use oxpcie only if enabled to avoid baud bottleneck of uart.
[minix.git] / drivers / floppy / floppy.c
blobd8384d8e70e6f21469480c185238298417ea78db
1 /* This file contains the device dependent part of the driver for the Floppy
2 * Disk Controller (FDC) using the NEC PD765 chip.
4 * The file contains two entry points:
6 * floppy_task: main entry when system is brought up
8 * Changes:
9 * Sep 11, 2005 code cleanup (Andy Tanenbaum)
10 * Dec 01, 2004 floppy driver moved to user-space (Jorrit N. Herder)
11 * Sep 15, 2004 sync alarms/ local timer management (Jorrit N. Herder)
12 * Aug 12, 2003 null seek no interrupt fix (Mike Haertel)
13 * May 14, 2000 d-d/i rewrite (Kees J. Bot)
14 * Apr 04, 1992 device dependent/independent split (Kees J. Bot)
15 * Mar 27, 1992 last details on density checking (Kees J. Bot)
16 * Feb 14, 1992 check drive density on opens only (Andy Tanenbaum)
17 * 1991 len[] / motors / reset / step rate / ... (Bruce Evans)
18 * May 13, 1991 renovated the errors loop (Don Chapman)
19 * 1989 I/O vector to keep up with 1-1 interleave (Bruce Evans)
20 * Jan 06, 1988 allow 1.44 MB diskettes (Al Crew)
21 * Nov 28, 1986 better resetting for 386 (Peter Kay)
22 * Oct 27, 1986 fdc_results fixed for 8 MHz (Jakob Schripsema)
25 #include "floppy.h"
26 #include <timers.h>
27 #include <machine/diskparm.h>
28 #include <minix/sysutil.h>
29 #include <minix/syslib.h>
30 #include <minix/endpoint.h>
31 #include <stdio.h>
33 /* I/O Ports used by floppy disk task. */
34 #define DOR 0x3F2 /* motor drive control bits */
35 #define FDC_STATUS 0x3F4 /* floppy disk controller status register */
36 #define FDC_DATA 0x3F5 /* floppy disk controller data register */
37 #define FDC_RATE 0x3F7 /* transfer rate register */
38 #define DMA_ADDR 0x004 /* port for low 16 bits of DMA address */
39 #define DMA_TOP 0x081 /* port for top 8 bits of 24-bit DMA addr */
40 #define DMA_COUNT 0x005 /* port for DMA count (count = bytes - 1) */
41 #define DMA_FLIPFLOP 0x00C /* DMA byte pointer flip-flop */
42 #define DMA_MODE 0x00B /* DMA mode port */
43 #define DMA_INIT 0x00A /* DMA init port */
44 #define DMA_RESET_VAL 0x006
46 #define DMA_ADDR_MASK 0xFFFFFF /* mask to verify DMA address is 24-bit */
48 /* Status registers returned as result of operation. */
49 #define ST0 0x00 /* status register 0 */
50 #define ST1 0x01 /* status register 1 */
51 #define ST2 0x02 /* status register 2 */
52 #define ST3 0x00 /* status register 3 (return by DRIVE_SENSE) */
53 #define ST_CYL 0x03 /* slot where controller reports cylinder */
54 #define ST_HEAD 0x04 /* slot where controller reports head */
55 #define ST_SEC 0x05 /* slot where controller reports sector */
56 #define ST_PCN 0x01 /* slot where controller reports present cyl */
58 /* Fields within the I/O ports. */
59 /* Main status register. */
60 #define CTL_BUSY 0x10 /* bit is set when read or write in progress */
61 #define DIRECTION 0x40 /* bit is set when reading data reg is valid */
62 #define MASTER 0x80 /* bit is set when data reg can be accessed */
64 /* Digital output port (DOR). */
65 #define MOTOR_SHIFT 4 /* high 4 bits control the motors in DOR */
66 #define ENABLE_INT 0x0C /* used for setting DOR port */
68 /* ST0. */
69 #define ST0_BITS_TRANS 0xD8 /* check 4 bits of status */
70 #define TRANS_ST0 0x00 /* 4 bits of ST0 for READ/WRITE */
71 #define ST0_BITS_SEEK 0xF8 /* check top 5 bits of seek status */
72 #define SEEK_ST0 0x20 /* top 5 bits of ST0 for SEEK */
74 /* ST1. */
75 #define BAD_SECTOR 0x05 /* if these bits are set in ST1, recalibrate */
76 #define WRITE_PROTECT 0x02 /* bit is set if diskette is write protected */
78 /* ST2. */
79 #define BAD_CYL 0x1F /* if any of these bits are set, recalibrate */
81 /* ST3 (not used). */
82 #define ST3_FAULT 0x80 /* if this bit is set, drive is sick */
83 #define ST3_WR_PROTECT 0x40 /* set when diskette is write protected */
84 #define ST3_READY 0x20 /* set when drive is ready */
86 /* Floppy disk controller command bytes. */
87 #define FDC_SEEK 0x0F /* command the drive to seek */
88 #define FDC_READ 0xE6 /* command the drive to read */
89 #define FDC_WRITE 0xC5 /* command the drive to write */
90 #define FDC_SENSE 0x08 /* command the controller to tell its status */
91 #define FDC_RECALIBRATE 0x07 /* command the drive to go to cyl 0 */
92 #define FDC_SPECIFY 0x03 /* command the drive to accept params */
93 #define FDC_READ_ID 0x4A /* command the drive to read sector identity */
94 #define FDC_FORMAT 0x4D /* command the drive to format a track */
96 /* DMA channel commands. */
97 #define DMA_READ 0x46 /* DMA read opcode */
98 #define DMA_WRITE 0x4A /* DMA write opcode */
100 /* Parameters for the disk drive. */
101 #define HC_SIZE 2880 /* # sectors on largest legal disk (1.44MB) */
102 #define NR_HEADS 0x02 /* two heads (i.e., two tracks/cylinder) */
103 #define MAX_SECTORS 18 /* largest # sectors per track */
104 #define DTL 0xFF /* determines data length (sector size) */
105 #define SPEC2 0x02 /* second parameter to SPECIFY */
106 #define MOTOR_OFF (3*system_hz) /* how long to wait before stopping motor */
107 #define WAKEUP (2*system_hz) /* timeout on I/O, FDC won't quit. */
109 /* Error codes */
110 #define ERR_SEEK (-1) /* bad seek */
111 #define ERR_TRANSFER (-2) /* bad transfer */
112 #define ERR_STATUS (-3) /* something wrong when getting status */
113 #define ERR_READ_ID (-4) /* bad read id */
114 #define ERR_RECALIBRATE (-5) /* recalibrate didn't work properly */
115 #define ERR_DRIVE (-6) /* something wrong with a drive */
116 #define ERR_WR_PROTECT (-7) /* diskette is write protected */
117 #define ERR_TIMEOUT (-8) /* interrupt timeout */
119 /* No retries on some errors. */
120 #define err_no_retry(err) ((err) <= ERR_WR_PROTECT)
122 /* Encoding of drive type in minor device number. */
123 #define DEV_TYPE_BITS 0x7C /* drive type + 1, if nonzero */
124 #define DEV_TYPE_SHIFT 2 /* right shift to normalize type bits */
125 #define FORMAT_DEV_BIT 0x80 /* bit in minor to turn write into format */
127 /* Miscellaneous. */
128 #define MAX_ERRORS 6 /* how often to try rd/wt before quitting */
129 #define MAX_RESULTS 7 /* max number of bytes controller returns */
130 #define NR_DRIVES 2 /* maximum number of drives */
131 #define DIVISOR 128 /* used for sector size encoding */
132 #define SECTOR_SIZE_CODE 2 /* code to say "512" to the controller */
133 #define TIMEOUT_MICROS 500000L /* microseconds waiting for FDC */
134 #define TIMEOUT_TICKS 30 /* ticks waiting for FDC */
135 #define NT 7 /* number of diskette/drive combinations */
136 #define UNCALIBRATED 0 /* drive needs to be calibrated at next use */
137 #define CALIBRATED 1 /* no calibration needed */
138 #define BASE_SECTOR 1 /* sectors are numbered starting at 1 */
139 #define NO_SECTOR (-1) /* current sector unknown */
140 #define NO_CYL (-1) /* current cylinder unknown, must seek */
141 #define NO_DENS 100 /* current media unknown */
142 #define BSY_IDLE 0 /* busy doing nothing */
143 #define BSY_IO 1 /* busy doing I/O */
144 #define BSY_WAKEN 2 /* got a wakeup call */
146 /* Seven combinations of diskette/drive are supported.
