etc/protocols - sync with NetBSD-8
[minix.git] / sys / ufs / lfs / lfs_syscalls.c
blob641c9595a12603e8a57a8d1d4355e21c97031866
1 /* $NetBSD: lfs_syscalls.c,v 1.170 2015/09/01 06:08:37 dholland Exp $ */
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant@hhhh.org>.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
32 /*-
33 * Copyright (c) 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
60 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.170 2015/09/01 06:08:37 dholland Exp $");
66 #ifndef LFS
67 # define LFS /* for prototypes in syscallargs.h */
68 #endif
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/proc.h>
73 #include <sys/buf.h>
74 #include <sys/mount.h>
75 #include <sys/vnode.h>
76 #include <sys/kernel.h>
77 #include <sys/kauth.h>
78 #include <sys/syscallargs.h>
80 #include <ufs/lfs/ulfs_inode.h>
81 #include <ufs/lfs/ulfsmount.h>
82 #include <ufs/lfs/ulfs_extern.h>
84 #include <ufs/lfs/lfs.h>
85 #include <ufs/lfs/lfs_accessors.h>
86 #include <ufs/lfs/lfs_kernel.h>
87 #include <ufs/lfs/lfs_extern.h>
89 static int lfs_fastvget(struct mount *, ino_t, BLOCK_INFO *, int,
90 struct vnode **);
91 static struct buf *lfs_fakebuf(struct lfs *, struct vnode *, daddr_t,
92 size_t, void *);
95 * sys_lfs_markv:
97 * This will mark inodes and blocks dirty, so they are written into the log.
98 * It will block until all the blocks have been written. The segment create
99 * time passed in the block_info and inode_info structures is used to decide
100 * if the data is valid for each block (in case some process dirtied a block
101 * or inode that is being cleaned between the determination that a block is
102 * live and the lfs_markv call).
104 * 0 on success
105 * -1/errno is return on error.
107 #ifdef USE_64BIT_SYSCALLS
109 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
111 /* {
112 syscallarg(fsid_t *) fsidp;
113 syscallarg(struct block_info *) blkiov;
114 syscallarg(int) blkcnt;
115 } */
116 BLOCK_INFO *blkiov;
117 int blkcnt, error;
118 fsid_t fsid;
119 struct lfs *fs;
120 struct mount *mntp;
122 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
123 return (error);
125 if ((mntp = vfs_getvfs(fsidp)) == NULL)
126 return (ENOENT);
127 fs = VFSTOULFS(mntp)->um_lfs;
129 blkcnt = SCARG(uap, blkcnt);
130 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
131 return (EINVAL);
133 KERNEL_LOCK(1, NULL);
134 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
135 if ((error = copyin(SCARG(uap, blkiov), blkiov,
136 blkcnt * sizeof(BLOCK_INFO))) != 0)
137 goto out;
139 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
140 copyout(blkiov, SCARG(uap, blkiov),
141 blkcnt * sizeof(BLOCK_INFO));
142 out:
143 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
144 KERNEL_UNLOCK_ONE(NULL);
145 return error;
147 #else
149 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
151 /* {
152 syscallarg(fsid_t *) fsidp;
153 syscallarg(struct block_info *) blkiov;
154 syscallarg(int) blkcnt;
155 } */
156 BLOCK_INFO *blkiov;
157 BLOCK_INFO_15 *blkiov15;
158 int i, blkcnt, error;
159 fsid_t fsid;
160 struct lfs *fs;
161 struct mount *mntp;
163 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
164 return (error);
166 if ((mntp = vfs_getvfs(&fsid)) == NULL)
167 return (ENOENT);
168 fs = VFSTOULFS(mntp)->um_lfs;
170 blkcnt = SCARG(uap, blkcnt);
171 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
172 return (EINVAL);
174 KERNEL_LOCK(1, NULL);
175 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
176 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
177 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
178 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
179 goto out;
181 for (i = 0; i < blkcnt; i++) {
182 blkiov[i].bi_inode = blkiov15[i].bi_inode;
183 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
