1 /* This task handles the interface between the kernel and user-level servers.
2 * System services can be accessed by doing a system call. System calls are
3 * transformed into request messages, which are handled by this task. By
4 * convention, a sys_call() is transformed in a SYS_CALL request message that
5 * is handled in a function named do_call().
7 * A private call vector is used to map all system calls to the functions that
8 * handle them. The actual handler functions are contained in separate files
9 * to keep this file clean. The call vector is used in the system task's main
10 * loop to handle all incoming requests.
12 * In addition to the main sys_task() entry point, which starts the main loop,
13 * there are several other minor entry points:
14 * get_priv: assign privilege structure to user or system process
15 * set_sendto_bit: allow a process to send messages to a new target
16 * unset_sendto_bit: disallow a process from sending messages to a target
17 * send_sig: send a signal directly to a system process
18 * cause_sig: take action to cause a signal to occur via a signal mgr
19 * sig_delay_done: tell PM that a process is not sending
20 * umap_bios: map virtual address in BIOS_SEG to physical
21 * get_randomness: accumulate randomness in a buffer
22 * clear_endpoint: remove a process' ability to send and receive messages
25 * Nov 22, 2009 get_priv supports static priv ids (Cristiano Giuffrida)
26 * Aug 04, 2005 check if system call is allowed (Jorrit N. Herder)
27 * Jul 20, 2005 send signal to services with message (Jorrit N. Herder)
28 * Jan 15, 2005 new, generalized virtual copy function (Jorrit N. Herder)
29 * Oct 10, 2004 dispatch system calls from call vector (Jorrit N. Herder)
30 * Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
42 #include <sys/sigcontext.h>
43 #include <minix/endpoint.h>
44 #include <minix/safecopies.h>
46 /* Declaration of the call vector that defines the mapping of system calls
47 * to handler functions. The vector is initialized in sys_init() with map(),
48 * which makes sure the system call numbers are ok. No space is allocated,
49 * because the dummy is declared extern. If an illegal call is given, the
50 * array size will be negative and this won't compile.
52 PUBLIC
int (*call_vec
[NR_SYS_CALLS
])(struct proc
* caller
, message
*m_ptr
);
53 char *callnames
[NR_SYS_CALLS
];
55 #define map(call_nr, handler) \
56 {extern int dummy[NR_SYS_CALLS>(unsigned)(call_nr-KERNEL_CALL) ? 1:-1];} \
57 callnames[(call_nr-KERNEL_CALL)] = #call_nr; \
58 call_vec[(call_nr-KERNEL_CALL)] = (handler)
60 PRIVATE
void kernel_call_finish(struct proc
* caller
, message
*msg
, int result
)
62 if(result
== VMSUSPEND
) {
63 /* Special case: message has to be saved for handling
64 * until VM tells us it's allowed. VM has been notified
65 * and we must wait for its reply to restart the call.