148 * # Diskette Drive Sectors Tracks Rotation Data-rate Comment
149 * 0 360K 360K 9 40 300 RPM 250 kbps Standard PC DSDD
150 * 1 1.2M 1.2M 15 80 360 RPM 500 kbps AT disk in AT drive
151 * 2 360K 720K 9 40 300 RPM 250 kbps Quad density PC
152 * 3 720K 720K 9 80 300 RPM 250 kbps Toshiba, et al.
153 * 4 360K 1.2M 9 40 360 RPM 300 kbps PC disk in AT drive
154 * 5 720K 1.2M 9 80 360 RPM 300 kbps Toshiba in AT drive
155 * 6 1.44M 1.44M 18 80 300 RPM 500 kbps PS/2, et al.
157 * In addition, 720K diskettes can be read in 1.44MB drives, but that does
158 * not need a different set of parameters. This combination uses
160 * 3 720K 1.44M 9 80 300 RPM 250 kbps PS/2, et al.
162 PRIVATE struct density {
163 u8_t secpt; /* sectors per track */
164 u8_t cyls; /* tracks per side */
165 u8_t steps; /* steps per cylinder (2 = double step) */
166 u8_t test; /* sector to try for density test */
167 u8_t rate; /* data rate (2=250, 1=300, 0=500 kbps) */
168 clock_t start_ms; /* motor start (milliseconds) */
169 u8_t gap; /* gap size */
170 u8_t spec1; /* first specify byte (SRT/HUT) */
171 } fdensity[NT] = {
172 { 9, 40, 1, 4*9, 2, 500, 0x2A, 0xDF }, /* 360K / 360K */
173 { 15, 80, 1, 14, 0, 500, 0x1B, 0xDF }, /* 1.2M / 1.2M */
174 { 9, 40, 2, 2*9, 2, 500, 0x2A, 0xDF }, /* 360K / 720K */
175 { 9, 80, 1, 4*9, 2, 750, 0x2A, 0xDF }, /* 720K / 720K */
176 { 9, 40, 2, 2*9, 1, 500, 0x23, 0xDF }, /* 360K / 1.2M */
177 { 9, 80, 1, 4*9, 1, 500, 0x23, 0xDF }, /* 720K / 1.2M */
178 { 18, 80, 1, 17, 0, 750, 0x1B, 0xCF }, /* 1.44M / 1.44M */
181 /* The following table is used with the test_sector array to recognize a
182 * drive/floppy combination. The sector to test has been determined by
183 * looking at the differences in gap size, sectors/track, and double stepping.
184 * This means that types 0 and 3 can't be told apart, only the motor start
185 * time differs. If a read test succeeds then the drive is limited to the
186 * set of densities it can support to avoid unnecessary tests in the future.
189 #define b(d) (1 << (d)) /* bit for density d. */
191 PRIVATE struct test_order {
192 u8_t t_density; /* floppy/drive type */
193 u8_t t_class; /* limit drive to this class of densities */
194 } test_order[NT-1] = {
195 { 6, b(3) | b(6) }, /* 1.44M {720K, 1.44M} */
196 { 1, b(1) | b(4) | b(5) }, /* 1.2M {1.2M, 360K, 720K} */
197 { 3, b(2) | b(3) | b(6) }, /* 720K {360K, 720K, 1.44M} */
198 { 4, b(1) | b(4) | b(5) }, /* 360K {1.2M, 360K, 720K} */
199 { 5, b(1) | b(4) | b(5) }, /* 720K {1.2M, 360K, 720K} */
200 { 2, b(2) | b(3) }, /* 360K {360K, 720K} */
201 /* Note that type 0 is missing, type 3 can read/write it too, which is
202 * why the type 3 parameters have been pessimized to be like type 0.
206 /* Variables. */
207 PRIVATE struct floppy { /* main drive struct, one entry per drive */
208 unsigned fl_curcyl; /* current cylinder */
209 unsigned fl_hardcyl; /* hardware cylinder, as opposed to: */
210 unsigned fl_cylinder; /* cylinder number addressed */
211 unsigned fl_sector; /* sector addressed */
212 unsigned fl_head; /* head number addressed */
213 char fl_calibration; /* CALIBRATED or UNCALIBRATED */
214 u8_t fl_density; /* NO_DENS = ?, 0 = 360K; 1 = 360K/1.2M; etc.*/
215 u8_t fl_class; /* bitmap for possible densities */
216 timer_t fl_tmr_stop; /* timer to stop motor */
217 struct device fl_geom; /* Geometry of the drive */
218 struct device fl_part[NR_PARTITIONS]; /* partition's base & size */
219 } floppy[NR_DRIVES];
221 PRIVATE int irq_hook_id; /* id of irq hook at the kernel */
222 PUBLIC int motor_status; /* bitmap of current motor status */
223 PRIVATE int need_reset; /* set to 1 when controller must be reset */
224 PUBLIC unsigned f_drive; /* selected drive */
225 PRIVATE unsigned f_device; /* selected minor device */
226 PRIVATE struct floppy *f_fp; /* current drive */
227 PRIVATE struct density *f_dp; /* current density parameters */
228 PRIVATE struct density *prev_dp;/* previous density parameters */
229 PRIVATE unsigned f_sectors; /* equal to f_dp->secpt (needed a lot) */
230 PUBLIC u16_t f_busy; /* BSY_IDLE, BSY_IO, BSY_WAKEN */
231 PRIVATE struct device *f_dv; /* device's base and size */
232 PRIVATE struct disk_parameter_s fmt_param; /* parameters for format */
233 PRIVATE u8_t f_results[MAX_RESULTS];/* the controller can give lots of output */
235 /* The floppy uses various timers. These are managed by the floppy driver
236 * itself, because only a single synchronous alarm is available per process.
237 * Besides the 'f_tmr_timeout' timer below, the floppy structure for each
238 * floppy disk drive contains a 'fl_tmr_stop' timer.
