
, daddr
);
1484 bb
= lfs_numfrags(fs
, size
);
1487 ooff
= lfs_dino_getdb(fs
, ip
->i_din
, lbn
);
1489 if (ooff
== UNWRITTEN
)
1490 lfs_dino_setblocks(fs
, ip
->i_din
,
1491 lfs_dino_getblocks(fs
, ip
->i_din
) + bb
);
1493 /* possible fragment truncation or extension */
1494 obb
= lfs_btofsb(fs
, ip
->i_lfs_fragsize
[lbn
]);
1495 lfs_dino_setblocks(fs
, ip
->i_din
,
1496 lfs_dino_getblocks(fs
, ip
->i_din
) + (bb
-obb
));
1498 lfs_dino_setdb(fs
, ip
->i_din
, lbn
, ndaddr
);
1501 ooff
= lfs_dino_getib(fs
, ip
->i_din
, a
[0].in_off
);
1503 if (ooff
== UNWRITTEN
)
1504 lfs_dino_setblocks(fs
, ip
->i_din
,
1505 lfs_dino_getblocks(fs
, ip
->i_din
) + bb
);
1506 lfs_dino_setib(fs
, ip
->i_din
, a
[0].in_off
, ndaddr
);
1510 if (bread(vp
, ap
->in_lbn
, lfs_sb_getbsize(fs
),
1512 panic("lfs_updatemeta: bread bno %" PRId64
,
1515 ooff
= lfs_iblock_get(fs
, bp
->b_data
, ap
->in_off
);
1517 if (ooff
== UNWRITTEN
)
1518 lfs_dino_setblocks(fs
, ip
->i_din
,
1519 lfs_dino_getblocks(fs
, ip
->i_din
) + bb
);
1520 lfs_iblock_set(fs
, bp
->b_data
, ap
->in_off
, ndaddr
);
1521 (void) VOP_BWRITE(bp
->b_vp
, bp
);
1524 KASSERT(ooff
== 0 || ooff
== UNWRITTEN
|| ooff
== daddr
);
1526 /* Update hiblk when extending the file */
1527 if (lbn
> ip
->i_lfs_hiblk
)
1528 ip
->i_lfs_hiblk
= lbn
;
1531 * Though we'd rather it couldn't, this *can* happen right now
1532 * if cleaning blocks and regular blocks coexist.
1534 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1537 * Update segment usage information, based on old size
1541 u_int32_t oldsn
= lfs_dtosn(fs
, daddr
);
1545 if (sp
&& sp
->seg_number
== oldsn
) {
1546 ndupino
= sp
->ndupino
;
1551 KASSERT(oldsn
< lfs_sb_getnseg(fs
));
1552 if (lbn
>= 0 && lbn
< ULFS_NDADDR
)
1553 osize
= ip
->i_lfs_fragsize
[lbn
];
1555 osize
= lfs_sb_getbsize(fs
);
1556 LFS_SEGENTRY(sup
, fs
, oldsn
, bp
);
1558 if (sup
->su_nbytes
+ DINOSIZE(fs
) * ndupino
< osize
) {
1559 printf("lfs_updatemeta: negative bytes "
1560 "(segment %" PRIu32
" short by %" PRId64
1561 ")\n", lfs_dtosn(fs
, daddr
),
1563 (DINOSIZE(fs
) * ndupino
+ sup
->su_nbytes
));
1564 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1565 ", addr = 0x%" PRIx64
"\n",
1566 (unsigned long long)ip
->i_number
, lbn
, daddr
);
1567 printf("lfs_updatemeta: ndupino=%d\n", ndupino
);
1568 panic("lfs_updatemeta: negative bytes");
1569 sup
->su_nbytes
= osize
-
1570 DINOSIZE(fs
) * ndupino
;
1573 DLOG((DLOG_SU
, "seg %" PRIu32
" -= %d for ino %d lbn %" PRId64
1574 " db 0x%" PRIx64
"\n",
1575 lfs_dtosn(fs
, daddr
), osize
,
1576 ip
->i_number
, lbn
, daddr
));
1577 sup
->su_nbytes
-= osize
;
1578 if (!(bp
->b_flags
& B_GATHERED
)) {
1579 mutex_enter(&lfs_lock
);
1580 fs
->lfs_flags
|= LFS_IFDIRTY
;
1581 mutex_exit(&lfs_lock
);
1583 LFS_WRITESEGENTRY(sup
, fs
, oldsn
, bp
);
1586 * Now that this block has a new address, and its old
1587 * segment no longer owns it, we can forget about its
1590 if (lbn
>= 0 && lbn
< ULFS_NDADDR
)
1591 ip
->i_lfs_fragsize
[lbn
] = size
;
1595 * Update the metadata that points to the blocks listed in the FINFO
1599 lfs_updatemeta(struct segment
*sp
)
1605 int i
, nblocks
, num
;
1606 int __diagused nblocks_orig
;
1608 int bytesleft
, size
;
1609 unsigned lastlength
;
1610 union lfs_blocks tmpptr
;
1619 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1621 * that is, it allowed for the possibility that start_lbp did
1622 * not point to the beginning of the finfo block pointer area.
1623 * This particular formulation is six kinds of painful in the
1624 * lfs64 world where we have two sizes of block pointer, so
1625 * unless/until everything can be cleaned up to not move
1626 * start_lbp around but instead use an offset, we do the
1628 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as
1629 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong
1631 * 2. Cast it to void *, then assign it to a temporary
1633 * 3. Subtract start_lbp from that.
1634 * 4. Save the value of nblocks in blocks_orig so we can
1635 * assert below that it hasn't changed without repeating this
1640 lfs_blocks_fromvoid(fs
, &tmpptr
, (void *)NEXT_FINFO(fs
, sp
->fip
));
1641 nblocks
= lfs_blocks_sub(fs
, &tmpptr
, &sp
->start_lbp
);
1642 nblocks_orig
= nblocks
;
1644 KASSERT(nblocks
>= 0);
1645 KASSERT(vp
!= NULL
);
1650 * This count may be high due to oversize blocks from lfs_gop_write.
1651 * Correct for this. (XXX we should be able to keep track of these.)
