coverity appeasement
[minix.git] / lib / libcrypt / crypt.c
blob6050963a642219c0f1c75a6c5c3521c00dfaea6c
1 /* $NetBSD: crypt.c,v 1.28 2009/05/01 00:28:17 perry Exp $ */
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Tom Truscott.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #include <sys/cdefs.h>
36 #if !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
39 #else
40 __RCSID("$NetBSD: crypt.c,v 1.28 2009/05/01 00:28:17 perry Exp $");
41 #endif
42 #endif /* not lint */
44 #include <limits.h>
45 #include <pwd.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
49 #include <stdio.h>
50 #endif
52 #include "crypt.h"
55 * UNIX password, and DES, encryption.
56 * By Tom Truscott, trt@rti.rti.org,
57 * from algorithms by Robert W. Baldwin and James Gillogly.
59 * References:
60 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
61 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
63 * "Password Security: A Case History," R. Morris and Ken Thompson,
64 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
66 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
67 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
70 /* ===== Configuration ==================== */
73 * define "MUST_ALIGN" if your compiler cannot load/store
74 * long integers at arbitrary (e.g. odd) memory locations.
75 * (Either that or never pass unaligned addresses to des_cipher!)
77 #if !defined(__vax__) && !defined(__i386__)
78 #define MUST_ALIGN
79 #endif
81 #ifdef CHAR_BITS
82 #if CHAR_BITS != 8
83 #error C_block structure assumes 8 bit characters
84 #endif
85 #endif
88 * define "B64" to be the declaration for a 64 bit integer.
89 * XXX this feature is currently unused, see "endian" comment below.
91 #if defined(cray)
92 #define B64 long
93 #endif
94 #if defined(convex)
95 #define B64 long long
96 #endif
99 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100 * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
101 * little effect on crypt().
103 #if defined(notdef)
104 #define LARGEDATA
105 #endif
107 /* compile with "-DSTATIC=void" when profiling */
108 #ifndef STATIC
109 #define STATIC static void
110 #endif
112 /* ==================================== */
115 * Cipher-block representation (Bob Baldwin):
117 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
118 * representation is to store one bit per byte in an array of bytes. Bit N of
119 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121 * first byte, 9..16 in the second, and so on. The DES spec apparently has
122 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124 * the MSB of the first byte. Specifically, the 64-bit input data and key are
125 * converted to LSB format, and the output 64-bit block is converted back into
126 * MSB format.
128 * DES operates internally on groups of 32 bits which are expanded to 48 bits
129 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
130 * the computation, the expansion is applied only once, the expanded
131 * representation is maintained during the encryption, and a compression
132 * permutation is applied only at the end. To speed up the S-box lookups,
133 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
135 * most significant ones. The low two bits of each byte are zero. (Thus,
136 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137 * first byte in the eight byte representation, bit 2 of the 48 bit value is
138 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
139 * used, in which the output is the 64 bit result of an S-box lookup which
140 * has been permuted by P and expanded by E, and is ready for use in the next
141 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
143 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
144 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
145 * 8*64*8 = 4K bytes.
147 * To speed up bit-parallel operations (such as XOR), the 8 byte
148 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149 * machines which support it, a 64 bit value "b64". This data structure,
150 * "C_block", has two problems. First, alignment restrictions must be
151 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
152 * the architecture becomes visible.
154 * The byte-order problem is unfortunate, since on the one hand it is good
155 * to have a machine-independent C_block representation (bits 1..8 in the
156 * first byte, etc.), and on the other hand it is good for the LSB of the
157 * first byte to be the LSB of i0. We cannot have both these things, so we
158 * currently use the "little-endian" representation and avoid any multi-byte
159 * operations that depend on byte order. This largely precludes use of the
160 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
161 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
162 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
164 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165 * requires a 128 kilobyte table, so perhaps this is not a big loss.
167 * Permutation representation (Jim Gillogly):
169 * A transformation is defined by its effect on each of the 8 bytes of the
170 * 64-bit input. For each byte we give a 64-bit output that has the bits in
171 * the input distributed appropriately. The transformation is then the OR
172 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
173 * each transformation. Unless LARGEDATA is defined, however, a more compact
174 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
176 * is slower but tolerable, particularly for password encryption in which
177 * the SPE transformation is iterated many times. The small tables total 9K
178 * bytes, the large tables total 72K bytes.
180 * The transformations used are:
181 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182 * This is done by collecting the 32 even-numbered bits and applying
183 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
184 * bits and applying the same transformation. Since there are only
185 * 32 input bits, the IE3264 transformation table is half the size of
186 * the usual table.