240 PRIVATE timer_t f_tmr_timeout; /* timer for various timeouts */
241 PRIVATE timer_t *f_timers; /* queue of floppy timers */
242 PRIVATE clock_t f_next_timeout; /* the next timeout time */
243 PRIVATE u32_t system_hz; /* system clock frequency */
244 FORWARD _PROTOTYPE( void f_expire_tmrs, (struct driver *dp, message *m_ptr) );
245 FORWARD _PROTOTYPE( void f_set_timer, (timer_t *tp, clock_t delta,
246 tmr_func_t watchdog) );
247 FORWARD _PROTOTYPE( void stop_motor, (timer_t *tp) );
248 FORWARD _PROTOTYPE( void f_timeout, (timer_t *tp) );
250 FORWARD _PROTOTYPE( struct device *f_prepare, (int device) );
251 FORWARD _PROTOTYPE( char *f_name, (void) );
252 FORWARD _PROTOTYPE( void f_cleanup, (void) );
253 FORWARD _PROTOTYPE( int f_transfer, (int proc_nr, int opcode, u64_t position,
254 iovec_t *iov, unsigned nr_req) );
255 FORWARD _PROTOTYPE( int dma_setup, (int opcode) );
256 FORWARD _PROTOTYPE( void start_motor, (void) );
257 FORWARD _PROTOTYPE( int seek, (void) );
258 FORWARD _PROTOTYPE( int fdc_transfer, (int opcode) );
259 FORWARD _PROTOTYPE( int fdc_results, (void) );
260 FORWARD _PROTOTYPE( int fdc_command, (const u8_t *cmd, int len) );
261 FORWARD _PROTOTYPE( void fdc_out, (int val) );
262 FORWARD _PROTOTYPE( int recalibrate, (void) );
263 FORWARD _PROTOTYPE( void f_reset, (void) );
264 FORWARD _PROTOTYPE( int f_intr_wait, (void) );
265 FORWARD _PROTOTYPE( int read_id, (void) );
266 FORWARD _PROTOTYPE( int f_do_open, (struct driver *dp, message *m_ptr) );
267 FORWARD _PROTOTYPE( int test_read, (int density) );
268 FORWARD _PROTOTYPE( void f_geometry, (struct partition *entry) );
270 /* Entry points to this driver. */
271 PRIVATE struct driver f_dtab = {
272 f_name, /* current device's name */
273 f_do_open, /* open or mount request, sense type of diskette */
274 do_nop, /* nothing on a close */
275 do_diocntl, /* get or set a partitions geometry */
276 f_prepare, /* prepare for I/O on a given minor device */
277 f_transfer, /* do the I/O */
278 f_cleanup, /* cleanup before sending reply to user process */
279 f_geometry, /* tell the geometry of the diskette */
280 f_expire_tmrs,/* expire all alarm timers */
281 nop_cancel,
282 nop_select,
283 NULL,
284 NULL
287 static char *floppy_buf;
288 static phys_bytes floppy_buf_phys;
290 /* SEF functions and variables. */
291 FORWARD _PROTOTYPE( void sef_local_startup, (void) );
292 FORWARD _PROTOTYPE( int sef_cb_init_fresh, (int type, sef_init_info_t *info) );
293 FORWARD _PROTOTYPE( void sef_cb_signal_handler, (int signo) );
294 EXTERN _PROTOTYPE( int sef_cb_lu_prepare, (int state) );
295 EXTERN _PROTOTYPE( int sef_cb_lu_state_isvalid, (int state) );
296 EXTERN _PROTOTYPE( void sef_cb_lu_state_dump, (int state) );
297 PUBLIC int last_transfer_opcode;
299 /*===========================================================================*
300 * floppy_task *
301 *===========================================================================*/
302 PUBLIC int main(void)
304 /* SEF local startup. */
305 sef_local_startup();
307 /* Call the generic receive loop. */
308 driver_task(&f_dtab, DRIVER_STD);
310 return(OK);
313 /*===========================================================================*
314 * sef_local_startup *
315 *===========================================================================*/
316 PRIVATE void sef_local_startup(void)
318 /* Register init callbacks. */
319 sef_setcb_init_fresh(sef_cb_init_fresh);
320 sef_setcb_init_lu(sef_cb_init_fresh);
321 sef_setcb_init_restart(sef_cb_init_fresh);
323 /* Register live update callbacks. */
324 sef_setcb_lu_prepare(sef_cb_lu_prepare);
325 sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid);
326 sef_setcb_lu_state_dump(sef_cb_lu_state_dump);
328 /* Register signal callbacks. */
329 sef_setcb_signal_handler(sef_cb_signal_handler);
331 /* Let SEF perform startup. */
332 sef_startup();
335 /*===========================================================================*
336 * sef_cb_init_fresh *
337 *===========================================================================*/
338 PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info)
340 /* Initialize the floppy driver. */
341 struct floppy *fp;
342 int s;
344 /* Initialize the floppy structure and the timers. */
345 system_hz = sys_hz();
347 if(!(floppy_buf = alloc_contig(2*DMA_BUF_SIZE,
348 AC_LOWER16M | AC_ALIGN4K, &floppy_buf_phys)))
349 panic("couldn't allocate dma buffer");
351 f_next_timeout = TMR_NEVER;
352 tmr_inittimer(&f_tmr_timeout);
354 for (fp = &floppy[0]; fp < &floppy[NR_DRIVES]; fp++) {
355 fp->fl_curcyl = NO_CYL;
356 fp->fl_density = NO_DENS;
357 fp->fl_class = ~0;
358 tmr_inittimer(&fp->fl_tmr_stop);
361 /* Set IRQ policy, only request notifications, do not automatically
362 * reenable interrupts. ID return on interrupt is the IRQ line number.
364 irq_hook_id = FLOPPY_IRQ;
365 if ((s=sys_irqsetpolicy(FLOPPY_IRQ, 0, &irq_hook_id )) != OK)
366 panic("Couldn't set IRQ policy: %d", s);
367 if ((s=sys_irqenable(&irq_hook_id)) != OK)
368 panic("Couldn't enable IRQs: %d", s);
370 /* Announce we are up! */
371 driver_announce();
373 return(OK);
376 /*===========================================================================*
377 * sef_cb_signal_handler *
378 *===========================================================================*/
379 PRIVATE void sef_cb_signal_handler(int signo)
381 int s;
383 /* Only check for termination signal, ignore anything else. */
384 if (signo != SIGTERM) return;
386 /* Stop all activity and cleanly exit with the system. */
387 if ((s=sys_outb(DOR, ENABLE_INT)) != OK)
388 panic("Sys_outb failed: %d", s);
389 exit(0);
392 /*===========================================================================*
393 * f_expire_tmrs *
394 *===========================================================================*/
395 PRIVATE void f_expire_tmrs(struct driver *dp, message *m_ptr)
397 /* A synchronous alarm message was received. Check if there are any expired
398 * timers. Possibly reschedule the next alarm.
400 clock_t now; /* current time */
401 int s;
403 /* Get the current time to compare the timers against. */
404 if ((s=getuptime(&now)) != OK)
405 panic("Couldn't get uptime from clock: %d", s);
407 /* Scan the timers queue for expired timers. Dispatch the watchdog function
408 * for each expired timers. FLOPPY watchdog functions are f_tmr_timeout()
409 * and stop_motor(). Possibly a new alarm call must be scheduled.