1653 for (i
= 0; i
< nblocks
; i
++) {
1654 if (sp
->start_bpp
[i
] == NULL
) {
1655 DLOG((DLOG_SEG
, "lfs_updatemeta: nblocks = %d, not %d\n", i
, nblocks
));
1659 num
= howmany(sp
->start_bpp
[i
]->b_bcount
, lfs_sb_getbsize(fs
));
1660 KASSERT(sp
->start_bpp
[i
]->b_lblkno
>= 0 || num
== 1);
1665 /* pre-lfs64 assertion */
1666 KASSERT(vp
->v_type
== VREG
||
1667 nblocks
== &sp
->fip
->fi_blocks
[sp
->fip
->fi_nblocks
] - sp
->start_lbp
);
1669 KASSERT(vp
->v_type
== VREG
|| nblocks
== nblocks_orig
);
1671 KASSERT(nblocks
== sp
->cbpp
- sp
->start_bpp
);
1676 * We have to sort even if the blocks come from the
1677 * cleaner, because there might be other pending blocks on the
1678 * same inode...and if we don't sort, and there are fragments
1679 * present, blocks may be written in the wrong place.
1681 lfs_shellsort(fs
, sp
->start_bpp
, &sp
->start_lbp
, nblocks
, lfs_sb_getbsize(fs
));
1684 * Record the length of the last block in case it's a fragment.
1685 * If there are indirect blocks present, they sort last. An
1686 * indirect block will be lfs_bsize and its presence indicates
1687 * that you cannot have fragments.
1689 * XXX This last is a lie. A cleaned fragment can coexist with
1690 * XXX a later indirect block. This will continue to be
1691 * XXX true until lfs_markv is fixed to do everything with
1692 * XXX fake blocks (including fake inodes and fake indirect blocks).
1694 lastlength
= ((sp
->start_bpp
[nblocks
- 1]->b_bcount
- 1) &
1695 lfs_sb_getbmask(fs
)) + 1;
1696 lfs_fi_setlastlength(fs
, sp
->fip
, lastlength
);
1699 * Assign disk addresses, and update references to the logical
1700 * block and the segment usage information.
1702 for (i
= nblocks
; i
--; ++sp
->start_bpp
) {
1703 sbp
= *sp
->start_bpp
;
1704 lbn
= lfs_blocks_get(fs
, &sp
->start_lbp
, 0);
1705 KASSERT(sbp
->b_lblkno
== lbn
);
1707 sbp
->b_blkno
= LFS_FSBTODB(fs
, lfs_sb_getoffset(fs
));
1710 * If we write a frag in the wrong place, the cleaner won't
1711 * be able to correctly identify its size later, and the
1712 * segment will be uncleanable. (Even worse, it will assume
1713 * that the indirect block that actually ends the list
1714 * is of a smaller size!)
1716 if ((sbp
->b_bcount
& lfs_sb_getbmask(fs
)) && i
!= 0)
1717 panic("lfs_updatemeta: fragment is not last block");
1720 * For each subblock in this possibly oversized block,
1721 * update its address on disk.
1723 KASSERT(lbn
>= 0 || sbp
->b_bcount
== lfs_sb_getbsize(fs
));
1724 KASSERT(vp
== sbp
->b_vp
);
1725 for (bytesleft
= sbp
->b_bcount
; bytesleft
> 0;
1726 bytesleft
-= lfs_sb_getbsize(fs
)) {
1727 size
= MIN(bytesleft
, lfs_sb_getbsize(fs
));
1728 bb
= lfs_numfrags(fs
, size
);
1729 lbn
= lfs_blocks_get(fs
, &sp
->start_lbp
, 0);
1730 lfs_blocks_inc(fs
, &sp
->start_lbp
);
1731 lfs_update_single(fs
, sp
, sp
->vp
, lbn
, lfs_sb_getoffset(fs
),
1733 lfs_sb_addoffset(fs
, bb
);
1738 /* This inode has been modified */
1739 LFS_SET_UINO(VTOI(vp
), IN_MODIFIED
);
1743 * Move lfs_offset to a segment earlier than newsn.
1746 lfs_rewind(struct lfs
*fs
, int newsn
)
1748 int sn
, osn
, isdirty
;
1754 osn
= lfs_dtosn(fs
, lfs_sb_getoffset(fs
));
1758 /* lfs_avail eats the remaining space in this segment */
1759 lfs_sb_subavail(fs
, lfs_sb_getfsbpseg(fs
) - (lfs_sb_getoffset(fs
) - lfs_sb_getcurseg(fs
)));
1761 /* Find a low-numbered segment */
1762 for (sn
= 0; sn
< lfs_sb_getnseg(fs
); ++sn
) {
1763 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
1764 isdirty
= sup
->su_flags
& SEGUSE_DIRTY
;
1770 if (sn
== lfs_sb_getnseg(fs
))
1771 panic("lfs_rewind: no clean segments");
1772 if (newsn
>= 0 && sn
>= newsn
)
1774 lfs_sb_setnextseg(fs
, lfs_sntod(fs
, sn
));
1776 lfs_sb_setoffset(fs
, lfs_sb_getcurseg(fs
));
1782 * Start a new partial segment.
1784 * Return 1 when we entered to a new segment.
1785 * Otherwise, return 0.
1788 lfs_initseg(struct lfs
*fs
)
1790 struct segment
*sp
= fs
->lfs_sp
;
1792 struct buf
*sbp
; /* buffer for SEGSUM */
1793 int repeat
= 0; /* return value */
1796 /* Advance to the next segment. */
1797 if (!LFS_PARTIAL_FITS(fs
)) {
1801 /* lfs_avail eats the remaining space */
1802 lfs_sb_subavail(fs
, lfs_sb_getfsbpseg(fs
) - (lfs_sb_getoffset(fs
) -
1803 lfs_sb_getcurseg(fs
)));
1804 /* Wake up any cleaning procs waiting on this file system. */
1805 lfs_wakeup_cleaner(fs
);
1808 lfs_sb_setoffset(fs
, lfs_sb_getcurseg(fs
));
1810 sp
->seg_number
= lfs_dtosn(fs
, lfs_sb_getcurseg(fs
));
1811 sp
->seg_bytes_left
= lfs_fsbtob(fs
, lfs_sb_getfsbpseg(fs
));
1814 * If the segment contains a superblock, update the offset
1815 * and summary address to skip over it.