184 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
185 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
186 blkiov[i].bi_version = blkiov15[i].bi_version;
187 blkiov[i].bi_bp = blkiov15[i].bi_bp;
188 blkiov[i].bi_size = blkiov15[i].bi_size;
191 if ((error = lfs_markv(l, &fsid, blkiov, blkcnt)) == 0) {
192 for (i = 0; i < blkcnt; i++) {
193 blkiov15[i].bi_inode = blkiov[i].bi_inode;
194 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
195 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
196 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
197 blkiov15[i].bi_version = blkiov[i].bi_version;
198 blkiov15[i].bi_bp = blkiov[i].bi_bp;
199 blkiov15[i].bi_size = blkiov[i].bi_size;
201 copyout(blkiov15, SCARG(uap, blkiov),
202 blkcnt * sizeof(BLOCK_INFO_15));
204 out:
205 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
206 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
207 KERNEL_UNLOCK_ONE(NULL);
208 return error;
210 #endif
212 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
215 lfs_markv(struct lwp *l, fsid_t *fsidp, BLOCK_INFO *blkiov,
216 int blkcnt)
218 BLOCK_INFO *blkp;
219 IFILE *ifp;
220 struct buf *bp;
221 struct inode *ip = NULL;
222 struct lfs *fs;
223 struct mount *mntp;
224 struct ulfsmount *ump;
225 struct vnode *vp;
226 ino_t lastino;
227 daddr_t b_daddr;
228 int cnt, error;
229 int do_again = 0;
230 int numrefed = 0;
231 ino_t maxino;
232 size_t obsize;
234 /* number of blocks/inodes that we have already bwrite'ed */
235 int nblkwritten, ninowritten;
237 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
238 KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL);
239 if (error)
240 return (error);
242 if ((mntp = vfs_getvfs(fsidp)) == NULL)
243 return (ENOENT);
245 ump = VFSTOULFS(mntp);
246 fs = ump->um_lfs;
248 if (fs->lfs_ronly)
249 return EROFS;
251 maxino = (lfs_fragstoblks(fs, lfs_dino_getblocks(fs, VTOI(fs->lfs_ivnode)->i_din)) -
252 lfs_sb_getcleansz(fs) - lfs_sb_getsegtabsz(fs)) * lfs_sb_getifpb(fs);
254 cnt = blkcnt;
256 if ((error = vfs_busy(mntp, NULL)) != 0)
257 return (error);
260 * This seglock is just to prevent the fact that we might have to sleep
261 * from allowing the possibility that our blocks might become
262 * invalid.
264 * It is also important to note here that unless we specify SEGM_CKP,
265 * any Ifile blocks that we might be asked to clean will never get
266 * to the disk.
268 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
270 /* Mark blocks/inodes dirty. */
271 error = 0;
273 /* these were inside the initialization for the for loop */
274 vp = NULL;
275 lastino = LFS_UNUSED_INUM;
276 nblkwritten = ninowritten = 0;
277 for (blkp = blkiov; cnt--; ++blkp)
279 /* Bounds-check incoming data, avoid panic for failed VGET */
280 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
281 error = EINVAL;
282 goto err3;
285 * Get the IFILE entry (only once) and see if the file still
286 * exists.
288 if (lastino != blkp->bi_inode) {
290 * Finish the old file, if there was one.
292 if (vp != NULL) {
293 vput(vp);
294 vp = NULL;
295 numrefed--;
299 * Start a new file
301 lastino = blkp->bi_inode;
303 /* Get the vnode/inode. */
304 error = lfs_fastvget(mntp, blkp->bi_inode, blkp,
305 LK_EXCLUSIVE | LK_NOWAIT, &vp);
306 if (error) {
307 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
308 " failed with %d (ino %d, segment %d)\n",
309 error, blkp->bi_inode,
310 lfs_dtosn(fs, blkp->bi_daddr)));
312 * If we got EAGAIN, that means that the
313 * Inode was locked. This is
314 * recoverable: just clean the rest of
315 * this segment, and let the cleaner try
316 * again with another. (When the
317 * cleaner runs again, this segment will
318 * sort high on the list, since it is
319 * now almost entirely empty.)