411 tmrs_exptimers(&f_timers, now, NULL);
412 if (f_timers == NULL) {
413 f_next_timeout = TMR_NEVER;
414 } else { /* set new sync alarm */
415 f_next_timeout = f_timers->tmr_exp_time;
416 if ((s=sys_setalarm(f_next_timeout, 1)) != OK)
417 panic("Couldn't set synchronous alarm: %d", s);
421 /*===========================================================================*
422 * f_set_timer *
423 *===========================================================================*/
424 PRIVATE void f_set_timer(tp, delta, watchdog)
425 timer_t *tp; /* timer to be set */
426 clock_t delta; /* in how many ticks */
427 tmr_func_t watchdog; /* watchdog function to be called */
429 clock_t now; /* current time */
430 int s;
432 /* Get the current time. */
433 if ((s=getuptime(&now)) != OK)
434 panic("Couldn't get uptime from clock: %d", s);
436 /* Add the timer to the local timer queue. */
437 tmrs_settimer(&f_timers, tp, now + delta, watchdog, NULL);
439 /* Possibly reschedule an alarm call. This happens when the front of the
440 * timers queue was reinserted at another position, i.e., when a timer was
441 * reset, or when a new timer was added in front.
443 if (f_timers->tmr_exp_time != f_next_timeout) {
444 f_next_timeout = f_timers->tmr_exp_time;
445 if ((s=sys_setalarm(f_next_timeout, 1)) != OK)
446 panic("Couldn't set synchronous alarm: %d", s);
450 /*===========================================================================*
451 * f_prepare *
452 *===========================================================================*/
453 PRIVATE struct device *f_prepare(int device)
455 /* Prepare for I/O on a device. */
457 f_device = device;
458 f_drive = device & ~(DEV_TYPE_BITS | FORMAT_DEV_BIT);
459 if (f_drive < 0 || f_drive >= NR_DRIVES) return(NULL);
461 f_fp = &floppy[f_drive];
462 f_dv = &f_fp->fl_geom;
463 if (f_fp->fl_density < NT) {
464 f_dp = &fdensity[f_fp->fl_density];
465 f_sectors = f_dp->secpt;
466 f_fp->fl_geom.dv_size = mul64u((long) (NR_HEADS * f_sectors
467 * f_dp->cyls), SECTOR_SIZE);
470 /* A partition? */
471 if ((device &= DEV_TYPE_BITS) >= MINOR_fd0p0)
472 f_dv = &f_fp->fl_part[(device - MINOR_fd0p0) >> DEV_TYPE_SHIFT];
474 return f_dv;
477 /*===========================================================================*
478 * f_name *
479 *===========================================================================*/
480 PRIVATE char *f_name(void)
482 /* Return a name for the current device. */
483 static char name[] = "fd0";
485 name[2] = '0' + f_drive;
486 return name;
489 /*===========================================================================*
490 * f_cleanup *
491 *===========================================================================*/
492 PRIVATE void f_cleanup(void)
494 /* Start a timer to turn the motor off in a few seconds. */
495 tmr_arg(&f_fp->fl_tmr_stop)->ta_int = f_drive;
496 f_set_timer(&f_fp->fl_tmr_stop, MOTOR_OFF, stop_motor);
498 /* Exiting the floppy driver, so forget where we are. */
499 f_fp->fl_sector = NO_SECTOR;
502 /*===========================================================================*
503 * f_transfer *
504 *===========================================================================*/
505 PRIVATE int f_transfer(proc_nr, opcode, pos64, iov, nr_req)
506 int proc_nr; /* process doing the request */
507 int opcode; /* DEV_GATHER_S or DEV_SCATTER_S */
508 u64_t pos64; /* offset on device to read or write */
509 iovec_t *iov; /* pointer to read or write request vector */
510 unsigned nr_req; /* length of request vector */
512 #define NO_OFFSET -1
513 struct floppy *fp = f_fp;
514 iovec_t *iop, *iov_end = iov + nr_req;
515 int s, r, errors, nr;
516 unsigned block; /* Seen any 32M floppies lately? */
517 unsigned nbytes, count, chunk, sector;
518 unsigned long dv_size = cv64ul(f_dv->dv_size);
519 vir_bytes user_offset, iov_offset = 0, iop_offset;
520 off_t position;
521 signed long uoffsets[MAX_SECTORS], *up;
522 cp_grant_id_t ugrants[MAX_SECTORS], *ug;
523 u8_t cmd[3];
525 if (ex64hi(pos64) != 0)
526 return OK; /* Way beyond EOF */
527 position= cv64ul(pos64);
529 /* Record the opcode of the last transfer performed. */
530 last_transfer_opcode = opcode;
532 /* Check disk address. */
533 if ((position & SECTOR_MASK) != 0) return(EINVAL);
535 #if 0 /* XXX hack to create a disk driver that crashes */
536 { static int count= 0; if (++count > 10) {
537 printf("floppy: time to die\n"); *(int *)-1= 42;
539 #endif
541 errors = 0;
542 while (nr_req > 0) {
543 /* How many bytes to transfer? */
544 nbytes = 0;
545 for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
547 /* Which block on disk and how close to EOF? */
548 if (position >= dv_size) return(OK); /* At EOF */
549 if (position + nbytes > dv_size) nbytes = dv_size - position;
550 block = div64u(add64ul(f_dv->dv_base, position), SECTOR_SIZE);
552 if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
554 /* Using a formatting device? */
555 if (f_device & FORMAT_DEV_BIT) {
556 if (opcode != DEV_SCATTER_S) return(EIO);
557 if (iov->iov_size < SECTOR_SIZE + sizeof(fmt_param))
558 return(EINVAL);
560 if(proc_nr != SELF) {
561 s=sys_safecopyfrom(proc_nr, iov->iov_addr,
562 SECTOR_SIZE + iov_offset, (vir_bytes) &fmt_param,
563 (phys_bytes) sizeof(fmt_param), D);
564 if(s != OK)
565 panic("sys_safecopyfrom failed: %d", s);
566 } else {
567 memcpy(&fmt_param, (void *) (iov->iov_addr +
568 SECTOR_SIZE + iov_offset),
569 (phys_bytes) sizeof(fmt_param));
572 /* Check that the number of sectors in the data is reasonable,
573 * to avoid division by 0. Leave checking of other data to
574 * the FDC.
576 if (fmt_param.sectors_per_cylinder == 0) return(EIO);
578 /* Only the first sector of the parameters now needed. */
579 iov->iov_size = nbytes = SECTOR_SIZE;
582 /* Only try one sector if there were errors. */
583 if (errors > 0) nbytes = SECTOR_SIZE;
585 /* Compute cylinder and head of the track to access. */
586 fp->fl_cylinder = block / (NR_HEADS * f_sectors);
587 fp->fl_hardcyl = fp->fl_cylinder * f_dp->steps;
588 fp->fl_head = (block % (NR_HEADS * f_sectors)) / f_sectors;
590 /* For each sector on this track compute the user address it is to
591 * go or to come from.