1817 LFS_SEGENTRY(sup
, fs
, sp
->seg_number
, bp
);
1818 if (sup
->su_flags
& SEGUSE_SUPERBLOCK
) {
1819 lfs_sb_addoffset(fs
, lfs_btofsb(fs
, LFS_SBPAD
));
1820 sp
->seg_bytes_left
-= LFS_SBPAD
;
1823 /* Segment zero could also contain the labelpad */
1824 if (lfs_sb_getversion(fs
) > 1 && sp
->seg_number
== 0 &&
1825 lfs_sb_gets0addr(fs
) < lfs_btofsb(fs
, LFS_LABELPAD
)) {
1826 lfs_sb_addoffset(fs
,
1827 lfs_btofsb(fs
, LFS_LABELPAD
) - lfs_sb_gets0addr(fs
));
1828 sp
->seg_bytes_left
-=
1829 LFS_LABELPAD
- lfs_fsbtob(fs
, lfs_sb_gets0addr(fs
));
1832 sp
->seg_number
= lfs_dtosn(fs
, lfs_sb_getcurseg(fs
));
1833 sp
->seg_bytes_left
= lfs_fsbtob(fs
, lfs_sb_getfsbpseg(fs
) -
1834 (lfs_sb_getoffset(fs
) - lfs_sb_getcurseg(fs
)));
1836 lfs_sb_setlastpseg(fs
, lfs_sb_getoffset(fs
));
1838 /* Record first address of this partial segment */
1839 if (sp
->seg_flags
& SEGM_CLEAN
) {
1840 fs
->lfs_cleanint
[fs
->lfs_cleanind
] = lfs_sb_getoffset(fs
);
1841 if (++fs
->lfs_cleanind
>= LFS_MAX_CLEANIND
) {
1842 /* "1" is the artificial inc in lfs_seglock */
1843 mutex_enter(&lfs_lock
);
1844 while (fs
->lfs_iocount
> 1) {
1845 mtsleep(&fs
->lfs_iocount
, PRIBIO
+ 1,
1846 "lfs_initseg", 0, &lfs_lock
);
1848 mutex_exit(&lfs_lock
);
1849 fs
->lfs_cleanind
= 0;
1861 /* Get a new buffer for SEGSUM */
1862 sbp
= lfs_newbuf(fs
, VTOI(fs
->lfs_ivnode
)->i_devvp
,
1863 LFS_FSBTODB(fs
, lfs_sb_getoffset(fs
)), lfs_sb_getsumsize(fs
), LFS_NB_SUMMARY
);
1865 /* ... and enter it into the buffer list. */
1868 lfs_sb_addoffset(fs
, lfs_btofsb(fs
, lfs_sb_getsumsize(fs
)));
1870 sp
->start_bpp
= sp
->cbpp
;
1872 /* Set point to SEGSUM, initialize it. */
1873 ssp
= sp
->segsum
= sbp
->b_data
;
1874 memset(ssp
, 0, lfs_sb_getsumsize(fs
));
1875 lfs_ss_setnext(fs
, ssp
, lfs_sb_getnextseg(fs
));
1876 lfs_ss_setnfinfo(fs
, ssp
, 0);
1877 lfs_ss_setninos(fs
, ssp
, 0);
1878 lfs_ss_setmagic(fs
, ssp
, SS_MAGIC
);
1880 /* Set pointer to first FINFO, initialize it. */
1881 sp
->fip
= SEGSUM_FINFOBASE(fs
, sp
->segsum
);
1882 lfs_fi_setnblocks(fs
, sp
->fip
, 0);
1883 lfs_fi_setlastlength(fs
, sp
->fip
, 0);
1884 lfs_blocks_fromfinfo(fs
, &sp
->start_lbp
, sp
->fip
);
1886 sp
->seg_bytes_left
-= lfs_sb_getsumsize(fs
);
1887 sp
->sum_bytes_left
= lfs_sb_getsumsize(fs
) - SEGSUM_SIZE(fs
);
1893 * Remove SEGUSE_INVAL from all segments.
1896 lfs_unset_inval_all(struct lfs
*fs
)
1902 for (i
= 0; i
< lfs_sb_getnseg(fs
); i
++) {
1903 LFS_SEGENTRY(sup
, fs
, i
, bp
);
1904 if (sup
->su_flags
& SEGUSE_INVAL
) {
1905 sup
->su_flags
&= ~SEGUSE_INVAL
;
1906 LFS_WRITESEGENTRY(sup
, fs
, i
, bp
);
1913 * Return the next segment to write.
1916 lfs_newseg(struct lfs
*fs
)
1921 int curseg
, isdirty
, sn
, skip_inval
;
1925 /* Honor LFCNWRAPSTOP */
1926 mutex_enter(&lfs_lock
);
1927 while (lfs_sb_getnextseg(fs
) < lfs_sb_getcurseg(fs
) && fs
->lfs_nowrap
) {
1928 if (fs
->lfs_wrappass
) {
1929 log(LOG_NOTICE
, "%s: wrappass=%d\n",
1930 lfs_sb_getfsmnt(fs
), fs
->lfs_wrappass
);
1931 fs
->lfs_wrappass
= 0;
1934 fs
->lfs_wrapstatus
= LFS_WRAP_WAITING
;
1935 wakeup(&fs
->lfs_nowrap
);
1936 log(LOG_NOTICE
, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs
));
1937 mtsleep(&fs
->lfs_wrappass
, PVFS
, "newseg", 10 * hz
,
1940 fs
->lfs_wrapstatus
= LFS_WRAP_GOING
;
1941 mutex_exit(&lfs_lock
);
1943 LFS_SEGENTRY(sup
, fs
, lfs_dtosn(fs
, lfs_sb_getnextseg(fs
)), bp
);
1944 DLOG((DLOG_SU
, "lfs_newseg: seg %d := 0 in newseg\n",
1945 lfs_dtosn(fs
, lfs_sb_getnextseg(fs
))));
1946 sup
->su_flags
|= SEGUSE_DIRTY
| SEGUSE_ACTIVE
;
1950 LFS_WRITESEGENTRY(sup
, fs
, lfs_dtosn(fs
, lfs_sb_getnextseg(fs
)), bp
);
1952 LFS_CLEANERINFO(cip
, fs
, bp
);
1953 lfs_ci_shiftcleantodirty(fs
, cip
, 1);
1954 lfs_sb_setnclean(fs
, lfs_ci_getclean(fs
, cip
));
1955 LFS_SYNC_CLEANERINFO(cip
, fs
, bp
, 1);
1957 lfs_sb_setlastseg(fs
, lfs_sb_getcurseg(fs
));
1958 lfs_sb_setcurseg(fs
, lfs_sb_getnextseg(fs
));
1960 for (sn
= curseg
= lfs_dtosn(fs
, lfs_sb_getcurseg(fs
)) + lfs_sb_getinterleave(fs
);;) {
1961 sn
= (sn
+ 1) % lfs_sb_getnseg(fs
);
1967 panic("lfs_nextseg: no clean segments");
1969 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
1970 isdirty
= sup
->su_flags
& (SEGUSE_DIRTY
| (skip_inval
? SEGUSE_INVAL
: 0));
1971 /* Check SEGUSE_EMPTY as we go along */
1972 if (isdirty
&& sup
->su_nbytes
== 0 &&
1973 !(sup
->su_flags
& SEGUSE_EMPTY