187 * CF6464: Compression, final permutation, and LSB->MSB conversion.
188 * This is done by two trivial 48->32 bit compressions to obtain
189 * a 64-bit block (the bit numbering is given in the "CIFP" table)
190 * followed by a 64->64 bit "cleanup" transformation. (It would
191 * be possible to group the bits in the 64-bit block so that 2
192 * identical 32->32 bit transformations could be used instead,
193 * saving a factor of 4 in space and possibly 2 in time, but
194 * byte-ordering and other complications rear their ugly head.
195 * Similar opportunities/problems arise in the key schedule
196 * transforms.)
197 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198 * This admittedly baroque 64->64 bit transformation is used to
199 * produce the first code (in 8*(6+2) format) of the key schedule.
200 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201 * It would be possible to define 15 more transformations, each
202 * with a different rotation, to generate the entire key schedule.
203 * To save space, however, we instead permute each code into the
204 * next by using a transformation that "undoes" the PC2 permutation,
205 * rotates the code, and then applies PC2. Unfortunately, PC2
206 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207 * invertible. We get around that problem by using a modified PC2
208 * which retains the 8 otherwise-lost bits in the unused low-order
209 * bits of each byte. The low-order bits are cleared when the
210 * codes are stored into the key schedule.
211 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212 * This is faster than applying PC2ROT[0] twice,
214 * The Bell Labs "salt" (Bob Baldwin):
216 * The salting is a simple permutation applied to the 48-bit result of E.
217 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
219 * 16777216 possible values. (The original salt was 12 bits and could not
220 * swap bits 13..24 with 36..48.)
222 * It is possible, but ugly, to warp the SPE table to account for the salt
223 * permutation. Fortunately, the conditional bit swapping requires only
224 * about four machine instructions and can be done on-the-fly with about an
225 * 8% performance penalty.
228 typedef union {
229 unsigned char b[8];
230 struct {
231 int32_t i0;
232 int32_t i1;
233 } b32;
234 #if defined(B64)
235 B64 b64;
236 #endif
237 } C_block;
240 * Convert twenty-four-bit long in host-order
241 * to six bits (and 2 low-order zeroes) per char little-endian format.
243 #define TO_SIX_BIT(rslt, src) { \
244 C_block cvt; \
245 cvt.b[0] = src; src >>= 6; \
246 cvt.b[1] = src; src >>= 6; \
247 cvt.b[2] = src; src >>= 6; \
248 cvt.b[3] = src; \
249 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
253 * These macros may someday permit efficient use of 64-bit integers.
255 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
256 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
257 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
258 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
260 #define DCL_BLOCK(d,d0,d1) int32_t d0, d1
262 #if defined(LARGEDATA)
263 /* Waste memory like crazy. Also, do permutations in line */
264 #define LGCHUNKBITS 3
265 #define CHUNKBITS (1<<LGCHUNKBITS)
266 #define PERM6464(d,d0,d1,cpp,p) \
267 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
268 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
269 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
270 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
271 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
272 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
273 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
274 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275 #define PERM3264(d,d0,d1,cpp,p) \
276 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
277 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
278 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
279 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280 #else
281 /* "small data" */
282 #define LGCHUNKBITS 2
283 #define CHUNKBITS (1<<LGCHUNKBITS)
284 #define PERM6464(d,d0,d1,cpp,p) \
285 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286 #define PERM3264(d,d0,d1,cpp,p) \
287 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288 #endif /* LARGEDATA */
290 STATIC init_des(void);
291 STATIC init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
292 const unsigned char [64], int, int);
293 #ifndef LARGEDATA
294 STATIC permute(const unsigned char *, C_block *, C_block *, int);
295 #endif
296 #ifdef DEBUG
297 STATIC prtab(const char *, unsigned char *, int);
298 #endif
301 #ifndef LARGEDATA
302 STATIC
303 permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
305 DCL_BLOCK(D,D0,D1);
306 C_block *tp;
307 int t;
309 ZERO(D,D0,D1);
310 do {
311 t = *cp++;
312 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
313 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 } while (--chars_in > 0);
315 STORE(D,D0,D1,*out);
317 #endif /* LARGEDATA */
320 /* ===== (mostly) Standard DES Tables ==================== */
322 static const unsigned char IP[] = { /* initial permutation */
323 58, 50, 42, 34, 26, 18, 10, 2,