593 for (up = uoffsets; up < uoffsets + MAX_SECTORS; up++) *up = NO_OFFSET;
594 count = 0;
595 iop = iov;
596 sector = block % f_sectors;
597 nr = 0;
598 iop_offset = iov_offset;
599 for (;;) {
600 nr++;
601 user_offset = iop_offset;
602 chunk = iop->iov_size;
603 if ((chunk & SECTOR_MASK) != 0) return(EINVAL);
605 while (chunk > 0) {
606 ugrants[sector] = iop->iov_addr;
607 uoffsets[sector++] = user_offset;
608 chunk -= SECTOR_SIZE;
609 user_offset += SECTOR_SIZE;
610 count += SECTOR_SIZE;
611 if (sector == f_sectors || count == nbytes)
612 goto track_set_up;
614 iop_offset = 0;
615 iop++;
617 track_set_up:
619 /* First check to see if a reset is needed. */
620 if (need_reset) f_reset();
622 /* See if motor is running; if not, turn it on and wait. */
623 start_motor();
625 /* Set the stepping rate and data rate */
626 if (f_dp != prev_dp) {
627 cmd[0] = FDC_SPECIFY;
628 cmd[1] = f_dp->spec1;
629 cmd[2] = SPEC2;
630 (void) fdc_command(cmd, 3);
631 if ((s=sys_outb(FDC_RATE, f_dp->rate)) != OK)
632 panic("Sys_outb failed: %d", s);
633 prev_dp = f_dp;
636 /* If we are going to a new cylinder, perform a seek. */
637 r = seek();
639 /* Avoid read_id() if we don't plan to read much. */
640 if (fp->fl_sector == NO_SECTOR && count < (6 * SECTOR_SIZE))
641 fp->fl_sector = 0;
643 for (nbytes = 0; nbytes < count; nbytes += SECTOR_SIZE) {
644 if (fp->fl_sector == NO_SECTOR) {
645 /* Find out what the current sector is. This often
646 * fails right after a seek, so try it twice.
648 if (r == OK && read_id() != OK) r = read_id();
651 /* Look for the next job in uoffsets[] */
652 if (r == OK) {
653 for (;;) {
654 if (fp->fl_sector >= f_sectors)
655 fp->fl_sector = 0;
657 up = &uoffsets[fp->fl_sector];
658 ug = &ugrants[fp->fl_sector];
659 if (*up != NO_OFFSET) break;
660 fp->fl_sector++;
663 if (opcode == DEV_SCATTER_S) {
664 /* Copy the user bytes to the DMA buffer. */
665 if(proc_nr != SELF) {
666 s=sys_safecopyfrom(proc_nr, *ug, *up,
667 (vir_bytes) floppy_buf,
668 (phys_bytes) SECTOR_SIZE, D);
669 if(s != OK)
670 panic("sys_safecopyfrom failed: %d", s);
671 } else {
672 memcpy(floppy_buf, (void *) (*ug + *up), SECTOR_SIZE);
677 /* Set up the DMA chip and perform the transfer. */
678 if (r == OK) {
679 if (dma_setup(opcode) != OK) {
680 /* This can only fail for addresses above 16MB
681 * that cannot be handled by the controller,
682 * because it uses 24-bit addressing.
684 return(EIO);
686 r = fdc_transfer(opcode);
689 if (r == OK && opcode == DEV_GATHER_S) {
690 /* Copy the DMA buffer to user space. */
691 if(proc_nr != SELF) {
692 s=sys_safecopyto(proc_nr, *ug, *up,
693 (vir_bytes) floppy_buf,
694 (phys_bytes) SECTOR_SIZE, D);
695 if(s != OK)
696 panic("sys_safecopyto failed: %d", s);
697 } else {
698 memcpy((void *) (*ug + *up), floppy_buf, SECTOR_SIZE);
702 if (r != OK) {
703 /* Don't retry if write protected or too many errors. */
704 if (err_no_retry(r) || ++errors == MAX_ERRORS) {
705 return(EIO);
708 /* Recalibrate if halfway. */
709 if (errors == MAX_ERRORS / 2)
710 fp->fl_calibration = UNCALIBRATED;
712 nbytes = 0;
713 break; /* retry */
717 /* Book the bytes successfully transferred. */
718 position += nbytes;
719 for (;;) {
720 if (nbytes < iov->iov_size) {
721 /* Not done with this one yet. */
722 iov_offset += nbytes;
723 iov->iov_size -= nbytes;
724 break;
726 iov_offset = 0;
727 nbytes -= iov->iov_size;
728 iov->iov_size = 0;
729 if (nbytes == 0) {
730 /* The rest is optional, so we return to give FS a
731 * chance to think it over.
733 return(OK);
735 iov++;
736 nr_req--;
739 return(OK);
742 /*===========================================================================*
743 * dma_setup *
744 *===========================================================================*/
745 PRIVATE int dma_setup(
746 int opcode /* DEV_GATHER_S or DEV_SCATTER_S */
749 /* The IBM PC can perform DMA operations by using the DMA chip. To use it,
750 * the DMA (Direct Memory Access) chip is loaded with the 20-bit memory address
751 * to be read from or written to, the byte count minus 1, and a read or write
752 * opcode. This routine sets up the DMA chip. Note that the chip is not
753 * capable of doing a DMA across a 64K boundary (e.g., you can't read a
754 * 512-byte block starting at physical address 65520).
756 * Warning! Also note that it's not possible to do DMA above 16 MB because
757 * the ISA bus uses 24-bit addresses. Addresses above 16 MB therefore will
758 * be interpreted modulo 16 MB, dangerously overwriting arbitrary memory.
759 * A check here denies the I/O if the address is out of range.
761 pvb_pair_t byte_out[9];
762 int s;
764 /* First check the DMA memory address not to exceed maximum. */
765 if (floppy_buf_phys != (floppy_buf_phys & DMA_ADDR_MASK)) {
766 printf("floppy: DMA denied because address out of range\n");
767 return(EIO);
770 /* Set up the DMA registers. (The comment on the reset is a bit strong,
771 * it probably only resets the floppy channel.)
773 pv_set(byte_out[0], DMA_INIT, DMA_RESET_VAL); /* reset the dma controller */
774 pv_set(byte_out[1], DMA_FLIPFLOP, 0); /* write anything to reset it */
775 pv_set(byte_out[2], DMA_MODE, opcode == DEV_SCATTER_S ? DMA_WRITE : DMA_READ);
776 pv_set(byte_out[3], DMA_ADDR, (unsigned) (floppy_buf_phys >> 0) & 0xff);
777 pv_set(byte_out[4], DMA_ADDR, (unsigned) (floppy_buf_phys >> 8) & 0xff);
778 pv_set(byte_out[5], DMA_TOP, (unsigned) (floppy_buf_phys >> 16) & 0xff);
779 pv_set(byte_out[6], DMA_COUNT, (((SECTOR_SIZE - 1) >> 0)) & 0xff);
780 pv_set(byte_out[7], DMA_COUNT, (SECTOR_SIZE - 1) >> 8);
781 pv_set(byte_out[8], DMA_INIT, 2); /* some sort of enable */
783 if ((s=sys_voutb(byte_out, 9)) != OK)
784 panic("Sys_voutb in dma_setup() failed: %d", s);
785 return(OK);
788 /*===========================================================================*
789 * start_motor *
790 *===========================================================================*/
791 PRIVATE void start_motor(void)
793 /* Control of the floppy disk motors is a big pain. If a motor is off, you
794 * have to turn it on first, which takes 1/2 second. You can't leave it on
795 * all the time, since that would wear out the diskette. However, if you turn
796 * the motor off after each operation, the system performance will be awful.
797 * The compromise used here is to leave it on for a few seconds after each
798 * operation. If a new operation is started in that interval, it need not be
799 * turned on again. If no new operation is started, a timer goes off and the
800 * motor is turned off. I/O port DOR has bits to control each of 4 drives.
803 int s, motor_bit, running;
804 message mess;
805 int ipc_status;
807 motor_bit = 1 << f_drive; /* bit mask for this drive */
808 running = motor_status & motor_bit; /* nonzero if this motor is running */
809 motor_status |= motor_bit; /* want this drive running too */
811 if ((s=sys_outb(DOR,
812 (motor_status << MOTOR_SHIFT) | ENABLE_INT | f_drive)) != OK)
813 panic("Sys_outb in start_motor() failed: %d", s);
815 /* If the motor was already running, we don't have to wait for it. */
816 if (running) return; /* motor was already running */
818 /* Set an alarm timer to force a timeout if the hardware does not interrupt
819 * in time. Expect an interrupt, but check for a timeout.