67 assert(RTS_ISSET(caller
, RTS_VMREQUEST
));
68 assert(caller
->p_vmrequest
.type
== VMSTYPE_KERNELCALL
);
69 caller
->p_vmrequest
.saved
.reqmsg
= *msg
;
70 caller
->p_misc_flags
|= MF_KCALL_RESUME
;
73 * call is finished, we could have been suspended because of VM,
74 * remove the request message
76 caller
->p_vmrequest
.saved
.reqmsg
.m_source
= NONE
;
77 if (result
!= EDONTREPLY
) {
78 /* copy the result as a message to the original user buffer */
79 msg
->m_source
= SYSTEM
;
80 msg
->m_type
= result
; /* report status of call */
81 if (copy_msg_to_user(caller
, msg
,
82 (message
*)caller
->p_delivermsg_vir
)) {
83 printf("WARNING wrong user pointer 0x%08x from "
85 caller
->p_delivermsg_vir
,
93 PRIVATE
int kernel_call_dispatch(struct proc
* caller
, message
*msg
)
98 call_nr
= msg
->m_type
- KERNEL_CALL
;
100 /* See if the caller made a valid request and try to handle it. */
101 if (call_nr
< 0 || call_nr
>= NR_SYS_CALLS
) { /* check call number */
102 printf("SYSTEM: illegal request %d from %d.\n",
103 call_nr
,msg
->m_source
);
104 result
= EBADREQUEST
; /* illegal message type */
106 else if (!GET_BIT(priv(caller
)->s_k_call_mask
, call_nr
)) {
107 printf("SYSTEM: denied request %d from %d.\n",
108 call_nr
,msg
->m_source
);
109 result
= ECALLDENIED
; /* illegal message type */
111 /* handle the system call */
112 result
= (*call_vec
[call_nr
])(caller
, msg
);
118 /*===========================================================================*
120 *===========================================================================*/
122 * this function checks the basic syscall parameters and if accepted it
123 * dispatches its handling to the right handler
125 PUBLIC
void kernel_call(message
*m_user
, struct proc
* caller
)
130 caller
->p_delivermsg_vir
= (vir_bytes
) m_user
;
132 * the ldt and cr3 of the caller process is loaded because it just've trapped
133 * into the kernel or was already set in schedcheck() before we resume
134 * execution of an interrupted kernel call
136 if (copy_msg_from_user(caller
, m_user
, &msg
) == 0) {
137 msg
.m_source
= caller
->p_endpoint
;
138 result
= kernel_call_dispatch(caller
, &msg
);
141 printf("WARNING wrong user pointer 0x%08x from process %s / %d\n",
142 m_user
, caller
->p_name
, caller
->p_endpoint
);
143 result
= EBADREQUEST
;
146 kernel_call_finish(caller
, &msg
, result
);
149 /*===========================================================================*
151 *===========================================================================*/
152 PUBLIC
void system_init(void)
154 register struct priv
*sp
;
157 /* Initialize IRQ handler hooks. Mark all hooks available. */
158 for (i
=0; i
<NR_IRQ_HOOKS
; i
++) {
159 irq_hooks
[i
].proc_nr_e
= NONE
;
162 /* Initialize all alarm timers for all processes. */
163 for (sp
=BEG_PRIV_ADDR
; sp
< END_PRIV_ADDR
; sp
++) {
164 tmr_inittimer(&(sp
->s_alarm_timer
));
167 /* Initialize the call vector to a safe default handler. Some system calls
168 * may be disabled or nonexistant. Then explicitely map known calls to their
169 * handler functions. This is done with a macro that gives a compile error
170 * if an illegal call number is used. The ordering is not important here.
172 for (i
=0; i
<NR_SYS_CALLS
; i
++) {
173 call_vec
[i
] = do_unused
;
174 callnames
[i
] = "unused";
177 /* Process management. */
178 map(SYS_FORK
, do_fork
); /* a process forked a new process */
179 map(SYS_EXEC
, do_exec
); /* update process after execute */
180 map(SYS_CLEAR
, do_clear
); /* clean up after process exit */
181 map(SYS_EXIT
, do_exit
); /* a system process wants to exit */
182 map(SYS_PRIVCTL
, do_privctl
); /* system privileges control */