324 60, 52, 44, 36, 28, 20, 12, 4,
325 62, 54, 46, 38, 30, 22, 14, 6,
326 64, 56, 48, 40, 32, 24, 16, 8,
327 57, 49, 41, 33, 25, 17, 9, 1,
328 59, 51, 43, 35, 27, 19, 11, 3,
329 61, 53, 45, 37, 29, 21, 13, 5,
330 63, 55, 47, 39, 31, 23, 15, 7,
333 /* The final permutation is the inverse of IP - no table is necessary */
335 static const unsigned char ExpandTr[] = { /* expansion operation */
336 32, 1, 2, 3, 4, 5,
337 4, 5, 6, 7, 8, 9,
338 8, 9, 10, 11, 12, 13,
339 12, 13, 14, 15, 16, 17,
340 16, 17, 18, 19, 20, 21,
341 20, 21, 22, 23, 24, 25,
342 24, 25, 26, 27, 28, 29,
343 28, 29, 30, 31, 32, 1,
346 static const unsigned char PC1[] = { /* permuted choice table 1 */
347 57, 49, 41, 33, 25, 17, 9,
348 1, 58, 50, 42, 34, 26, 18,
349 10, 2, 59, 51, 43, 35, 27,
350 19, 11, 3, 60, 52, 44, 36,
352 63, 55, 47, 39, 31, 23, 15,
353 7, 62, 54, 46, 38, 30, 22,
354 14, 6, 61, 53, 45, 37, 29,
355 21, 13, 5, 28, 20, 12, 4,
358 static const unsigned char Rotates[] = {/* PC1 rotation schedule */
359 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
362 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
363 static const unsigned char PC2[] = { /* permuted choice table 2 */
364 9, 18, 14, 17, 11, 24, 1, 5,
365 22, 25, 3, 28, 15, 6, 21, 10,
366 35, 38, 23, 19, 12, 4, 26, 8,
367 43, 54, 16, 7, 27, 20, 13, 2,
369 0, 0, 41, 52, 31, 37, 47, 55,
370 0, 0, 30, 40, 51, 45, 33, 48,
371 0, 0, 44, 49, 39, 56, 34, 53,
372 0, 0, 46, 42, 50, 36, 29, 32,
375 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
376 /* S[1] */
377 { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
378 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
379 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
380 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
381 /* S[2] */
382 { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
383 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
384 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
385 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
386 /* S[3] */
387 { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
388 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
389 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
390 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
391 /* S[4] */
392 { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
393 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
394 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
395 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
396 /* S[5] */
397 { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
398 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
399 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
400 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
401 /* S[6] */
402 { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
403 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
404 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
405 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
406 /* S[7] */
407 { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
408 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
409 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
410 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
411 /* S[8] */
412 { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
413 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
414 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
415 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
418 static const unsigned char P32Tr[] = { /* 32-bit permutation function */
419 16, 7, 20, 21,
420 29, 12, 28, 17,
421 1, 15, 23, 26,
422 5, 18, 31, 10,
423 2, 8, 24, 14,
424 32, 27, 3, 9,
425 19, 13, 30, 6,
426 22, 11, 4, 25,
429 static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
430 1, 2, 3, 4, 17, 18, 19, 20,
431 5, 6, 7, 8, 21, 22, 23, 24,
432 9, 10, 11, 12, 25, 26, 27, 28,
433 13, 14, 15, 16, 29, 30, 31, 32,
435 33, 34, 35, 36, 49, 50, 51, 52,
436 37, 38, 39, 40, 53, 54, 55, 56,
437 41, 42, 43, 44, 57, 58, 59, 60,
438 45, 46, 47, 48, 61, 62, 63, 64,
441 static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
442 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
445 /* ===== Tables that are initialized at run time ==================== */
448 static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
450 /* Initial key schedule permutation */
451 static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
453 /* Subsequent key schedule rotation permutations */
454 static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
456 /* Initial permutation/expansion table */
457 static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
459 /* Table that combines the S, P, and E operations. */
460 static int32_t SPE[2][8][64];
462 /* compressed/interleaved => final permutation table */
463 static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
466 /* ==================================== */
469 static C_block constdatablock; /* encryption constant */
470 static char cryptresult[1+4+4+11+1]; /* encrypted result */
474 * Return a pointer to static data consisting of the "setting"
475 * followed by an encryption produced by the "key" and "setting".