821 f_set_timer(&f_tmr_timeout, f_dp->start_ms * system_hz / 1000, f_timeout);
822 f_busy = BSY_IO;
823 do {
824 driver_receive(ANY, &mess, &ipc_status);
826 if (is_ipc_notify(ipc_status)) {
827 switch (_ENDPOINT_P(mess.m_source)) {
828 case CLOCK:
829 f_expire_tmrs(NULL, NULL);
830 break;
831 default :
832 f_busy = BSY_IDLE;
833 break;
835 } else {
836 f_busy = BSY_IDLE;
838 } while (f_busy == BSY_IO);
839 f_fp->fl_sector = NO_SECTOR;
842 /*===========================================================================*
843 * stop_motor *
844 *===========================================================================*/
845 PRIVATE void stop_motor(timer_t *tp)
847 /* This routine is called from an alarm timer after several seconds have
848 * elapsed with no floppy disk activity. It turns the drive motor off.
850 int s;
851 motor_status &= ~(1 << tmr_arg(tp)->ta_int);
852 if ((s=sys_outb(DOR, (motor_status << MOTOR_SHIFT) | ENABLE_INT)) != OK)
853 panic("Sys_outb in stop_motor() failed: %d", s);
856 /*===========================================================================*
857 * seek *
858 *===========================================================================*/
859 PRIVATE int seek(void)
861 /* Issue a SEEK command on the indicated drive unless the arm is already
862 * positioned on the correct cylinder.
865 struct floppy *fp = f_fp;
866 int r;
867 message mess;
868 int ipc_status;
869 u8_t cmd[3];
871 /* Are we already on the correct cylinder? */
872 if (fp->fl_calibration == UNCALIBRATED)
873 if (recalibrate() != OK) return(ERR_SEEK);
874 if (fp->fl_curcyl == fp->fl_hardcyl) return(OK);
876 /* No. Wrong cylinder. Issue a SEEK and wait for interrupt. */
877 cmd[0] = FDC_SEEK;
878 cmd[1] = (fp->fl_head << 2) | f_drive;
879 cmd[2] = fp->fl_hardcyl;
880 if (fdc_command(cmd, 3) != OK) return(ERR_SEEK);
881 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
883 /* Interrupt has been received. Check drive status. */
884 fdc_out(FDC_SENSE); /* probe FDC to make it return status */
885 r = fdc_results(); /* get controller status bytes */
886 if (r != OK || (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0
887 || f_results[ST1] != fp->fl_hardcyl) {
888 /* seek failed, may need a recalibrate */
889 return(ERR_SEEK);
891 /* Give head time to settle on a format, no retrying here! */
892 if (f_device & FORMAT_DEV_BIT) {
893 /* Set a synchronous alarm to force a timeout if the hardware does
894 * not interrupt.
896 f_set_timer(&f_tmr_timeout, system_hz/30, f_timeout);
897 f_busy = BSY_IO;
898 do {
899 driver_receive(ANY, &mess, &ipc_status);
901 if (is_ipc_notify(ipc_status)) {
902 switch (_ENDPOINT_P(mess.m_source)) {
903 case CLOCK:
904 f_expire_tmrs(NULL, NULL);
905 break;
906 default :
907 f_busy = BSY_IDLE;
908 break;
910 } else {
911 f_busy = BSY_IDLE;
913 } while (f_busy == BSY_IO);
915 fp->fl_curcyl = fp->fl_hardcyl;
916 fp->fl_sector = NO_SECTOR;
917 return(OK);
920 /*===========================================================================*
921 * fdc_transfer *
922 *===========================================================================*/
923 PRIVATE int fdc_transfer(
924 int opcode /* DEV_GATHER_S or DEV_SCATTER_S */
927 /* The drive is now on the proper cylinder. Read, write or format 1 block. */
929 struct floppy *fp = f_fp;
930 int r, s;
931 u8_t cmd[9];
933 /* Never attempt a transfer if the drive is uncalibrated or motor is off. */
934 if (fp->fl_calibration == UNCALIBRATED) return(ERR_TRANSFER);
935 if ((motor_status & (1 << f_drive)) == 0) return(ERR_TRANSFER);
937 /* The command is issued by outputting several bytes to the controller chip.
939 if (f_device & FORMAT_DEV_BIT) {
940 cmd[0] = FDC_FORMAT;
941 cmd[1] = (fp->fl_head << 2) | f_drive;
942 cmd[2] = fmt_param.sector_size_code;
943 cmd[3] = fmt_param.sectors_per_cylinder;
944 cmd[4] = fmt_param.gap_length_for_format;
945 cmd[5] = fmt_param.fill_byte_for_format;
946 if (fdc_command(cmd, 6) != OK) return(ERR_TRANSFER);
947 } else {
948 cmd[0] = opcode == DEV_SCATTER_S ? FDC_WRITE : FDC_READ;
949 cmd[1] = (fp->fl_head << 2) | f_drive;
950 cmd[2] = fp->fl_cylinder;
951 cmd[3] = fp->fl_head;
952 cmd[4] = BASE_SECTOR + fp->fl_sector;
953 cmd[5] = SECTOR_SIZE_CODE;
954 cmd[6] = f_sectors;
955 cmd[7] = f_dp->gap; /* sector gap */
956 cmd[8] = DTL; /* data length */
957 if (fdc_command(cmd, 9) != OK) return(ERR_TRANSFER);
960 /* Block, waiting for disk interrupt. */
961 if (f_intr_wait() != OK) {
962 printf("%s: disk interrupt timed out.\n", f_name());
963 return(ERR_TIMEOUT);
966 /* Get controller status and check for errors. */
967 r = fdc_results();
968 if (r != OK) return(r);
970 if (f_results[ST1] & WRITE_PROTECT) {
971 printf("%s: diskette is write protected.\n", f_name());
972 return(ERR_WR_PROTECT);
975 if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_TRANSFER);
976 if (f_results[ST1] | f_results[ST2]) return(ERR_TRANSFER);
978 if (f_device & FORMAT_DEV_BIT) return(OK);
980 /* Compare actual numbers of sectors transferred with expected number. */
981 s = (f_results[ST_CYL] - fp->fl_cylinder) * NR_HEADS * f_sectors;
982 s += (f_results[ST_HEAD] - fp->fl_head) * f_sectors;
983 s += (f_results[ST_SEC] - BASE_SECTOR - fp->fl_sector);
984 if (s != 1) return(ERR_TRANSFER);
986 /* This sector is next for I/O: */
987 fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR;
988 #if 0
989 if (processor < 386) fp->fl_sector++; /* Old CPU can't keep up. */
990 #endif
991 return(OK);
994 /*===========================================================================*
995 * fdc_results *
996 *===========================================================================*/
997 PRIVATE int fdc_results(void)
999 /* Extract results from the controller after an operation, then allow floppy
1000 * interrupts again.
1003 int s, result_nr;
1004 unsigned long status;
1005 clock_t t0,t1;
1007 /* Extract bytes from FDC until it says it has no more. The loop is
1008 * really an outer loop on result_nr and an inner loop on status.
1009 * A timeout flag alarm is set.