183 map(SYS_TRACE
, do_trace
); /* request a trace operation */
184 map(SYS_SETGRANT
, do_setgrant
); /* get/set own parameters */
185 map(SYS_RUNCTL
, do_runctl
); /* set/clear stop flag of a process */
186 map(SYS_UPDATE
, do_update
); /* update a process into another */
187 map(SYS_STATECTL
, do_statectl
); /* let a process control its state */
189 /* Signal handling. */
190 map(SYS_KILL
, do_kill
); /* cause a process to be signaled */
191 map(SYS_GETKSIG
, do_getksig
); /* signal manager checks for signals */
192 map(SYS_ENDKSIG
, do_endksig
); /* signal manager finished signal */
193 map(SYS_SIGSEND
, do_sigsend
); /* start POSIX-style signal */
194 map(SYS_SIGRETURN
, do_sigreturn
); /* return from POSIX-style signal */
197 map(SYS_IRQCTL
, do_irqctl
); /* interrupt control operations */
198 map(SYS_DEVIO
, do_devio
); /* inb, inw, inl, outb, outw, outl */
199 map(SYS_VDEVIO
, do_vdevio
); /* vector with devio requests */
201 /* Memory management. */
202 map(SYS_NEWMAP
, do_newmap
); /* set up a process memory map */
203 map(SYS_SEGCTL
, do_segctl
); /* add segment and get selector */
204 map(SYS_MEMSET
, do_memset
); /* write char to memory area */
205 map(SYS_VMCTL
, do_vmctl
); /* various VM process settings */
208 map(SYS_UMAP
, do_umap
); /* map virtual to physical address */
209 map(SYS_VIRCOPY
, do_vircopy
); /* use pure virtual addressing */
210 map(SYS_PHYSCOPY
, do_copy
); /* use physical addressing */
211 map(SYS_SAFECOPYFROM
, do_safecopy
); /* copy with pre-granted permission */
212 map(SYS_SAFECOPYTO
, do_safecopy
); /* copy with pre-granted permission */
213 map(SYS_VSAFECOPY
, do_vsafecopy
); /* vectored safecopy */
216 map(SYS_SAFEMAP
, do_safemap
); /* map pages from other process */
217 map(SYS_SAFEREVMAP
, do_saferevmap
); /* grantor revokes the map grant */
218 map(SYS_SAFEUNMAP
, do_safeunmap
); /* requestor unmaps the mapped pages */
220 /* Clock functionality. */
221 map(SYS_TIMES
, do_times
); /* get uptime and process times */
222 map(SYS_SETALARM
, do_setalarm
); /* schedule a synchronous alarm */
223 map(SYS_STIME
, do_stime
); /* set the boottime */
224 map(SYS_VTIMER
, do_vtimer
); /* set or retrieve a virtual timer */
226 /* System control. */
227 map(SYS_ABORT
, do_abort
); /* abort MINIX */
228 map(SYS_GETINFO
, do_getinfo
); /* request system information */
229 map(SYS_SYSCTL
, do_sysctl
); /* misc system manipulation */
232 map(SYS_SPROF
, do_sprofile
); /* start/stop statistical profiling */
233 map(SYS_CPROF
, do_cprofile
); /* get/reset call profiling data */
234 map(SYS_PROFBUF
, do_profbuf
); /* announce locations to kernel */
237 #if _MINIX_CHIP == _CHIP_INTEL
238 map(SYS_INT86
, do_int86
); /* real-mode BIOS calls */
239 map(SYS_READBIOS
, do_readbios
); /* read from BIOS locations */
240 map(SYS_IOPENABLE
, do_iopenable
); /* Enable I/O */
241 map(SYS_SDEVIO
, do_sdevio
); /* phys_insb, _insw, _outsb, _outsw */
243 /* Machine state switching. */
244 map(SYS_SETMCONTEXT
, do_setmcontext
); /* set machine context */
245 map(SYS_GETMCONTEXT
, do_getmcontext
); /* get machine context */
249 map(SYS_SCHEDULE
, do_schedule
); /* reschedule a process */
250 map(SYS_SCHEDCTL
, do_schedctl
); /* change process scheduler */
253 /*===========================================================================*
255 *===========================================================================*/
256 PUBLIC
int get_priv(rc
, priv_id
)
257 register struct proc
*rc
; /* new (child) process pointer */
258 int priv_id
; /* privilege id */
260 /* Allocate a new privilege structure for a system process. Privilege ids
261 * can be assigned either statically or dynamically.