477 char *
478 crypt(const char *key, const char *setting)
480 char *encp;
481 int32_t i;
482 int t;
483 int32_t salt;
484 int num_iter, salt_size;
485 C_block keyblock, rsltblock;
487 /* Non-DES encryption schemes hook in here. */
488 if (setting[0] == _PASSWORD_NONDES) {
489 switch (setting[1]) {
490 case '2':
491 return (__bcrypt(key, setting));
492 case 's':
493 return (__crypt_sha1(key, setting));
494 case '1':
495 default:
496 return (__md5crypt(key, setting));
500 for (i = 0; i < 8; i++) {
501 if ((t = 2*(unsigned char)(*key)) != 0)
502 key++;
503 keyblock.b[i] = t;
505 if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
506 return (NULL);
508 encp = &cryptresult[0];
509 switch (*setting) {
510 case _PASSWORD_EFMT1:
512 * Involve the rest of the password 8 characters at a time.
514 while (*key) {
515 if (des_cipher((char *)(void *)&keyblock,
516 (char *)(void *)&keyblock, 0L, 1))
517 return (NULL);
518 for (i = 0; i < 8; i++) {
519 if ((t = 2*(unsigned char)(*key)) != 0)
520 key++;
521 keyblock.b[i] ^= t;
523 if (des_setkey((char *)keyblock.b))
524 return (NULL);
527 *encp++ = *setting++;
529 /* get iteration count */
530 num_iter = 0;
531 for (i = 4; --i >= 0; ) {
532 if ((t = (unsigned char)setting[i]) == '\0')
533 t = '.';
534 encp[i] = t;
535 num_iter = (num_iter<<6) | a64toi[t];
537 setting += 4;
538 encp += 4;
539 salt_size = 4;
540 break;
541 default:
542 num_iter = 25;
543 salt_size = 2;
546 salt = 0;
547 for (i = salt_size; --i >= 0; ) {
548 if ((t = (unsigned char)setting[i]) == '\0')
549 t = '.';
550 encp[i] = t;
551 salt = (salt<<6) | a64toi[t];
553 encp += salt_size;
554 if (des_cipher((char *)(void *)&constdatablock,
555 (char *)(void *)&rsltblock, salt, num_iter))
556 return (NULL);
559 * Encode the 64 cipher bits as 11 ascii characters.
561 i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
562 rsltblock.b[2];
563 encp[3] = itoa64[i&0x3f]; i >>= 6;
564 encp[2] = itoa64[i&0x3f]; i >>= 6;
565 encp[1] = itoa64[i&0x3f]; i >>= 6;
566 encp[0] = itoa64[i]; encp += 4;
567 i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
568 rsltblock.b[5];
569 encp[3] = itoa64[i&0x3f]; i >>= 6;
570 encp[2] = itoa64[i&0x3f]; i >>= 6;
571 encp[1] = itoa64[i&0x3f]; i >>= 6;
572 encp[0] = itoa64[i]; encp += 4;
573 i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
574 encp[2] = itoa64[i&0x3f]; i >>= 6;
575 encp[1] = itoa64[i&0x3f]; i >>= 6;
576 encp[0] = itoa64[i];
578 encp[3] = 0;
580 return (cryptresult);
585 * The Key Schedule, filled in by des_setkey() or setkey().
587 #define KS_SIZE 16
588 static C_block KS[KS_SIZE];
591 * Set up the key schedule from the key.
594 des_setkey(const char *key)
596 DCL_BLOCK(K, K0, K1);
597 C_block *help, *ptabp;
598 int i;
599 static int des_ready = 0;
601 if (!des_ready) {
602 init_des();
603 des_ready = 1;
606 PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
607 help = &KS[0];
608 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
609 for (i = 1; i < 16; i++) {
610 help++;
611 STORE(K,K0,K1,*help);
612 ptabp = (C_block *)PC2ROT[Rotates[i]-1];
613 PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
614 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
616 return (0);
620 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
621 * iterations of DES, using the given 24-bit salt and the pre-computed key
622 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
624 * NOTE: the performance of this routine is critically dependent on your
625 * compiler and machine architecture.