1011 result_nr = 0;
1012 getuptime(&t0);
1013 do {
1014 /* Reading one byte is almost a mirror of fdc_out() - the DIRECTION
1015 * bit must be set instead of clear, but the CTL_BUSY bit destroys
1016 * the perfection of the mirror.
1018 if ((s=sys_inb(FDC_STATUS, &status)) != OK)
1019 panic("Sys_inb in fdc_results() failed: %d", s);
1020 status &= (MASTER | DIRECTION | CTL_BUSY);
1021 if (status == (MASTER | DIRECTION | CTL_BUSY)) {
1022 unsigned long tmp_r;
1023 if (result_nr >= MAX_RESULTS) break; /* too many results */
1024 if ((s=sys_inb(FDC_DATA, &tmp_r)) != OK)
1025 panic("Sys_inb in fdc_results() failed: %d", s);
1026 f_results[result_nr] = tmp_r;
1027 result_nr ++;
1028 continue;
1030 if (status == MASTER) { /* all read */
1031 if ((s=sys_irqenable(&irq_hook_id)) != OK)
1032 panic("Couldn't enable IRQs: %d", s);
1034 return(OK); /* only good exit */
1036 } while ( (s=getuptime(&t1))==OK && (t1-t0) < TIMEOUT_TICKS );
1037 if (OK!=s) printf("FLOPPY: warning, getuptime failed: %d\n", s);
1038 need_reset = TRUE; /* controller chip must be reset */
1040 if ((s=sys_irqenable(&irq_hook_id)) != OK)
1041 panic("Couldn't enable IRQs: %d", s);
1042 return(ERR_STATUS);
1045 /*===========================================================================*
1046 * fdc_command *
1047 *===========================================================================*/
1048 PRIVATE int fdc_command(
1049 const u8_t *cmd, /* command bytes */
1050 int len /* command length */
1053 /* Output a command to the controller. */
1055 /* Set a synchronous alarm to force a timeout if the hardware does
1056 * not interrupt.
1057 * Note that the actual check is done by the code that issued the
1058 * fdc_command() call.
1060 f_set_timer(&f_tmr_timeout, WAKEUP, f_timeout);
1062 f_busy = BSY_IO;
1063 while (len > 0) {
1064 fdc_out(*cmd++);
1065 len--;
1067 return(need_reset ? ERR_DRIVE : OK);
1070 /*===========================================================================*
1071 * fdc_out *
1072 *===========================================================================*/
1073 PRIVATE void fdc_out(
1074 int val /* write this byte to floppy disk controller */
1077 /* Output a byte to the controller. This is not entirely trivial, since you
1078 * can only write to it when it is listening, and it decides when to listen.
1079 * If the controller refuses to listen, the FDC chip is given a hard reset.
1081 clock_t t0, t1;
1082 int s;
1083 unsigned long status;
1085 if (need_reset) return; /* if controller is not listening, return */
1087 /* It may take several tries to get the FDC to accept a command. */
1088 getuptime(&t0);
1089 do {
1090 if ( (s=getuptime(&t1))==OK && (t1-t0) > TIMEOUT_TICKS ) {
1091 if (OK!=s) printf("FLOPPY: warning, getuptime failed: %d\n", s);
1092 need_reset = TRUE; /* hit it over the head */
1093 return;
1095 if ((s=sys_inb(FDC_STATUS, &status)) != OK)
1096 panic("Sys_inb in fdc_out() failed: %d", s);
1098 while ((status & (MASTER | DIRECTION)) != (MASTER | 0));
1100 if ((s=sys_outb(FDC_DATA, val)) != OK)
1101 panic("Sys_outb in fdc_out() failed: %d", s);
1104 /*===========================================================================*
1105 * recalibrate *
1106 *===========================================================================*/
1107 PRIVATE int recalibrate(void)
1109 /* The floppy disk controller has no way of determining its absolute arm
1110 * position (cylinder). Instead, it steps the arm a cylinder at a time and
1111 * keeps track of where it thinks it is (in software). However, after a
1112 * SEEK, the hardware reads information from the diskette telling where the
1113 * arm actually is. If the arm is in the wrong place, a recalibration is done,
1114 * which forces the arm to cylinder 0. This way the controller can get back
1115 * into sync with reality.
1118 struct floppy *fp = f_fp;
1119 int r;
1120 u8_t cmd[2];
1122 /* Issue the RECALIBRATE command and wait for the interrupt. */
1123 cmd[0] = FDC_RECALIBRATE; /* tell drive to recalibrate itself */
1124 cmd[1] = f_drive; /* specify drive */
1125 if (fdc_command(cmd, 2) != OK) return(ERR_SEEK);
1126 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1128 /* Determine if the recalibration succeeded. */
1129 fdc_out(FDC_SENSE); /* issue SENSE command to request results */
1130 r = fdc_results(); /* get results of the FDC_RECALIBRATE command*/
1131 fp->fl_curcyl = NO_CYL; /* force a SEEK next time */
1132 fp->fl_sector = NO_SECTOR;
1133 if (r != OK || /* controller would not respond */
1134 (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0 || f_results[ST_PCN] != 0) {
1135 /* Recalibration failed. FDC must be reset. */
1136 need_reset = TRUE;
1137 return(ERR_RECALIBRATE);
1138 } else {
1139 /* Recalibration succeeded. */
1140 fp->fl_calibration = CALIBRATED;
1141 fp->fl_curcyl = f_results[ST_PCN];
1142 return(OK);
1146 /*===========================================================================*
1147 * f_reset *
1148 *===========================================================================*/
1149 PRIVATE void f_reset(void)
1151 /* Issue a reset to the controller. This is done after any catastrophe,
1152 * like the controller refusing to respond.
1154 pvb_pair_t byte_out[2];
1155 int s,i;
1156 message mess;
1157 int ipc_status;
1159 /* Disable interrupts and strobe reset bit low. */
1160 need_reset = FALSE;
1162 /* It is not clear why the next lock is needed. Writing 0 to DOR causes
1163 * interrupt, while the PC documentation says turning bit 8 off disables
1164 * interrupts. Without the lock:
1165 * 1) the interrupt handler sets the floppy mask bit in the 8259.
1166 * 2) writing ENABLE_INT to DOR causes the FDC to assert the interrupt
1167 * line again, but the mask stops the cpu being interrupted.
1168 * 3) the sense interrupt clears the interrupt (not clear which one).
1169 * and for some reason the reset does not work.
1171 (void) fdc_command((u8_t *) 0, 0); /* need only the timer */
1172 motor_status = 0;
1173 pv_set(byte_out[0], DOR, 0); /* strobe reset bit low */
1174 pv_set(byte_out[1], DOR, ENABLE_INT); /* strobe it high again */
1175 if ((s=sys_voutb(byte_out, 2)) != OK)
1176 panic("Sys_voutb in f_reset() failed: %d", s);
1178 /* A synchronous alarm timer was set in fdc_command. Expect an interrupt,
1179 * but be prepared to handle a timeout.
1181 do {
1182 driver_receive(ANY, &mess, &ipc_status);
1183 if (is_ipc_notify(ipc_status)) {
1184 switch (_ENDPOINT_P(mess.m_source)) {
1185 case CLOCK:
1186 f_expire_tmrs(NULL, NULL);
1187 break;
1188 default :
1189 f_busy = BSY_IDLE;
1190 break;
1192 } else { /* expect hw interrupt */
1193 f_busy = BSY_IDLE;
1195 } while (f_busy == BSY_IO);
1197 /* The controller supports 4 drives and returns a result for each of them.