321 if (error == EAGAIN) {
322 error = 0;
323 do_again++;
324 } else
325 KASSERT(error == ENOENT);
326 KASSERT(vp == NULL);
327 ip = NULL;
328 continue;
331 ip = VTOI(vp);
332 numrefed++;
333 ninowritten++;
334 } else if (vp == NULL) {
336 * This can only happen if the vnode is dead (or
337 * in any case we can't get it...e.g., it is
338 * inlocked). Keep going.
340 continue;
343 /* Past this point we are guaranteed that vp, ip are valid. */
345 /* Can't clean VU_DIROP directories in case of truncation */
346 /* XXX - maybe we should mark removed dirs specially? */
347 if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
348 do_again++;
349 continue;
352 /* If this BLOCK_INFO didn't contain a block, keep going. */
353 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
354 /* XXX need to make sure that the inode gets written in this case */
355 /* XXX but only write the inode if it's the right one */
356 if (blkp->bi_inode != LFS_IFILE_INUM) {
357 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
358 if (lfs_if_getdaddr(fs, ifp) == blkp->bi_daddr) {
359 mutex_enter(&lfs_lock);
360 LFS_SET_UINO(ip, IN_CLEANING);
361 mutex_exit(&lfs_lock);
363 brelse(bp, 0);
365 continue;
368 b_daddr = 0;
369 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
370 LFS_DBTOFSB(fs, b_daddr) != blkp->bi_daddr)
372 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, b_daddr)) ==
373 lfs_dtosn(fs, blkp->bi_daddr))
375 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %jx vs %jx\n",
376 (intmax_t)blkp->bi_daddr, (intmax_t)LFS_DBTOFSB(fs, b_daddr)));
378 do_again++;
379 continue;
383 * Check block sizes. The blocks being cleaned come from
384 * disk, so they should have the same size as their on-disk
385 * counterparts.
387 if (blkp->bi_lbn >= 0)
388 obsize = lfs_blksize(fs, ip, blkp->bi_lbn);
389 else
390 obsize = lfs_sb_getbsize(fs);
391 /* Check for fragment size change */
392 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < ULFS_NDADDR) {
393 obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
395 if (obsize != blkp->bi_size) {
396 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %jd wrong"
397 " size (%ld != %d), try again\n",
398 blkp->bi_inode, (intmax_t)blkp->bi_lbn,
399 (long) obsize, blkp->bi_size));
400 do_again++;
401 continue;
405 * If we get to here, then we are keeping the block. If
406 * it is an indirect block, we want to actually put it
407 * in the buffer cache so that it can be updated in the
408 * finish_meta section. If it's not, we need to
409 * allocate a fake buffer so that writeseg can perform
410 * the copyin and write the buffer.
412 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
413 /* Data Block */
414 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
415 blkp->bi_size, blkp->bi_bp);
416 /* Pretend we used bread() to get it */
417 bp->b_blkno = LFS_FSBTODB(fs, blkp->bi_daddr);
418 } else {
419 /* Indirect block or ifile */
420 if (blkp->bi_size != lfs_sb_getbsize(fs) &&
421 ip->i_number != LFS_IFILE_INUM)
422 panic("lfs_markv: partial indirect block?"
423 " size=%d\n", blkp->bi_size);
424 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
425 if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
427 * The block in question was not found
428 * in the cache; i.e., the block that
429 * getblk() returned is empty. So, we
430 * can (and should) copy in the
431 * contents, because we've already
432 * determined that this was the right
433 * version of this block on disk.
435 * And, it can't have changed underneath
436 * us, because we have the segment lock.