628 des_cipher(const char *in, char *out, long salt, int num_iter)
630 /* variables that we want in registers, most important first */
631 #if defined(pdp11)
632 int j;
633 #endif
634 int32_t L0, L1, R0, R1, k;
635 C_block *kp;
636 int ks_inc, loop_count;
637 C_block B;
639 L0 = salt;
640 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
642 #if defined(__vax__) || defined(pdp11)
643 salt = ~salt; /* "x &~ y" is faster than "x & y". */
644 #define SALT (~salt)
645 #else
646 #define SALT salt
647 #endif
649 #if defined(MUST_ALIGN)
650 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
651 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
652 LOAD(L,L0,L1,B);
653 #else
654 LOAD(L,L0,L1,*(const C_block *)in);
655 #endif
656 LOADREG(R,R0,R1,L,L0,L1);
657 L0 &= 0x55555555L;
658 L1 &= 0x55555555L;
659 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
660 R0 &= 0xaaaaaaaaL;
661 R1 = (R1 >> 1) & 0x55555555L;
662 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
663 STORE(L,L0,L1,B);
664 PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
665 PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
667 if (num_iter >= 0)
668 { /* encryption */
669 kp = &KS[0];
670 ks_inc = sizeof(*kp);
672 else
673 { /* decryption */
674 num_iter = -num_iter;
675 kp = &KS[KS_SIZE-1];
676 ks_inc = -(long)sizeof(*kp);
679 while (--num_iter >= 0) {
680 loop_count = 8;
681 do {
683 #define SPTAB(t, i) \
684 (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
685 #if defined(gould)
686 /* use this if B.b[i] is evaluated just once ... */
687 #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
688 #else
689 #if defined(pdp11)
690 /* use this if your "long" int indexing is slow */
691 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
692 #else
693 /* use this if "k" is allocated to a register ... */
694 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
695 #endif
696 #endif
698 #define CRUNCH(p0, p1, q0, q1) \
699 k = (q0 ^ q1) & SALT; \
700 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
701 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
702 kp = (C_block *)((char *)kp+ks_inc); \
704 DOXOR(p0, p1, 0); \
705 DOXOR(p0, p1, 1); \
706 DOXOR(p0, p1, 2); \
707 DOXOR(p0, p1, 3); \
708 DOXOR(p0, p1, 4); \
709 DOXOR(p0, p1, 5); \
710 DOXOR(p0, p1, 6); \
711 DOXOR(p0, p1, 7);
713 CRUNCH(L0, L1, R0, R1);
714 CRUNCH(R0, R1, L0, L1);
715 } while (--loop_count != 0);
716 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
719 /* swap L and R */
720 L0 ^= R0; L1 ^= R1;
721 R0 ^= L0; R1 ^= L1;
722 L0 ^= R0; L1 ^= R1;
725 /* store the encrypted (or decrypted) result */
726 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
727 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
728 STORE(L,L0,L1,B);
729 PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
730 #if defined(MUST_ALIGN)
731 STORE(L,L0,L1,B);
732 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
733 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
734 #else
735 STORE(L,L0,L1,*(C_block *)out);
736 #endif
737 return (0);
742 * Initialize various tables. This need only be done once. It could even be
743 * done at compile time, if the compiler were capable of that sort of thing.
745 STATIC
746 init_des(void)
748 int i, j;
749 int32_t k;
750 int tableno;
751 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
754 * table that converts chars "./0-9A-Za-z"to integers 0-63.
756 for (i = 0; i < 64; i++)
757 a64toi[itoa64[i]] = i;
760 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
762 for (i = 0; i < 64; i++)
763 perm[i] = 0;
764 for (i = 0; i < 64; i++) {
765 if ((k = PC2[i]) == 0)
766 continue;
767 k += Rotates[0]-1;
768 if ((k%28) < Rotates[0]) k -= 28;
769 k = PC1[k];
770 if (k > 0) {
771 k--;
772 k = (k|07) - (k&07);
773 k++;
775 perm[i] = k;
777 #ifdef DEBUG
778 prtab("pc1tab", perm, 8);
779 #endif
780 init_perm(PC1ROT, perm, 8, 8);
783 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
785 for (j = 0; j < 2; j++) {
786 unsigned char pc2inv[64];
787 for (i = 0; i < 64; i++)
788 perm[i] = pc2inv[i] = 0;
789 for (i = 0; i < 64; i++) {
790 if ((k = PC2[i]) == 0)
791 continue;
792 pc2inv[k-1] = i+1;
794 for (i = 0; i < 64; i++) {
795 if ((k = PC2[i]) == 0)
796 continue;
797 k += j;
798 if ((k%28) <= j) k -= 28;
799 perm[i] = pc2inv[k];
801 #ifdef DEBUG
802 prtab("pc2tab", perm, 8);
803 #endif
804 init_perm(PC2ROT[j], perm, 8, 8);
808 * Bit reverse, then initial permutation, then expansion.