))
1974 LFS_WRITESEGENTRY(sup
, fs
, sn
, bp
);
1981 if (skip_inval
== 0)
1982 lfs_unset_inval_all(fs
);
1985 lfs_sb_setnextseg(fs
, lfs_sntod(fs
, sn
));
1987 ++lfs_stats
.segsused
;
1992 lfs_newclusterbuf(struct lfs
*fs
, struct vnode
*vp
, daddr_t addr
,
1995 struct lfs_cluster
*cl
;
1996 struct buf
**bpp
, *bp
;
1999 cl
= (struct lfs_cluster
*)pool_get(&fs
->lfs_clpool
, PR_WAITOK
);
2000 bpp
= (struct buf
**)pool_get(&fs
->lfs_bpppool
, PR_WAITOK
);
2001 memset(cl
, 0, sizeof(*cl
));
2007 /* If this segment is being written synchronously, note that */
2008 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
) {
2009 cl
->flags
|= LFS_CL_SYNC
;
2010 cl
->seg
= fs
->lfs_sp
;
2011 ++cl
->seg
->seg_iocount
;
2014 /* Get an empty buffer header, or maybe one with something on it */
2015 bp
= getiobuf(vp
, true);
2017 bp
->b_blkno
= bp
->b_lblkno
= addr
;
2018 bp
->b_iodone
= lfs_cluster_callback
;
2025 lfs_writeseg(struct lfs
*fs
, struct segment
*sp
)
2027 struct buf
**bpp
, *bp
, *cbp
, *newbp
, *unbusybp
;
2031 int do_again
, nblocks
, byteoffset
;
2033 struct lfs_cluster
*cl
;
2035 struct vnode
*devvp
;
2038 int32_t *daddrp
; /* XXX ondisk32 */
2049 ssp
= (SEGSUM
*)sp
->segsum
;
2052 * If there are no buffers other than the segment summary to write,
2053 * don't do anything. If we are the end of a dirop sequence, however,
2054 * write the empty segment summary anyway, to help out the
2055 * roll-forward agent.
2057 if ((nblocks
= sp
->cbpp
- sp
->bpp
) == 1) {
2058 if ((lfs_ss_getflags(fs
, ssp
) & (SS_DIROP
| SS_CONT
)) != SS_DIROP
)
2062 /* Note if partial segment is being written by the cleaner */
2063 if (sp
->seg_flags
& SEGM_CLEAN
)
2064 lfs_ss_setflags(fs
, ssp
, lfs_ss_getflags(fs
, ssp
) | SS_CLEAN
);
2066 /* Note if we are writing to reclaim */
2067 if (sp
->seg_flags
& SEGM_RECLAIM
) {
2068 lfs_ss_setflags(fs
, ssp
, lfs_ss_getflags(fs
, ssp
) | SS_RECLAIM
);
2069 lfs_ss_setreclino(fs
, ssp
, fs
->lfs_reclino
);
2072 devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
2074 /* Update the segment usage information. */
2075 LFS_SEGENTRY(sup
, fs
, sp
->seg_number
, bp
);
2077 /* Loop through all blocks, except the segment summary. */
2078 for (bpp
= sp
->bpp
; ++bpp
< sp
->cbpp
; ) {
2079 if ((*bpp
)->b_vp
!= devvp
) {
2080 sup
->su_nbytes
+= (*bpp
)->b_bcount
;
2081 DLOG((DLOG_SU
, "seg %" PRIu32
" += %ld for ino %d"
2082 " lbn %" PRId64
" db 0x%" PRIx64
"\n",
2083 sp
->seg_number
, (*bpp
)->b_bcount
,
2084 VTOI((*bpp
)->b_vp
)->i_number
, (*bpp
)->b_lblkno
,
2090 /* Check for zero-length and zero-version FINFO entries. */
2091 fip
= SEGSUM_FINFOBASE(fs
, ssp
);
2092 for (findex
= 0; findex
< lfs_ss_getnfinfo(fs
, ssp
); findex
++) {
2093 KDASSERT(lfs_fi_getnblocks(fs
, fip
) > 0);
2094 KDASSERT(lfs_fi_getversion(fs
, fip
) > 0);
2095 fip
= NEXT_FINFO(fs
, fip
);
2099 ninos
= (lfs_ss_getninos(fs
, ssp
) + LFS_INOPB(fs
) - 1) / LFS_INOPB(fs
);
2100 DLOG((DLOG_SU
, "seg %d += %d for %d inodes\n",
2102 lfs_ss_getninos(fs
, ssp
) * DINOSIZE(fs
),
2103 lfs_ss_getninos(fs
, ssp
)));
2104 sup
->su_nbytes
+= lfs_ss_getninos(fs
, ssp
) * DINOSIZE(fs
);
2105 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */
2106 if (lfs_sb_getversion(fs
) == 1)
2107 sup
->su_olastmod
= time_second
;
2109 sup
->su_lastmod
= time_second
;
2110 sup
->su_ninos
+= ninos
;
2112 lfs_sb_subavail(fs
, lfs_btofsb(fs
, lfs_sb_getsumsize(fs
)));
2114 do_again
= !(bp
->b_flags
& B_GATHERED
);
2115 LFS_WRITESEGENTRY(sup
, fs
, sp
->seg_number
, bp
); /* Ifile */
2118 * Mark blocks B_BUSY, to prevent then from being changed between
2119 * the checksum computation and the actual write.
2121 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2122 * there are any, replace them with copies that have UNASSIGNED
2125 mutex_enter(&bufcache_lock
);
2126 for (bpp
= sp
->bpp
, i
= nblocks
- 1; i
--;) {
2129 if (bp
->b_iodone
!= NULL
) { /* UBC or malloced buffer */
2130 bp
->b_cflags
|= BC_BUSY
;
2134 while (bp
->b_cflags
& BC_BUSY
) {
2135 DLOG((DLOG_SEG
, "lfs_writeseg: avoiding potential"
2136 " data summary corruption for ino %d, lbn %"
2138 VTOI(bp
->b_vp
)->i_number
, bp
->b_lblkno
));
2139 bp
->b_cflags
|= BC_WANTED
;
2140 cv_wait(&bp
->b_busy
, &bufcache_lock
);
2142 bp
->b_cflags
|= BC_BUSY
;
2143 mutex_exit(&bufcache_lock
);
2147 * Check and replace indirect block UNWRITTEN bogosity.