438 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
439 if (error)
440 goto err2;
443 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
444 goto err2;
446 nblkwritten++;
448 * XXX should account indirect blocks and ifile pages as well
450 if (nblkwritten + lfs_lblkno(fs, ninowritten * DINOSIZE(fs))
451 > LFS_MARKV_MAX_BLOCKS) {
452 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
453 nblkwritten, ninowritten));
454 lfs_segwrite(mntp, SEGM_CLEAN);
455 nblkwritten = ninowritten = 0;
460 * Finish the old file, if there was one
462 if (vp != NULL) {
463 vput(vp);
464 vp = NULL;
465 numrefed--;
468 #ifdef DIAGNOSTIC
469 if (numrefed != 0)
470 panic("lfs_markv: numrefed=%d", numrefed);
471 #endif
472 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
473 nblkwritten, ninowritten));
476 * The last write has to be SEGM_SYNC, because of calling semantics.
477 * It also has to be SEGM_CKP, because otherwise we could write
478 * over the newly cleaned data contained in a checkpoint, and then
479 * we'd be unhappy at recovery time.
481 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
483 lfs_segunlock(fs);
485 vfs_unbusy(mntp, false, NULL);
486 if (error)
487 return (error);
488 else if (do_again)
489 return EAGAIN;
491 return 0;
493 err2:
494 DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
497 * XXX we're here because copyin() failed.
498 * XXX it means that we can't trust the cleanerd. too bad.
499 * XXX how can we recover from this?
502 err3:
504 * XXX should do segwrite here anyway?
507 if (vp != NULL) {
508 vput(vp);
509 vp = NULL;
510 --numrefed;
513 lfs_segunlock(fs);
514 vfs_unbusy(mntp, false, NULL);
515 #ifdef DIAGNOSTIC
516 if (numrefed != 0)
517 panic("lfs_markv: numrefed=%d", numrefed);
518 #endif
520 return (error);
524 * sys_lfs_bmapv:
526 * This will fill in the current disk address for arrays of blocks.
528 * 0 on success
529 * -1/errno is return on error.
531 #ifdef USE_64BIT_SYSCALLS
533 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
535 /* {
536 syscallarg(fsid_t *) fsidp;
537 syscallarg(struct block_info *) blkiov;
538 syscallarg(int) blkcnt;
539 } */
540 BLOCK_INFO *blkiov;
541 int blkcnt, error;
542 fsid_t fsid;
543 struct lfs *fs;
544 struct mount *mntp;
546 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
547 return (error);
549 if ((mntp = vfs_getvfs(&fsid)) == NULL)
550 return (ENOENT);
551 fs = VFSTOULFS(mntp)->um_lfs;
553 blkcnt = SCARG(uap, blkcnt);
554 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
555 return (EINVAL);
556 KERNEL_LOCK(1, NULL);
557 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
558 if ((error = copyin(SCARG(uap, blkiov), blkiov,
559 blkcnt * sizeof(BLOCK_INFO))) != 0)
560 goto out;
562 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
563 copyout(blkiov, SCARG(uap, blkiov),
564 blkcnt * sizeof(BLOCK_INFO));
565 out:
566 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
567 KERNEL_UNLOCK_ONE(NULL);
568 return error;
570 #else
572 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
574 /* {
575 syscallarg(fsid_t *) fsidp;
576 syscallarg(struct block_info *) blkiov;
577 syscallarg(int) blkcnt;
578 } */
579 BLOCK_INFO *blkiov;
580 BLOCK_INFO_15 *blkiov15;
581 int i, blkcnt, error;
582 fsid_t fsid;
583 struct lfs *fs;
584 struct mount *mntp;
586 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
587 return (error);
589 if ((mntp = vfs_getvfs(&fsid)) == NULL)
590 return (ENOENT);
591 fs = VFSTOULFS(mntp)->um_lfs;
593 blkcnt = SCARG(uap, blkcnt);
594 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
595 return (EINVAL);
596 KERNEL_LOCK(1, NULL);
597 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
598 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