263 register struct priv
*sp
; /* privilege structure */
265 if(priv_id
== NULL_PRIV_ID
) { /* allocate slot dynamically */
266 for (sp
= BEG_DYN_PRIV_ADDR
; sp
< END_DYN_PRIV_ADDR
; ++sp
)
267 if (sp
->s_proc_nr
== NONE
) break;
268 if (sp
>= END_DYN_PRIV_ADDR
) return(ENOSPC
);
270 else { /* allocate slot from id */
271 if(!is_static_priv_id(priv_id
)) {
272 return EINVAL
; /* invalid static priv id */
274 if(priv
[priv_id
].s_proc_nr
!= NONE
) {
275 return EBUSY
; /* slot already in use */
279 rc
->p_priv
= sp
; /* assign new slot */
280 rc
->p_priv
->s_proc_nr
= proc_nr(rc
); /* set association */
285 /*===========================================================================*
287 *===========================================================================*/
288 PUBLIC
void set_sendto_bit(const struct proc
*rp
, int id
)
290 /* Allow a process to send messages to the process(es) associated with the
291 * system privilege structure with the given ID.
294 /* Disallow the process from sending to a process privilege structure with no
295 * associated process, and disallow the process from sending to itself.
297 if (id_to_nr(id
) == NONE
|| priv_id(rp
) == id
) {
298 unset_sys_bit(priv(rp
)->s_ipc_to
, id
);
302 set_sys_bit(priv(rp
)->s_ipc_to
, id
);
304 /* The process that this process can now send to, must be able to reply (or
305 * vice versa). Therefore, its send mask should be updated as well. Ignore
306 * receivers that don't support traps other than RECEIVE, they can't reply
307 * or send messages anyway.
309 if (priv_addr(id
)->s_trap_mask
& ~((1 << RECEIVE
)))
310 set_sys_bit(priv_addr(id
)->s_ipc_to
, priv_id(rp
));
313 /*===========================================================================*
315 *===========================================================================*/
316 PUBLIC
void unset_sendto_bit(const struct proc
*rp
, int id
)
318 /* Prevent a process from sending to another process. Retain the send mask
319 * symmetry by also unsetting the bit for the other direction.
322 unset_sys_bit(priv(rp
)->s_ipc_to
, id
);
324 unset_sys_bit(priv_addr(id
)->s_ipc_to
, priv_id(rp
));
327 /*===========================================================================*
329 *===========================================================================*/
330 PUBLIC
void send_sig(endpoint_t proc_nr
, int sig_nr
)
332 /* Notify a system process about a signal. This is straightforward. Simply
333 * set the signal that is to be delivered in the pending signals map and
334 * send a notification with source SYSTEM.
336 register struct proc
*rp
;
338 if(!isokprocn(proc_nr
) || isemptyn(proc_nr
))
339 panic("send_sig to empty process: %d", proc_nr
);
341 rp
= proc_addr(proc_nr
);
342 sigaddset(&priv(rp
)->s_sig_pending
, sig_nr
);
343 mini_notify(proc_addr(SYSTEM
), rp
->p_endpoint
);
346 /*===========================================================================*
348 *===========================================================================*/
349 PUBLIC
void cause_sig(proc_nr
, sig_nr
)
350 proc_nr_t proc_nr
; /* process to be signalled */
351 int sig_nr
; /* signal to be sent */
353 /* A system process wants to send a signal to a process. Examples are:
354 * - HARDWARE wanting to cause a SIGSEGV after a CPU exception
355 * - TTY wanting to cause SIGINT upon getting a DEL
356 * - FS wanting to cause SIGPIPE for a broken pipe
357 * Signals are handled by sending a message to the signal manager assigned to
358 * the process. This function handles the signals and makes sure the signal
359 * manager gets them by sending a notification. The process being signaled
360 * is blocked while the signal manager has not finished all signals for it.
361 * Race conditions between calls to this function and the system calls that
362 * process pending kernel signals cannot exist. Signal related functions are
363 * only called when a user process causes a CPU exception and from the kernel
364 * process level, which runs to completion.