2148 * XXX See comment in lfs_writefile.
2150 if (bp
->b_lblkno
< 0 && bp
->b_vp
!= devvp
&& bp
->b_vp
&&
2151 lfs_dino_getblocks(fs
, VTOI(bp
->b_vp
)->i_din
) !=
2152 VTOI(bp
->b_vp
)->i_lfs_effnblks
) {
2153 DLOG((DLOG_VNODE
, "lfs_writeseg: cleansing ino %d (%jd != %d)\n",
2154 VTOI(bp
->b_vp
)->i_number
,
2155 (intmax_t)VTOI(bp
->b_vp
)->i_lfs_effnblks
,
2156 lfs_dino_getblocks(fs
, VTOI(bp
->b_vp
)->i_din
)));
2157 /* Make a copy we'll make changes to */
2158 newbp
= lfs_newbuf(fs
, bp
->b_vp
, bp
->b_lblkno
,
2159 bp
->b_bcount
, LFS_NB_IBLOCK
);
2160 newbp
->b_blkno
= bp
->b_blkno
;
2161 memcpy(newbp
->b_data
, bp
->b_data
,
2166 for (daddrp
= (int32_t *)(newbp
->b_data
);
2167 daddrp
< (int32_t *)((char *)newbp
->b_data
+
2168 newbp
->b_bcount
); daddrp
++) {
2169 if (*daddrp
== UNWRITTEN
) {
2175 * Get rid of the old buffer. Don't mark it clean,
2176 * though, if it still has dirty data on it.
2179 DLOG((DLOG_SEG
, "lfs_writeseg: replacing UNWRITTEN(%d):"
2180 " bp = %p newbp = %p\n", changed
, bp
,
2183 bp
->b_flags
&= ~B_GATHERED
;
2185 if (bp
->b_iodone
!= NULL
) {
2186 DLOG((DLOG_SEG
, "lfs_writeseg: "
2187 "indir bp should not be B_CALL\n"));
2191 /* Still on free list, leave it there */
2194 * We have to re-decrement lfs_avail
2195 * since this block is going to come
2196 * back around to us in the next
2200 lfs_btofsb(fs
, bp
->b_bcount
));
2203 lfs_freebuf(fs
, newbp
);
2206 mutex_enter(&bufcache_lock
);
2207 if (unbusybp
!= NULL
) {
2208 unbusybp
->b_cflags
&= ~BC_BUSY
;
2209 if (unbusybp
->b_cflags
& BC_WANTED
)
2210 cv_broadcast(&bp
->b_busy
);
2213 mutex_exit(&bufcache_lock
);
2216 * Compute checksum across data and then across summary; the first
2217 * block (the summary block) is skipped. Set the create time here
2218 * so that it's guaranteed to be later than the inode mod times.
2221 if (lfs_sb_getversion(fs
) == 1)
2222 el_size
= sizeof(u_long
);
2224 el_size
= sizeof(u_int32_t
);
2225 for (bpp
= sp
->bpp
, i
= nblocks
- 1; i
--; ) {
2227 /* Loop through gop_write cluster blocks */
2228 for (byteoffset
= 0; byteoffset
< (*bpp
)->b_bcount
;
2229 byteoffset
+= lfs_sb_getbsize(fs
)) {
2230 #ifdef LFS_USE_B_INVAL
2231 if (((*bpp
)->b_cflags
& BC_INVAL
) != 0 &&
2232 (*bpp
)->b_iodone
!= NULL
) {
2233 if (copyin((void *)(*bpp
)->b_saveaddr
+
2234 byteoffset
, dp
, el_size
)) {
2235 panic("lfs_writeseg: copyin failed [1]:"
2236 " ino %d blk %" PRId64
,
2237 VTOI((*bpp
)->b_vp
)->i_number
,
2241 #endif /* LFS_USE_B_INVAL */
2243 sum
= lfs_cksum_part((char *)
2244 (*bpp
)->b_data
+ byteoffset
, el_size
, sum
);
2248 if (lfs_sb_getversion(fs
) == 1)
2249 lfs_ss_setocreate(fs
, ssp
, time_second
);
2251 lfs_ss_setcreate(fs
, ssp
, time_second
);
2252 lfs_sb_addserial(fs
, 1);
2253 lfs_ss_setserial(fs
, ssp
, lfs_sb_getserial(fs
));
2254 lfs_ss_setident(fs
, ssp
, lfs_sb_getident(fs
));
2256 lfs_ss_setdatasum(fs
, ssp
, lfs_cksum_fold(sum
));
2257 sumstart
= lfs_ss_getsumstart(fs
);
2258 lfs_ss_setsumsum(fs
, ssp
, cksum((char *)ssp
+ sumstart
,
2259 lfs_sb_getsumsize(fs
) - sumstart
));
2261 mutex_enter(&lfs_lock
);
2262 lfs_sb_subbfree(fs
, (lfs_btofsb(fs
, ninos
* lfs_sb_getibsize(fs
)) +
2263 lfs_btofsb(fs
, lfs_sb_getsumsize(fs
))));
2264 lfs_sb_adddmeta(fs
, (lfs_btofsb(fs
, ninos
* lfs_sb_getibsize(fs
)) +
2265 lfs_btofsb(fs
, lfs_sb_getsumsize(fs
))));
2266 mutex_exit(&lfs_lock
);
2269 * When we simply write the blocks we lose a rotation for every block
2270 * written. To avoid this problem, we cluster the buffers into a
2271 * chunk and write the chunk. MAXPHYS is the largest size I/O
2272 * devices can handle, use that for the size of the chunks.
2274 * Blocks that are already clusters (from GOP_WRITE), however, we
2275 * don't bother to copy into other clusters.
2278 #define CHUNKSIZE MAXPHYS
2281 panic("devvp is NULL");
2282 for (bpp
= sp
->bpp
, i
= nblocks
; i
;) {
2283 cbp
= lfs_newclusterbuf(fs
, devvp
, (*bpp
)->b_blkno
, i
);
2284 cl
= cbp
->b_private
;
2286 cbp
->b_flags
|= B_ASYNC
;
2287 cbp
->b_cflags
|= BC_BUSY
;
2290 #if defined(DEBUG) && defined(DIAGNOSTIC)
2291 if (bpp
- sp
->bpp
> (lfs_sb_getsumsize(fs
) - SEGSUM_SIZE(fs
))
2292 / sizeof(int32_t)) {
2293 panic("lfs_writeseg: real bpp overwrite");
2295 if (bpp
- sp
->bpp
> lfs_segsize(fs
) / lfs_sb_getfsize(fs
)) {
2296 panic("lfs_writeseg: theoretical bpp overwrite");
2301 * Construct the cluster.