810 for (i = 0; i < 8; i++) {
811 for (j = 0; j < 8; j++) {
812 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
813 if (k > 32)
814 k -= 32;
815 else if (k > 0)
816 k--;
817 if (k > 0) {
818 k--;
819 k = (k|07) - (k&07);
820 k++;
822 perm[i*8+j] = k;
825 #ifdef DEBUG
826 prtab("ietab", perm, 8);
827 #endif
828 init_perm(IE3264, perm, 4, 8);
831 * Compression, then final permutation, then bit reverse.
833 for (i = 0; i < 64; i++) {
834 k = IP[CIFP[i]-1];
835 if (k > 0) {
836 k--;
837 k = (k|07) - (k&07);
838 k++;
840 perm[k-1] = i+1;
842 #ifdef DEBUG
843 prtab("cftab", perm, 8);
844 #endif
845 init_perm(CF6464, perm, 8, 8);
848 * SPE table
850 for (i = 0; i < 48; i++)
851 perm[i] = P32Tr[ExpandTr[i]-1];
852 for (tableno = 0; tableno < 8; tableno++) {
853 for (j = 0; j < 64; j++) {
854 k = (((j >> 0) &01) << 5)|
855 (((j >> 1) &01) << 3)|
856 (((j >> 2) &01) << 2)|
857 (((j >> 3) &01) << 1)|
858 (((j >> 4) &01) << 0)|
859 (((j >> 5) &01) << 4);
860 k = S[tableno][k];
861 k = (((k >> 3)&01) << 0)|
862 (((k >> 2)&01) << 1)|
863 (((k >> 1)&01) << 2)|
864 (((k >> 0)&01) << 3);
865 for (i = 0; i < 32; i++)
866 tmp32[i] = 0;
867 for (i = 0; i < 4; i++)
868 tmp32[4 * tableno + i] = (k >> i) & 01;
869 k = 0;
870 for (i = 24; --i >= 0; )
871 k = (k<<1) | tmp32[perm[i]-1];
872 TO_SIX_BIT(SPE[0][tableno][j], k);
873 k = 0;
874 for (i = 24; --i >= 0; )
875 k = (k<<1) | tmp32[perm[i+24]-1];
876 TO_SIX_BIT(SPE[1][tableno][j], k);
882 * Initialize "perm" to represent transformation "p", which rearranges
883 * (perhaps with expansion and/or contraction) one packed array of bits
884 * (of size "chars_in" characters) into another array (of size "chars_out"
885 * characters).
887 * "perm" must be all-zeroes on entry to this routine.
889 STATIC
890 init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
891 int chars_in, int chars_out)
893 int i, j, k, l;
895 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
896 l = p[k] - 1; /* where this bit comes from */
897 if (l < 0)
898 continue; /* output bit is always 0 */
899 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
900 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
901 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
902 if ((j & l) != 0)
903 perm[i][j].b[k>>3] |= 1<<(k&07);
909 * "setkey" routine (for backwards compatibility)
912 setkey(const char *key)
914 int i, j, k;
915 C_block keyblock;
917 for (i = 0; i < 8; i++) {
918 k = 0;
919 for (j = 0; j < 8; j++) {
920 k <<= 1;
921 k |= (unsigned char)*key++;
923 keyblock.b[i] = k;
925 return (des_setkey((char *)keyblock.b));
929 * "encrypt" routine (for backwards compatibility)
932 encrypt(char *block, int flag)
934 int i, j, k;
935 C_block cblock;
937 for (i = 0; i < 8; i++) {
938 k = 0;
939 for (j = 0; j < 8; j++) {
940 k <<= 1;
941 k |= (unsigned char)*block++;
943 cblock.b[i] = k;
945 if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
946 return (1);
947 for (i = 7; i >= 0; i--) {
948 k = cblock.b[i];
949 for (j = 7; j >= 0; j--) {
950 *--block = k&01;
951 k >>= 1;
954 return (0);
957 #ifdef DEBUG
958 STATIC
959 prtab(const char *s, unsigned char *t, int num_rows)
961 int i, j;
963 (void)printf("%s:\n", s);
964 for (i = 0; i < num_rows; i++) {
965 for (j = 0; j < 8; j++) {
966 (void)printf("%3d", t[i*8+j]);
968 (void)printf("\n");
970 (void)printf("\n");
972 #endif
974 #if defined(MAIN) || defined(UNIT_TEST)
975 #include <err.h>
978 main(int argc, char *argv[])
980 if (argc < 2)
981 errx(1, "Usage: %s password [salt]\n", argv[0]);
983 printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
984 exit(0);
986 #endif