366 register struct proc
*rp
;
369 /* Lookup signal manager. */
370 rp
= proc_addr(proc_nr
);
371 sig_mgr
= priv(rp
)->s_sig_mgr
;
373 /* If the target is the signal manager of itself, send the signal directly. */
374 if(rp
->p_endpoint
== sig_mgr
) {
375 if(SIGS_IS_LETHAL(sig_nr
)) {
376 panic("cause_sig: signal manager gets lethal signal for itself");
378 sigaddset(&priv(rp
)->s_sig_pending
, sig_nr
);
379 send_sig(rp
->p_endpoint
, SIGKSIGSM
);
383 /* Check if the signal is already pending. Process it otherwise. */
384 if (! sigismember(&rp
->p_pending
, sig_nr
)) {
385 sigaddset(&rp
->p_pending
, sig_nr
);
386 if (! (RTS_ISSET(rp
, RTS_SIGNALED
))) { /* other pending */
387 RTS_SET(rp
, RTS_SIGNALED
| RTS_SIG_PENDING
);
388 send_sig(sig_mgr
, SIGKSIG
);
393 /*===========================================================================*
395 *===========================================================================*/
396 PUBLIC
void sig_delay_done(struct proc
*rp
)
398 /* A process is now known not to send any direct messages.
399 * Tell PM that the stop delay has ended, by sending a signal to the process.
400 * Used for actual signal delivery.
403 rp
->p_misc_flags
&= ~MF_SIG_DELAY
;
405 cause_sig(proc_nr(rp
), SIGSNDELAY
);
408 #if _MINIX_CHIP == _CHIP_INTEL
410 /*===========================================================================*
412 *===========================================================================*/
413 PUBLIC phys_bytes
umap_bios(vir_addr
, bytes
)
414 vir_bytes vir_addr
; /* virtual address in BIOS segment */
415 vir_bytes bytes
; /* # of bytes to be copied */
417 /* Calculate the physical memory address at the BIOS. Note: currently, BIOS
418 * address zero (the first BIOS interrupt vector) is not considered as an
419 * error here, but since the physical address will be zero as well, the
420 * calling function will think an error occurred. This is not a problem,
421 * since no one uses the first BIOS interrupt vector.
424 /* Check all acceptable ranges. */
425 if (vir_addr
>= BIOS_MEM_BEGIN
&& vir_addr
+ bytes
<= BIOS_MEM_END
)
426 return (phys_bytes
) vir_addr
;
427 else if (vir_addr
>= BASE_MEM_TOP
&& vir_addr
+ bytes
<= UPPER_MEM_END
)
428 return (phys_bytes
) vir_addr
;
430 printf("Warning, error in umap_bios, virtual address 0x%x\n", vir_addr
);
435 /*===========================================================================*
437 *===========================================================================*/
438 PUBLIC phys_bytes
umap_grant(rp
, grant
, bytes
)
439 struct proc
*rp
; /* pointer to proc table entry for process */
440 cp_grant_id_t grant
; /* grant no. */
441 vir_bytes bytes
; /* size */
444 vir_bytes offset
, ret
;
447 /* See if the grant in that process is sensible, and
448 * find out the virtual address and (optionally) new
449 * process for that address.
451 * Then convert that process to a slot number.
453 if(verify_grant(rp
->p_endpoint
, ANY
, grant
, bytes
, 0, 0,
454 &offset
, &granter
) != OK
) {
455 printf("SYSTEM: umap_grant: verify_grant failed\n");
459 if(!isokendpt(granter
, &proc_nr
)) {
460 printf("SYSTEM: umap_grant: isokendpt failed\n");
464 /* Do the mapping from virtual to physical. */
465 ret
= umap_virtual(proc_addr(proc_nr
), D
, offset
, bytes
);
467 printf("SYSTEM:umap_grant:umap_virtual failed; grant %s:%d -> %s: vir 0x%lx\n",
469 proc_addr(proc_nr
)->p_name
, offset
);
474 /*===========================================================================*
476 *===========================================================================*/
477 PUBLIC
void clear_endpoint(rc
)
478 register struct proc
*rc
; /* slot of process to clean up */
480 if(isemptyp(rc
)) panic("clear_proc: empty process: %d", rc
->p_endpoint
);
482 /* Make sure that the exiting process is no longer scheduled. */
483 RTS_SET(rc
, RTS_NO_ENDPOINT
);
484 if (priv(rc
)->s_flags
& SYS_PROC
)
486 priv(rc
)->s_asynsize
= 0;
489 /* If the process happens to be queued trying to send a
490 * message, then it must be removed from the message queues.