1198 * Collect all the results now. The old version only collected the first
1199 * result. This happens to work for 2 drives, but it doesn't work for 3
1200 * or more drives, at least with only drives 0 and 2 actually connected
1201 * (the controller generates an extra interrupt for the middle drive when
1202 * drive 2 is accessed and the driver panics).
1204 * It would be better to keep collecting results until there are no more.
1205 * For this, fdc_results needs to return the number of results (instead
1206 * of OK) when it succeeds.
1208 for (i = 0; i < 4; i++) {
1209 fdc_out(FDC_SENSE); /* probe FDC to make it return status */
1210 (void) fdc_results(); /* flush controller */
1212 for (i = 0; i < NR_DRIVES; i++) /* clear each drive */
1213 floppy[i].fl_calibration = UNCALIBRATED;
1215 /* The current timing parameters must be specified again. */
1216 prev_dp = NULL;
1219 /*===========================================================================*
1220 * f_intr_wait *
1221 *===========================================================================*/
1222 PRIVATE int f_intr_wait(void)
1224 /* Wait for an interrupt, but not forever. The FDC may have all the time of
1225 * the world, but we humans do not.
1227 message mess;
1228 int ipc_status;
1230 /* We expect an interrupt, but if a timeout, occurs, report an error. */
1231 do {
1232 driver_receive(ANY, &mess, &ipc_status);
1233 if (is_ipc_notify(ipc_status)) {
1234 switch (_ENDPOINT_P(mess.m_source)) {
1235 case CLOCK:
1236 f_expire_tmrs(NULL, NULL);
1237 break;
1238 default :
1239 f_busy = BSY_IDLE;
1240 break;
1242 } else {
1243 f_busy = BSY_IDLE;
1245 } while (f_busy == BSY_IO);
1247 if (f_busy == BSY_WAKEN) {
1249 /* No interrupt from the FDC, this means that there is probably no
1250 * floppy in the drive. Get the FDC down to earth and return error.
1252 need_reset = TRUE;
1253 return(ERR_TIMEOUT);
1255 return(OK);
1258 /*===========================================================================*
1259 * f_timeout *
1260 *===========================================================================*/
1261 PRIVATE void f_timeout(timer_t *tp)
1263 /* This routine is called when a timer expires. Usually to tell that a
1264 * motor has spun up, but also to forge an interrupt when it takes too long
1265 * for the FDC to interrupt (no floppy in the drive). It sets a flag to tell
1266 * what has happened.
1268 if (f_busy == BSY_IO) {
1269 f_busy = BSY_WAKEN;
1273 /*===========================================================================*
1274 * read_id *
1275 *===========================================================================*/
1276 PRIVATE int read_id(void)
1278 /* Determine current cylinder and sector. */
1280 struct floppy *fp = f_fp;
1281 int result;
1282 u8_t cmd[2];
1284 /* Never attempt a read id if the drive is uncalibrated or motor is off. */
1285 if (fp->fl_calibration == UNCALIBRATED) return(ERR_READ_ID);
1286 if ((motor_status & (1 << f_drive)) == 0) return(ERR_READ_ID);
1288 /* The command is issued by outputting 2 bytes to the controller chip. */
1289 cmd[0] = FDC_READ_ID; /* issue the read id command */
1290 cmd[1] = (fp->fl_head << 2) | f_drive;
1291 if (fdc_command(cmd, 2) != OK) return(ERR_READ_ID);
1292 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1294 /* Get controller status and check for errors. */
1295 result = fdc_results();
1296 if (result != OK) return(result);
1298 if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_READ_ID);
1299 if (f_results[ST1] | f_results[ST2]) return(ERR_READ_ID);
1301 /* The next sector is next for I/O: */
1302 fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR + 1;
1303 return(OK);
1306 /*===========================================================================*
1307 * f_do_open *
1308 *===========================================================================*/
1309 PRIVATE int f_do_open(dp, m_ptr)
1310 struct driver *dp;
1311 message *m_ptr; /* pointer to open message */
1313 /* Handle an open on a floppy. Determine diskette type if need be. */
1315 int dtype;
1316 struct test_order *top;
1318 /* Decode the message parameters. */
1319 if (f_prepare(m_ptr->DEVICE) == NULL) return(ENXIO);
1321 dtype = f_device & DEV_TYPE_BITS; /* get density from minor dev */
1322 if (dtype >= MINOR_fd0p0) dtype = 0;
1324 if (dtype != 0) {
1325 /* All types except 0 indicate a specific drive/medium combination.*/
1326 dtype = (dtype >> DEV_TYPE_SHIFT) - 1;
1327 if (dtype >= NT) return(ENXIO);
1328 f_fp->fl_density = dtype;
1329 (void) f_prepare(f_device); /* Recompute parameters. */
1330 return(OK);
1332 if (f_device & FORMAT_DEV_BIT) return(EIO); /* Can't format /dev/fdN */
1334 /* The device opened is /dev/fdN. Experimentally determine drive/medium.
1335 * First check fl_density. If it is not NO_DENS, the drive has been used
1336 * before and the value of fl_density tells what was found last time. Try
1337 * that first. If the motor is still running then assume nothing changed.
1339 if (f_fp->fl_density != NO_DENS) {
1340 if (motor_status & (1 << f_drive)) return(OK);
1341 if (test_read(f_fp->fl_density) == OK) return(OK);
1344 /* Either drive type is unknown or a different diskette is now present.
1345 * Use test_order to try them one by one.
1347 for (top = &test_order[0]; top < &test_order[NT-1]; top++) {
1348 dtype = top->t_density;
1350 /* Skip densities that have been proven to be impossible */
1351 if (!(f_fp->fl_class & (1 << dtype))) continue;
1353 if (test_read(dtype) == OK) {
1354 /* The test succeeded, use this knowledge to limit the
1355 * drive class to match the density just read.
1357 f_fp->fl_class &= top->t_class;
1358 return(OK);
1360 /* Test failed, wrong density or did it time out? */
1361 if (f_busy == BSY_WAKEN) break;
1363 f_fp->fl_density = NO_DENS;
1364 return(EIO); /* nothing worked */
1367 /*===========================================================================*
1368 * test_read *
1369 *===========================================================================*/
1370 PRIVATE int test_read(int density)
1372 /* Try to read the highest numbered sector on cylinder 2. Not all floppy
1373 * types have as many sectors per track, and trying cylinder 2 finds the
1374 * ones that need double stepping.
1376 int device;
1377 off_t position;
1378 iovec_t iovec1;
1379 int result;
1381 f_fp->fl_density = density;
1382 device = ((density + 1) << DEV_TYPE_SHIFT) + f_drive;
1384 (void) f_prepare(device);
1385 position = (off_t) f_dp->test << SECTOR_SHIFT;
1386 iovec1.iov_addr = (vir_bytes) floppy_buf;
1387 iovec1.iov_size = SECTOR_SIZE;
1388 result = f_transfer(SELF, DEV_GATHER_S, cvul64(position), &iovec1, 1);
1390 if (iovec1.iov_size != 0) return(EIO);
1392 partition(&f_dtab, f_drive, P_FLOPPY, 0);
1393 return(OK);
1396 /*===========================================================================*
1397 * f_geometry *
1398 *===========================================================================*/
1399 PRIVATE void f_geometry(struct partition *entry)
1401 entry->cylinders = f_dp->cyls;
1402 entry->heads = NR_HEADS;
1403 entry->sectors = f_sectors;