2303 mutex_enter(&lfs_lock
);
2305 mutex_exit(&lfs_lock
);
2306 while (i
&& cbp
->b_bcount
< CHUNKSIZE
) {
2309 if (bp
->b_bcount
> (CHUNKSIZE
- cbp
->b_bcount
))
2311 if (cbp
->b_bcount
> 0 && !(cl
->flags
& LFS_CL_MALLOC
))
2314 /* Clusters from GOP_WRITE are expedited */
2315 if (bp
->b_bcount
> lfs_sb_getbsize(fs
)) {
2316 if (cbp
->b_bcount
> 0)
2317 /* Put in its own buffer */
2320 cbp
->b_data
= bp
->b_data
;
2322 } else if (cbp
->b_bcount
== 0) {
2323 p
= cbp
->b_data
= lfs_malloc(fs
, CHUNKSIZE
,
2325 cl
->flags
|= LFS_CL_MALLOC
;
2328 if (lfs_dtosn(fs
, LFS_DBTOFSB(fs
, bp
->b_blkno
+
2329 btodb(bp
->b_bcount
- 1))) !=
2331 printf("blk size %d daddr %" PRIx64
2333 bp
->b_bcount
, bp
->b_blkno
,
2335 panic("segment overwrite");
2339 #ifdef LFS_USE_B_INVAL
2341 * Fake buffers from the cleaner are marked as B_INVAL.
2342 * We need to copy the data from user space rather than
2343 * from the buffer indicated.
2344 * XXX == what do I do on an error?
2346 if ((bp
->b_cflags
& BC_INVAL
) != 0 &&
2347 bp
->b_iodone
!= NULL
) {
2348 if (copyin(bp
->b_saveaddr
, p
, bp
->b_bcount
))
2349 panic("lfs_writeseg: "
2350 "copyin failed [2]");
2352 #endif /* LFS_USE_B_INVAL */
2353 if (cl
->flags
& LFS_CL_MALLOC
) {
2354 /* copy data into our cluster. */
2355 memcpy(p
, bp
->b_data
, bp
->b_bcount
);
2359 cbp
->b_bcount
+= bp
->b_bcount
;
2360 cl
->bufsize
+= bp
->b_bcount
;
2362 bp
->b_flags
&= ~B_READ
;
2364 cl
->bpp
[cl
->bufcount
++] = bp
;
2367 mutex_enter(&bufcache_lock
);
2368 mutex_enter(vp
->v_interlock
);
2369 bp
->b_oflags
&= ~(BO_DELWRI
| BO_DONE
);
2370 reassignbuf(bp
, vp
);
2372 mutex_exit(vp
->v_interlock
);
2373 mutex_exit(&bufcache_lock
);
2378 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2379 BIO_SETPRIO(cbp
, BPRIO_TIMECRITICAL
);
2381 BIO_SETPRIO(cbp
, BPRIO_TIMELIMITED
);
2382 mutex_enter(devvp
->v_interlock
);
2383 devvp
->v_numoutput
++;
2384 mutex_exit(devvp
->v_interlock
);
2385 VOP_STRATEGY(devvp
, cbp
);
2386 curlwp
->l_ru
.ru_oublock
++;
2390 ++lfs_stats
.psegwrites
;
2391 lfs_stats
.blocktot
+= nblocks
- 1;
2392 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2393 ++lfs_stats
.psyncwrites
;
2394 if (fs
->lfs_sp
->seg_flags
& SEGM_CLEAN
) {
2395 ++lfs_stats
.pcleanwrites
;
2396 lfs_stats
.cleanblocks
+= nblocks
- 1;
2400 return (lfs_initseg(fs
) || do_again
);
2404 lfs_writesuper(struct lfs
*fs
, daddr_t daddr
)
2407 struct vnode
*devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
2410 ASSERT_MAYBE_SEGLOCK(fs
);
2413 KASSERT(fs
->lfs_dlfs_u
.u_64
.dlfs_magic
== LFS64_MAGIC
);
2415 KASSERT(fs
->lfs_dlfs_u
.u_32
.dlfs_magic
== LFS_MAGIC
);
2419 * If we can write one superblock while another is in
2420 * progress, we risk not having a complete checkpoint if we crash.
2421 * So, block here if a superblock write is in progress.