599 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
600 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
601 goto out;
603 for (i = 0; i < blkcnt; i++) {
604 blkiov[i].bi_inode = blkiov15[i].bi_inode;
605 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
606 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
607 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
608 blkiov[i].bi_version = blkiov15[i].bi_version;
609 blkiov[i].bi_bp = blkiov15[i].bi_bp;
610 blkiov[i].bi_size = blkiov15[i].bi_size;
613 if ((error = lfs_bmapv(l, &fsid, blkiov, blkcnt)) == 0) {
614 for (i = 0; i < blkcnt; i++) {
615 blkiov15[i].bi_inode = blkiov[i].bi_inode;
616 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
617 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
618 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
619 blkiov15[i].bi_version = blkiov[i].bi_version;
620 blkiov15[i].bi_bp = blkiov[i].bi_bp;
621 blkiov15[i].bi_size = blkiov[i].bi_size;
623 copyout(blkiov15, SCARG(uap, blkiov),
624 blkcnt * sizeof(BLOCK_INFO_15));
626 out:
627 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
628 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
629 KERNEL_UNLOCK_ONE(NULL);
630 return error;
632 #endif
635 lfs_bmapv(struct lwp *l, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
637 BLOCK_INFO *blkp;
638 IFILE *ifp;
639 struct buf *bp;
640 struct inode *ip = NULL;
641 struct lfs *fs;
642 struct mount *mntp;
643 struct ulfsmount *ump;
644 struct vnode *vp;
645 ino_t lastino;
646 daddr_t v_daddr;
647 int cnt, error;
648 int numrefed = 0;
650 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
651 KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL);
652 if (error)
653 return (error);
655 if ((mntp = vfs_getvfs(fsidp)) == NULL)
656 return (ENOENT);
658 ump = VFSTOULFS(mntp);
659 if ((error = vfs_busy(mntp, NULL)) != 0)
660 return (error);
662 if (ump->um_cleaner_thread == NULL)
663 ump->um_cleaner_thread = curlwp;
664 KASSERT(ump->um_cleaner_thread == curlwp);
666 cnt = blkcnt;
668 fs = VFSTOULFS(mntp)->um_lfs;
670 error = 0;
672 /* these were inside the initialization for the for loop */
673 vp = NULL;
674 v_daddr = LFS_UNUSED_DADDR;
675 lastino = LFS_UNUSED_INUM;
676 for (blkp = blkiov; cnt--; ++blkp)
679 * Get the IFILE entry (only once) and see if the file still
680 * exists.
682 if (lastino != blkp->bi_inode) {
684 * Finish the old file, if there was one.
686 if (vp != NULL) {
687 vput(vp);
688 vp = NULL;
689 numrefed--;
693 * Start a new file
695 lastino = blkp->bi_inode;
696 if (blkp->bi_inode == LFS_IFILE_INUM)
697 v_daddr = lfs_sb_getidaddr(fs);
698 else {
699 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
700 v_daddr = lfs_if_getdaddr(fs, ifp);
701 brelse(bp, 0);
703 if (v_daddr == LFS_UNUSED_DADDR) {
704 blkp->bi_daddr = LFS_UNUSED_DADDR;
705 continue;
707 error = lfs_fastvget(mntp, blkp->bi_inode, NULL,
708 LK_SHARED, &vp);
709 if (error) {
710 DLOG((DLOG_CLEAN, "lfs_bmapv: lfs_fastvget ino"
711 "%d failed with %d",
712 blkp->bi_inode,error));
713 KASSERT(vp == NULL);
714 continue;
715 } else {
716 KASSERT(VOP_ISLOCKED(vp));
717 numrefed++;
719 ip = VTOI(vp);
720 } else if (vp == NULL) {
722 * This can only happen if the vnode is dead.
723 * Keep going. Note that we DO NOT set the
724 * bi_addr to anything -- if we failed to get
725 * the vnode, for example, we want to assume
726 * conservatively that all of its blocks *are*
727 * located in the segment in question.
728 * lfs_markv will throw them out if we are
729 * wrong.
731 continue;
734 /* Past this point we are guaranteed that vp, ip are valid. */
736 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
738 * We just want the inode address, which is
739 * conveniently in v_daddr.
