use oxpcie only if enabled to avoid baud bottleneck of uart.
[minix.git] / drivers / filter / md5.c
blobf2962242a8c6c4e3b7253f8b19a991a89978ac63
1 /*
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
18 /* This code was modified in 1997 by Jim Kingdon of Cyclic Software to
19 not require an integer type which is exactly 32 bits. This work
20 draws on the changes for the same purpose by Tatu Ylonen
21 <ylo@cs.hut.fi> as part of SSH, but since I didn't actually use
22 that code, there is no copyright issue. I hereby disclaim
23 copyright in any changes I have made; this code remains in the
24 public domain. */
26 #ifdef TEST
27 #include <stdlib.h>
28 #endif
30 #include <string.h> /* for memcpy() and memset() */
32 #include "md5.h"
34 /* Little-endian byte-swapping routines. Note that these do not
35 depend on the size of datatypes such as uint32, nor do they require
36 us to detect the endianness of the machine we are running on. It
37 is possible they should be macros for speed, but I would be
38 surprised if they were a performance bottleneck for MD5. */
40 static uint32
41 getu32 (const unsigned char *addr)
43 return (((((unsigned long)addr[3] << 8) | addr[2]) << 8)
44 | addr[1]) << 8 | addr[0];
47 static void
48 putu32 (uint32 data, unsigned char *addr)
50 addr[0] = (unsigned char)data;
51 addr[1] = (unsigned char)(data >> 8);
52 addr[2] = (unsigned char)(data >> 16);
53 addr[3] = (unsigned char)(data >> 24);
57 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
58 * initialization constants.
60 void
61 MD5Init (ctx)
62 struct MD5Context *ctx;
64 ctx->buf[0] = 0x67452301;
65 ctx->buf[1] = 0xefcdab89;
66 ctx->buf[2] = 0x98badcfe;
67 ctx->buf[3] = 0x10325476;
69 ctx->bits[0] = 0;
70 ctx->bits[1] = 0;
74 * Update context to reflect the concatenation of another buffer full
75 * of bytes.
77 void
78 MD5Update (ctx, buf, len)
79 struct MD5Context *ctx;
80 unsigned char const *buf;
81 unsigned len;
83 uint32 t;
85 /* Update bitcount */
87 t = ctx->bits[0];
88 if ((ctx->bits[0] = (t + ((uint32)len << 3)) & 0xffffffff) < t)
89 ctx->bits[1]++; /* Carry from low to high */
90 ctx->bits[1] += len >> 29;
92 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
94 /* Handle any leading odd-sized chunks */
96 if ( t ) {
97 unsigned char *p = ctx->in + t;
99 t = 64-t;
100 if (len < t) {
101 memcpy(p, buf, len);
102 return;
104 memcpy(p, buf, t);
105 MD5Transform (ctx->buf, ctx->in);
106 buf += t;
107 len -= t;
110 /* Process data in 64-byte chunks */
112 while (len >= 64) {
113 memcpy(ctx->in, buf, 64);
114 MD5Transform (ctx->buf, ctx->in);
115 buf += 64;
116 len -= 64;
119 /* Handle any remaining bytes of data. */
121 memcpy(ctx->in, buf, len);
125 * Final wrapup - pad to 64-byte boundary with the bit pattern
126 * 1 0* (64-bit count of bits processed, MSB-first)
128 void
129 MD5Final (digest, ctx)
130 unsigned char digest[16];
131 struct MD5Context *ctx;
133 unsigned count;
134 unsigned char *p;
136 /* Compute number of bytes mod 64 */
137 count = (ctx->bits[0] >> 3) & 0x3F;
139 /* Set the first char of padding to 0x80. This is safe since there is
140 always at least one byte free */
141 p = ctx->in + count;
142 *p++ = 0x80;
144 /* Bytes of padding needed to make 64 bytes */
145 count = 64 - 1 - count;
147 /* Pad out to 56 mod 64 */
148 if (count < 8) {
149 /* Two lots of padding: Pad the first block to 64 bytes */
150 memset(p, 0, count);
151 MD5Transform (ctx->buf, ctx->in);
153 /* Now fill the next block with 56 bytes */
154 memset(ctx->in, 0, 56);
155 } else {
156 /* Pad block to 56 bytes */
157 memset(p, 0, count-8);
160 /* Append length in bits and transform */
161 putu32(ctx->bits[0], ctx->in + 56);
162 putu32(ctx->bits[1], ctx->in + 60);
164 MD5Transform (ctx->buf, ctx->in);
165 putu32(ctx->buf[0], digest);
166 putu32(ctx->buf[1], digest + 4);
167 putu32(ctx->buf[2], digest + 8);
168 putu32(ctx->buf[3], digest + 12);
169 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
172 #ifndef ASM_MD5
174 /* The four core functions - F1 is optimized somewhat */
176 /* #define F1(x, y, z) (x & y | ~x & z) */
177 #define F1(x, y, z) (z ^ (x & (y ^ z)))
178 #define F2(x, y, z) F1(z, x, y)
179 #define F3(x, y, z) (x ^ y ^ z)
180 #define F4(x, y, z) (y ^ (x | ~z))
182 /* This is the central step in the MD5 algorithm. */
183 #define MD5STEP(f, w, x, y, z, data, s) \
184 ( w += f(x, y, z) + data, w &= 0xffffffff, w = w<<s | w>>(32-s), w += x )
187 * The core of the MD5 algorithm, this alters an existing MD5 hash to
188 * reflect the addition of 16 longwords of new data. MD5Update blocks
189 * the data and converts bytes into longwords for this routine.
191 void
192 MD5Transform (buf, inraw)
193 uint32 buf[4];
194 const unsigned char inraw[64];
196 register uint32 a, b, c, d;
197 uint32 in[16];
198 int i;
200 for (i = 0; i < 16; ++i)
201 in[i] = getu32 (inraw + 4 * i);
203 a = buf[0];
204 b = buf[1];
205 c = buf[2];
206 d = buf[3];
208 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
209 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
210 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
211 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
212 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
213 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
214 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
215 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
216 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
217 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
218 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
219 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
220 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
221 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
222 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
223 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
225 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
226 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
227 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
228 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
229 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
230 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
231 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
232 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
233 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
234 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
235 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
236 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
237 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
238 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
239 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
240 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
242 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
243 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
244 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
245 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
246 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
247 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
248 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
249 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
250 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
251 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
252 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
253 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
254 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
255 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
256 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
257 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
259 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
260 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
261 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
262 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
263 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
264 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
265 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
266 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
267 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
268 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
269 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
270 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
271 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
272 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
273 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
274 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
276 buf[0] += a;
277 buf[1] += b;
278 buf[2] += c;
279 buf[3] += d;
281 #endif
283 #ifdef TEST
284 /* Simple test program. Can use it to manually run the tests from
285 RFC1321 for example. */
286 #include <stdio.h>
289 main (int argc, char **argv)
291 struct MD5Context context;
292 unsigned char checksum[16];
293 int i;
294 int j;
296 if (argc < 2)
298 fprintf (stderr, "usage: %s string-to-hash\n", argv[0]);
299 exit (1);
301 for (j = 1; j < argc; ++j)
303 printf ("MD5 (\"%s\") = ", argv[j]);
304 MD5Init (&context);
305 MD5Update (&context, (unsigned char *)argv[j], strlen (argv[j]));
306 MD5Final (checksum, &context);
307 for (i = 0; i < 16; i++)
309 printf ("%02x", (unsigned int) checksum[i]);
311 printf ("\n");
313 return 0;
315 #endif /* TEST */