2423 mutex_enter(&lfs_lock
);
2425 while (fs
->lfs_sbactive
) {
2426 mtsleep(&fs
->lfs_sbactive
, PRIBIO
+1, "lfs sb", 0,
2429 fs
->lfs_sbactive
= daddr
;
2431 mutex_exit(&lfs_lock
);
2433 /* Set timestamp of this version of the superblock */
2434 if (lfs_sb_getversion(fs
) == 1)
2435 lfs_sb_setotstamp(fs
, time_second
);
2436 lfs_sb_settstamp(fs
, time_second
);
2438 /* The next chunk of code relies on this assumption */
2439 CTASSERT(sizeof(struct dlfs
) == sizeof(struct dlfs64
));
2441 /* Checksum the superblock and copy it into a buffer. */
2442 lfs_sb_setcksum(fs
, lfs_sb_cksum(fs
));
2443 bp
= lfs_newbuf(fs
, devvp
,
2444 LFS_FSBTODB(fs
, daddr
), LFS_SBPAD
, LFS_NB_SBLOCK
);
2445 memcpy(bp
->b_data
, &fs
->lfs_dlfs_u
, sizeof(struct dlfs
));
2446 memset((char *)bp
->b_data
+ sizeof(struct dlfs
), 0,
2447 LFS_SBPAD
- sizeof(struct dlfs
));
2449 bp
->b_cflags
|= BC_BUSY
;
2450 bp
->b_flags
= (bp
->b_flags
& ~B_READ
) | B_ASYNC
;
2451 bp
->b_oflags
&= ~(BO_DONE
| BO_DELWRI
);
2453 bp
->b_iodone
= lfs_supercallback
;
2455 if (fs
->lfs_sp
!= NULL
&& fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2456 BIO_SETPRIO(bp
, BPRIO_TIMECRITICAL
);
2458 BIO_SETPRIO(bp
, BPRIO_TIMELIMITED
);
2459 curlwp
->l_ru
.ru_oublock
++;
2461 mutex_enter(devvp
->v_interlock
);
2462 devvp
->v_numoutput
++;
2463 mutex_exit(devvp
->v_interlock
);
2465 mutex_enter(&lfs_lock
);
2467 mutex_exit(&lfs_lock
);
2468 VOP_STRATEGY(devvp
, bp
);
2472 * Logical block number match routines used when traversing the dirty block
2476 lfs_match_fake(struct lfs
*fs
, struct buf
*bp
)
2480 return LFS_IS_MALLOC_BUF(bp
);
2485 lfs_match_real(struct lfs
*fs
, struct buf
*bp
)
2489 return (lfs_match_data(fs
, bp
) && !lfs_match_fake(fs
, bp
));
2494 lfs_match_data(struct lfs
*fs
, struct buf
*bp
)
2498 return (bp
->b_lblkno
>= 0);
2502 lfs_match_indir(struct lfs
*fs
, struct buf
*bp
)
2508 return (lbn
< 0 && (-lbn
- ULFS_NDADDR
) % LFS_NINDIR(fs
) == 0);
2512 lfs_match_dindir(struct lfs
*fs
, struct buf
*bp
)
2518 return (lbn
< 0 && (-lbn
- ULFS_NDADDR
) % LFS_NINDIR(fs
) == 1);
2522 lfs_match_tindir(struct lfs
*fs
, struct buf
*bp
)
2528 return (lbn
< 0 && (-lbn
- ULFS_NDADDR
) % LFS_NINDIR(fs
) == 2);
2532 lfs_free_aiodone(struct buf
*bp
)
2536 KERNEL_LOCK(1, curlwp
);
2538 ASSERT_NO_SEGLOCK(fs
);
2539 lfs_freebuf(fs
, bp
);
2540 KERNEL_UNLOCK_LAST(curlwp
);
2544 lfs_super_aiodone(struct buf
*bp
)
2548 KERNEL_LOCK(1, curlwp
);
2550 ASSERT_NO_SEGLOCK(fs
);
2551 mutex_enter(&lfs_lock
);
2552 fs
->lfs_sbactive
= 0;
2553 if (--fs
->lfs_iocount
<= 1)
2554 wakeup(&fs
->lfs_iocount
);
2555 wakeup(&fs
->lfs_sbactive
);
2556 mutex_exit(&lfs_lock
);
2557 lfs_freebuf(fs
, bp
);
2558 KERNEL_UNLOCK_LAST(curlwp
);
2562 lfs_cluster_aiodone(struct buf
*bp
)
2564 struct lfs_cluster
*cl
;
2566 struct buf
*tbp
, *fbp
;
2567 struct vnode
*vp
, *devvp
, *ovp
;
2571 KERNEL_LOCK(1, curlwp
);
2573 error
= bp
->b_error
;
2576 devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
2577 ASSERT_NO_SEGLOCK(fs
);
2579 /* Put the pages back, and release the buffer */
2580 while (cl
->bufcount
--) {
2581 tbp
= cl
->bpp
[cl
->bufcount
];
2582 KASSERT(tbp
->b_cflags
& BC_BUSY
);
2584 tbp
->b_error
= error
;
2588 * We're done with tbp. If it has not been re-dirtied since
2589 * the cluster was written, free it. Otherwise, keep it on
2590 * the locked list to be written again.
2594 tbp
->b_flags
&= ~B_GATHERED
;
2596 LFS_BCLEAN_LOG(fs
, tbp
);
2598 mutex_enter(&bufcache_lock
);
2599 if (tbp
->b_iodone
== NULL
) {
2600 KASSERT(tbp
->b_flags
& B_LOCKED
);
2603 mutex_enter(vp
->v_interlock
);
2604 reassignbuf(tbp
, vp
);
2605 mutex_exit(vp
->v_interlock
);
2607 tbp
->b_flags
|= B_ASYNC
; /* for biodone */
2610 if (((tbp
->b_flags
| tbp
->b_oflags
) &
2611 (B_LOCKED
| BO_DELWRI
)) == B_LOCKED
)
2612 LFS_UNLOCK_BUF(tbp
);
2614 if (tbp
->b_oflags
& BO_DONE
) {
2615 DLOG((DLOG_SEG
, "blk %d biodone already (flags %lx)\n",
2616 cl
->bufcount
, (long)tbp
->b_flags
));
2619 if (tbp
->b_iodone
!= NULL
&& !LFS_IS_MALLOC_BUF(tbp
)) {
2621 * A buffer from the page daemon.
2622 * We use the same iodone as it does,
2623 * so we must manually disassociate its
2624 * buffers from the vp.
2626 if ((ovp
= tbp
->b_vp
) != NULL
) {
2627 /* This is just silly */
2628 mutex_enter(ovp
->v_interlock
);
2630 mutex_exit(ovp
->v_interlock
);
2632 tbp
->b_objlock
= vp
->v_interlock
;
2634 /* Put it back the way it was */
2635 tbp
->b_flags
|= B_ASYNC
;
2636 /* Master buffers have BC_AGE */
2637 if (tbp
->b_private
== tbp
)
2638 tbp
->b_cflags
|= BC_AGE
;
2640 mutex_exit(&bufcache_lock
);
2645 * If this is the last block for this vnode, but
2646 * there are other blocks on its dirty list,
2647 * set IN_MODIFIED/IN_CLEANING depending on what
2648 * sort of block. Only do this for our mount point,
2649 * not for, e.g., inode blocks that are attached to
2651 * XXX KS - Shouldn't we set *both* if both types
2652 * of blocks are present (traverse the dirty list?)