741 blkp->bi_daddr = v_daddr;
742 } else {
743 daddr_t bi_daddr;
745 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
746 &bi_daddr, NULL);
747 if (error)
749 blkp->bi_daddr = LFS_UNUSED_DADDR;
750 continue;
752 blkp->bi_daddr = LFS_DBTOFSB(fs, bi_daddr);
753 /* Fill in the block size, too */
754 if (blkp->bi_lbn >= 0)
755 blkp->bi_size = lfs_blksize(fs, ip, blkp->bi_lbn);
756 else
757 blkp->bi_size = lfs_sb_getbsize(fs);
762 * Finish the old file, if there was one.
764 if (vp != NULL) {
765 vput(vp);
766 vp = NULL;
767 numrefed--;
770 #ifdef DIAGNOSTIC
771 if (numrefed != 0)
772 panic("lfs_bmapv: numrefed=%d", numrefed);
773 #endif
775 vfs_unbusy(mntp, false, NULL);
777 return 0;
781 * sys_lfs_segclean:
783 * Mark the segment clean.
785 * 0 on success
786 * -1/errno is return on error.
789 sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
791 /* {
792 syscallarg(fsid_t *) fsidp;
793 syscallarg(u_long) segment;
794 } */
795 struct lfs *fs;
796 struct mount *mntp;
797 fsid_t fsid;
798 int error;
799 unsigned long segnum;
801 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
802 KAUTH_REQ_SYSTEM_LFS_SEGCLEAN, NULL, NULL, NULL);
803 if (error)
804 return (error);
806 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
807 return (error);
808 if ((mntp = vfs_getvfs(&fsid)) == NULL)
809 return (ENOENT);
811 fs = VFSTOULFS(mntp)->um_lfs;
812 segnum = SCARG(uap, segment);
814 if ((error = vfs_busy(mntp, NULL)) != 0)
815 return (error);
817 KERNEL_LOCK(1, NULL);
818 lfs_seglock(fs, SEGM_PROT);
819 error = lfs_do_segclean(fs, segnum);
820 lfs_segunlock(fs);
821 KERNEL_UNLOCK_ONE(NULL);
822 vfs_unbusy(mntp, false, NULL);
823 return error;
827 * Actually mark the segment clean.
828 * Must be called with the segment lock held.
831 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
833 extern int lfs_dostats;
834 struct buf *bp;
835 CLEANERINFO *cip;
836 SEGUSE *sup;
838 if (lfs_dtosn(fs, lfs_sb_getcurseg(fs)) == segnum) {
839 return (EBUSY);
842 LFS_SEGENTRY(sup, fs, segnum, bp);
843 if (sup->su_nbytes) {
844 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
845 " %d live bytes\n", segnum, sup->su_nbytes));
846 brelse(bp, 0);
847 return (EBUSY);
849 if (sup->su_flags & SEGUSE_ACTIVE) {
850 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
851 " segment is active\n", segnum));
852 brelse(bp, 0);
853 return (EBUSY);
855 if (!(sup->su_flags & SEGUSE_DIRTY)) {
856 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
857 " segment is already clean\n", segnum));
858 brelse(bp, 0);
859 return (EALREADY);
862 lfs_sb_addavail(fs, lfs_segtod(fs, 1));
863 if (sup->su_flags & SEGUSE_SUPERBLOCK)
864 lfs_sb_subavail(fs, lfs_btofsb(fs, LFS_SBPAD));
865 if (lfs_sb_getversion(fs) > 1 && segnum == 0 &&
866 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD))
867 lfs_sb_subavail(fs, lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs));
868 mutex_enter(&lfs_lock);
869 lfs_sb_addbfree(fs, sup->su_nsums * lfs_btofsb(fs, lfs_sb_getsumsize(fs)) +
870 lfs_btofsb(fs, sup->su_ninos * lfs_sb_getibsize(fs)));
871 lfs_sb_subdmeta(fs, sup->su_nsums * lfs_btofsb(fs, lfs_sb_getsumsize(fs)) +
872 lfs_btofsb(fs, sup->su_ninos * lfs_sb_getibsize(fs)));
873 if (lfs_sb_getdmeta(fs) < 0)
874 lfs_sb_setdmeta(fs, 0);
875 mutex_exit(&lfs_lock);
876 sup->su_flags &= ~SEGUSE_DIRTY;
877 LFS_WRITESEGENTRY(sup, fs, segnum, bp);
879 LFS_CLEANERINFO(cip, fs, bp);
880 lfs_ci_shiftdirtytoclean(fs, cip, 1);
881 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip));
882 mutex_enter(&lfs_lock);
883 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));
884 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs)
885 - fs->lfs_ravail - fs->lfs_favail);
886 wakeup(&fs->lfs_availsleep);
887 mutex_exit(&lfs_lock);
888 (void) LFS_BWRITE_LOG(bp);
890 if (lfs_dostats)
891 ++lfs_stats.segs_reclaimed;
893 return (0);
897 * This will block until a segment in file system fsid is written. A timeout
898 * in milliseconds may be specified which will awake the cleaner automatically.