494 /* Likewise, if another process was sending or receive a message to or from
495 * the exiting process, it must be alerted that process no longer is alive.
496 * Check all processes.
498 clear_ipc_refs(rc
, EDEADSRCDST
);
502 /*===========================================================================*
504 *===========================================================================*/
505 PUBLIC
void clear_ipc(rc
)
506 register struct proc
*rc
; /* slot of process to clean up */
508 /* Clear IPC data for a given process slot. */
509 struct proc
**xpp
; /* iterate over caller queue */
511 if (RTS_ISSET(rc
, RTS_SENDING
)) {
514 okendpt(rc
->p_sendto_e
, &target_proc
);
515 xpp
= &proc_addr(target_proc
)->p_caller_q
; /* destination's queue */
516 while (*xpp
) { /* check entire queue */
517 if (*xpp
== rc
) { /* process is on the queue */
518 *xpp
= (*xpp
)->p_q_link
; /* replace by next process */
519 #if DEBUG_ENABLE_IPC_WARNINGS
520 printf("endpoint %d / %s removed from queue at %d\n",
521 rc
->p_endpoint
, rc
->p_name
, rc
->p_sendto_e
);
523 break; /* can only be queued once */
525 xpp
= &(*xpp
)->p_q_link
; /* proceed to next queued */
527 rc
->p_rts_flags
&= ~RTS_SENDING
;
529 rc
->p_rts_flags
&= ~RTS_RECEIVING
;
532 /*===========================================================================*
534 *===========================================================================*/
535 PUBLIC
void clear_ipc_refs(rc
, caller_ret
)
536 register struct proc
*rc
; /* slot of process to clean up */
537 int caller_ret
; /* code to return on callers */
539 /* Clear IPC references for a given process slot. */
540 struct proc
*rp
; /* iterate over process table */
542 for (rp
= BEG_PROC_ADDR
; rp
< END_PROC_ADDR
; rp
++) {
546 /* Unset pending notification bits. */
547 unset_sys_bit(priv(rp
)->s_notify_pending
, priv(rc
)->s_id
);
549 /* XXX FIXME: Cleanup should be done for senda() as well. For this to be
550 * done in a realistic way, we need a better implementation of senda
551 * with a bitmap similar to s_notify_pending for notify() rather than
552 * a single global MF_ASYNMSG flag. The current arrangement exposes
553 * several performance issues.
556 /* Check if process depends on given process. */
557 if (P_BLOCKEDON(rp
) == rc
->p_endpoint
) {
558 rp
->p_reg
.retreg
= caller_ret
; /* return requested code */
559 RTS_UNSET(rp
, (RTS_RECEIVING
|RTS_SENDING
)); /* no longer blocking */
564 /*===========================================================================*
565 * kernel_call_resume *
566 *===========================================================================*/
567 PUBLIC
void kernel_call_resume(struct proc
*caller
)
571 assert(!RTS_ISSET(caller
, RTS_SLOT_FREE
));
572 assert(!RTS_ISSET(caller
, RTS_VMREQUEST
));
574 assert(caller
->p_vmrequest
.saved
.reqmsg
.m_source
== caller
->p_endpoint
);
577 printf("KERNEL_CALL restart from %s / %d rts 0x%08x misc 0x%08x\n",
578 caller->p_name, caller->p_endpoint,
579 caller->p_rts_flags, caller->p_misc_flags);
583 * we are resuming the kernel call so we have to remove this flag so it
586 caller
->p_misc_flags
&= ~MF_KCALL_RESUME
;
587 result
= kernel_call_dispatch(caller
, &caller
->p_vmrequest
.saved
.reqmsg
);
588 kernel_call_finish(caller
, &caller
->p_vmrequest
.saved
.reqmsg
, result
);