2654 mutex_enter(vp
->v_interlock
);
2655 mutex_enter(&lfs_lock
);
2656 if (vp
!= devvp
&& vp
->v_numoutput
== 0 &&
2657 (fbp
= LIST_FIRST(&vp
->v_dirtyblkhd
)) != NULL
) {
2659 DLOG((DLOG_SEG
, "lfs_cluster_aiodone: mark ino %d\n",
2661 if (LFS_IS_MALLOC_BUF(fbp
))
2662 LFS_SET_UINO(ip
, IN_CLEANING
);
2664 LFS_SET_UINO(ip
, IN_MODIFIED
);
2666 cv_broadcast(&vp
->v_cv
);
2667 mutex_exit(&lfs_lock
);
2668 mutex_exit(vp
->v_interlock
);
2671 /* Fix up the cluster buffer, and release it */
2672 if (cl
->flags
& LFS_CL_MALLOC
)
2673 lfs_free(fs
, bp
->b_data
, LFS_NB_CLUSTER
);
2677 if (cl
->flags
& LFS_CL_SYNC
) {
2678 if (--cl
->seg
->seg_iocount
== 0)
2679 wakeup(&cl
->seg
->seg_iocount
);
2681 mutex_enter(&lfs_lock
);
2683 if (fs
->lfs_iocount
== 0)
2684 panic("lfs_cluster_aiodone: zero iocount");
2686 if (--fs
->lfs_iocount
<= 1)
2687 wakeup(&fs
->lfs_iocount
);
2688 mutex_exit(&lfs_lock
);
2690 KERNEL_UNLOCK_LAST(curlwp
);
2692 pool_put(&fs
->lfs_bpppool
, cl
->bpp
);
2694 pool_put(&fs
->lfs_clpool
, cl
);
2698 lfs_generic_callback(struct buf
*bp
, void (*aiodone
)(struct buf
*))
2700 /* reset b_iodone for when this is a single-buf i/o. */
2701 bp
->b_iodone
= aiodone
;
2703 workqueue_enqueue(uvm
.aiodone_queue
, &bp
->b_work
, NULL
);
2707 lfs_cluster_callback(struct buf
*bp
)
2710 lfs_generic_callback(bp
, lfs_cluster_aiodone
);
2714 lfs_supercallback(struct buf
*bp
)
2717 lfs_generic_callback(bp
, lfs_super_aiodone
);
2721 * The only buffers that are going to hit these functions are the
2722 * segment write blocks, or the segment summaries, or the superblocks.
2724 * All of the above are created by lfs_newbuf, and so do not need to be
2725 * released via brelse.
2728 lfs_callback(struct buf
*bp
)
2731 lfs_generic_callback(bp
, lfs_free_aiodone
);
2735 * Shellsort (diminishing increment sort) from Data Structures and
2736 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2737 * see also Knuth Vol. 3, page 84. The increments are selected from
2738 * formula (8), page 95. Roughly O(N^3/2).
2741 * This is our own private copy of shellsort because we want to sort
2742 * two parallel arrays (the array of buffer pointers and the array of
2743 * logical block numbers) simultaneously. Note that we cast the array
2744 * of logical block numbers to a unsigned in this routine so that the
2745 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2749 lfs_shellsort(struct lfs
*fs
,
2750 struct buf
**bp_array
, union lfs_blocks
*lb_array
,
2751 int nmemb
, int size
)
2753 static int __rsshell_increments
[] = { 4, 1, 0 };
2754 int incr
, *incrp
, t1
, t2
;
2755 struct buf
*bp_temp
;
2759 for (t1
= 0; t1
< nmemb
; t1
++) {
2760 for (t2
= 0; t2
* size
< bp_array
[t1
]->b_bcount
; t2
++) {
2761 if (lfs_blocks_get(fs
, lb_array
, incr
++) != bp_array
[t1
]->b_lblkno
+ t2
) {
2762 /* dump before panic */
2763 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2766 for (t1
= 0; t1
< nmemb
; t1
++) {
2767 const struct buf
*bp
= bp_array
[t1
];
2769 printf("bp[%d]: lbn=%" PRIu64
", size=%"
2771 (uint64_t)bp
->b_bcount
,
2772 (uint64_t)bp
->b_lblkno
);
2774 for (t2
= 0; t2
* size
< bp
->b_bcount
;
2777 (intmax_t)lfs_blocks_get(fs
, lb_array
, incr
++));
2781 panic("lfs_shellsort: inconsistent input");
2787 for (incrp
= __rsshell_increments
; (incr
= *incrp
++) != 0;)
2788 for (t1
= incr
; t1
< nmemb
; ++t1
)
2789 for (t2
= t1
- incr
; t2
>= 0;)
2790 if ((u_int64_t
)bp_array
[t2
]->b_lblkno
>
2791 (u_int64_t
)bp_array
[t2
+ incr
]->b_lblkno
) {
2792 bp_temp
= bp_array
[t2
];
2793 bp_array
[t2
] = bp_array
[t2
+ incr
];
2794 bp_array
[t2
+ incr
] = bp_temp
;
2799 /* Reform the list of logical blocks */
2801 for (t1
= 0; t1
< nmemb
; t1
++) {
2802 for (t2
= 0; t2
* size
< bp_array
[t1
]->b_bcount
; t2
++) {
2803 lfs_blocks_set(fs
, lb_array
, incr
++,
2804 bp_array
[t1
]->b_lblkno
+ t2
);
2810 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2811 * point at uninitialized space.
2814 lfs_acquire_finfo(struct lfs
*fs
, ino_t ino
, int vers
)
2816 struct segment
*sp
= fs
->lfs_sp
;
2821 if (sp
->seg_bytes_left
< lfs_sb_getbsize(fs
) ||
2822 sp
->sum_bytes_left
< FINFOSIZE(fs
) + LFS_BLKPTRSIZE(fs
))
2823 (void) lfs_writeseg(fs
, fs
->lfs_sp
);
2825 sp
->sum_bytes_left
-= FINFOSIZE(fs
);
2826 ssp
= (SEGSUM
*)sp
->segsum
;
2827 lfs_ss_setnfinfo(fs
, ssp
, lfs_ss_getnfinfo(fs
, ssp
) + 1);
2828 lfs_fi_setnblocks(fs
, sp
->fip
, 0);
2829 lfs_fi_setino(fs
, sp
->fip
, ino
);
2830 lfs_fi_setversion(fs
, sp
->fip
, vers
);
2834 * Release the FINFO entry, either clearing out an unused entry or
2835 * advancing us to the next available entry.
2838 lfs_release_finfo(struct lfs
*fs
)
2840 struct segment
*sp
= fs
->lfs_sp
;
2843 if (lfs_fi_getnblocks(fs
, sp
->fip
) != 0) {
2844 sp
->fip
= NEXT_FINFO(fs
, sp
->fip
);
2845 lfs_blocks_fromfinfo(fs
, &sp
->start_lbp
, sp
->fip
);
2847 /* XXX shouldn't this update sp->fip? */
2848 sp
->sum_bytes_left
+= FINFOSIZE(fs
);
2849 ssp
= (SEGSUM
*)sp
->segsum
;
2850 lfs_ss_setnfinfo(fs
, ssp
, lfs_ss_getnfinfo(fs
, ssp
) - 1);