899 * An fsid of -1 means any file system, and a timeout of 0 means forever.
902 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
904 struct mount *mntp;
905 void *addr;
906 u_long timeout;
907 int error;
909 KERNEL_LOCK(1, NULL);
910 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
911 addr = &lfs_allclean_wakeup;
912 else
913 addr = &VFSTOULFS(mntp)->um_lfs->lfs_nextsegsleep;
915 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
916 * XXX IS THAT WHAT IS INTENDED?
918 timeout = tvtohz(tv);
919 error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
920 KERNEL_UNLOCK_ONE(NULL);
921 return (error == ERESTART ? EINTR : 0);
925 * sys_lfs_segwait:
927 * System call wrapper around lfs_segwait().
929 * 0 on success
930 * 1 on timeout
931 * -1/errno is return on error.
934 sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap,
935 register_t *retval)
937 /* {
938 syscallarg(fsid_t *) fsidp;
939 syscallarg(struct timeval *) tv;
940 } */
941 struct timeval atv;
942 fsid_t fsid;
943 int error;
945 /* XXX need we be su to segwait? */
946 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
947 KAUTH_REQ_SYSTEM_LFS_SEGWAIT, NULL, NULL, NULL);
948 if (error)
949 return (error);
950 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
951 return (error);
953 if (SCARG(uap, tv)) {
954 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
955 if (error)
956 return (error);
957 if (itimerfix(&atv))
958 return (EINVAL);
959 } else /* NULL or invalid */
960 atv.tv_sec = atv.tv_usec = 0;
961 return lfs_segwait(&fsid, &atv);
965 * VFS_VGET call specialized for the cleaner. If the cleaner is
966 * processing IINFO structures, it may have the ondisk inode already, so
967 * don't go retrieving it again.
969 * Return the vnode referenced and locked.
972 static int
973 lfs_fastvget(struct mount *mp, ino_t ino, BLOCK_INFO *blkp, int lk_flags,
974 struct vnode **vpp)
976 struct ulfsmount *ump;
977 int error;
979 ump = VFSTOULFS(mp);
980 ump->um_cleaner_hint = blkp;
981 error = vcache_get(mp, &ino, sizeof(ino), vpp);
982 ump->um_cleaner_hint = NULL;
983 if (error)
984 return error;
985 error = vn_lock(*vpp, lk_flags);
986 if (error) {
987 if (error == EBUSY)
988 error = EAGAIN;
989 vrele(*vpp);
990 *vpp = NULL;
991 return error;
994 return 0;
998 * Make up a "fake" cleaner buffer, copy the data from userland into it.
1000 static struct buf *
1001 lfs_fakebuf(struct lfs *fs, struct vnode *vp, daddr_t lbn, size_t size, void *uaddr)
1003 struct buf *bp;
1004 int error;
1006 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
1008 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
1009 error = copyin(uaddr, bp->b_data, size);
1010 if (error) {
1011 lfs_freebuf(fs, bp);
1012 return NULL;
1014 KDASSERT(bp->b_iodone == lfs_callback);
1016 #if 0
1017 mutex_enter(&lfs_lock);
1018 ++fs->lfs_iocount;
1019 mutex_exit(&lfs_lock);
1020 #endif
1021 bp->b_bufsize = size;
1022 bp->b_bcount = size;
1023 return (bp);