1 /* $NetBSD: lfs_segment.c,v 1.222 2011/07/11 08:27:40 hannken Exp $ */
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant@hhhh.org>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.222 2011/07/11 08:27:40 hannken Exp $");
66 # define vndebug(vp, str) do { \
67 if (VTOI(vp)->i_flag & IN_CLEANING) \
68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
69 VTOI(vp)->i_number, (str), op)); \
72 # define vndebug(vp, str)
74 #define ivndebug(vp, str) \
75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
77 #if defined(_KERNEL_OPT)
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/namei.h>
84 #include <sys/kernel.h>
85 #include <sys/resourcevar.h>
90 #include <sys/vnode.h>
91 #include <sys/mount.h>
92 #include <sys/kauth.h>
93 #include <sys/syslog.h>
95 #include <miscfs/specfs/specdev.h>
96 #include <miscfs/fifofs/fifo.h>
98 #include <ufs/ufs/inode.h>
99 #include <ufs/ufs/dir.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
103 #include <ufs/lfs/lfs.h>
104 #include <ufs/lfs/lfs_extern.h>
107 #include <uvm/uvm_extern.h>
109 MALLOC_JUSTDEFINE(M_SEGMENT
, "LFS segment", "Segment for LFS");
111 static void lfs_generic_callback(struct buf
*, void (*)(struct buf
*));
112 static void lfs_free_aiodone(struct buf
*);
113 static void lfs_super_aiodone(struct buf
*);
114 static void lfs_cluster_aiodone(struct buf
*);
115 static void lfs_cluster_callback(struct buf
*);
118 * Determine if it's OK to start a partial in this segment, or if we need
119 * to go on to a new segment.
121 #define LFS_PARTIAL_FITS(fs) \
122 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
126 * Figure out whether we should do a checkpoint write or go ahead with
129 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
130 ((flags & SEGM_CLEAN) == 0 && \
131 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \
132 (flags & SEGM_CKP) || \
133 fs->lfs_nclean < LFS_MAX_ACTIVE)))
135 int lfs_match_fake(struct lfs
*, struct buf
*);
136 void lfs_newseg(struct lfs
*);
138 void lfs_shellsort(struct buf
**, int32_t *, int, int);
139 void lfs_supercallback(struct buf
*);
140 void lfs_updatemeta(struct segment
*);
141 void lfs_writesuper(struct lfs
*, daddr_t
);
142 int lfs_writevnodes(struct lfs
*fs
, struct mount
*mp
,
143 struct segment
*sp
, int dirops
);
145 int lfs_allclean_wakeup
; /* Cleaner wakeup address. */
146 int lfs_writeindir
= 1; /* whether to flush indir on non-ckp */
147 int lfs_clean_vnhead
= 0; /* Allow freeing to head of vn list */
148 int lfs_dirvcount
= 0; /* # active dirops */
150 /* Statistics Counters */
152 struct lfs_stats lfs_stats
;
154 /* op values to lfs_writevnodes */
161 * XXX KS - Set modification time on the Ifile, so the cleaner can
162 * read the fs mod time off of it. We don't set IN_UPDATE here,
163 * since we don't really need this to be flushed to disk (and in any
164 * case that wouldn't happen to the Ifile until we checkpoint).
167 lfs_imtime(struct lfs
*fs
)
172 ASSERT_MAYBE_SEGLOCK(fs
);
174 ip
= VTOI(fs
->lfs_ivnode
);
175 ip
->i_ffs1_mtime
= ts
.tv_sec
;
176 ip
->i_ffs1_mtimensec
= ts
.tv_nsec
;
180 * Ifile and meta data blocks are not marked busy, so segment writes MUST be
181 * single threaded. Currently, there are two paths into lfs_segwrite, sync()
182 * and getnewbuf(). They both mark the file system busy. Lfs_vflush()
183 * explicitly marks the file system busy. So lfs_segwrite is safe. I think.
186 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
189 lfs_vflush(struct vnode
*vp
)
194 struct buf
*bp
, *nbp
, *tbp
, *tnbp
;
201 fs
= VFSTOUFS(vp
->v_mount
)->um_lfs
;
205 ASSERT_NO_SEGLOCK(fs
);
206 if (ip
->i_flag
& IN_CLEANING
) {
207 ivndebug(vp
,"vflush/in_cleaning");
208 mutex_enter(&lfs_lock
);
209 LFS_CLR_UINO(ip
, IN_CLEANING
);
210 LFS_SET_UINO(ip
, IN_MODIFIED
);
211 mutex_exit(&lfs_lock
);
214 * Toss any cleaning buffers that have real counterparts
215 * to avoid losing new data.
217 mutex_enter(vp
->v_interlock
);
218 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
219 nbp
= LIST_NEXT(bp
, b_vnbufs
);
220 if (!LFS_IS_MALLOC_BUF(bp
))
223 * Look for pages matching the range covered
224 * by cleaning blocks. It's okay if more dirty
225 * pages appear, so long as none disappear out
228 if (bp
->b_lblkno
> 0 && vp
->v_type
== VREG
&&
229 vp
!= fs
->lfs_ivnode
) {
233 for (off
= lblktosize(fs
, bp
->b_lblkno
);
234 off
< lblktosize(fs
, bp
->b_lblkno
+ 1);
236 pg
= uvm_pagelookup(&vp
->v_uobj
, off
);
239 if ((pg
->flags
& PG_CLEAN
) == 0 ||
240 pmap_is_modified(pg
)) {
241 fs
->lfs_avail
+= btofsb(fs
,
243 wakeup(&fs
->lfs_avail
);
244 mutex_exit(vp
->v_interlock
);
246 mutex_enter(vp
->v_interlock
);
252 for (tbp
= LIST_FIRST(&vp
->v_dirtyblkhd
); tbp
;
255 tnbp
= LIST_NEXT(tbp
, b_vnbufs
);
256 if (tbp
->b_vp
== bp
->b_vp
257 && tbp
->b_lblkno
== bp
->b_lblkno
260 fs
->lfs_avail
+= btofsb(fs
,
262 wakeup(&fs
->lfs_avail
);
263 mutex_exit(vp
->v_interlock
);
265 mutex_enter(vp
->v_interlock
);
272 mutex_enter(vp
->v_interlock
);
275 /* If the node is being written, wait until that is done */
276 while (WRITEINPROG(vp
)) {
277 ivndebug(vp
,"vflush/writeinprog");
278 cv_wait(&vp
->v_cv
, vp
->v_interlock
);
280 mutex_exit(vp
->v_interlock
);
282 /* Protect against VI_XLOCK deadlock in vinvalbuf() */
283 lfs_seglock(fs
, SEGM_SYNC
);
285 /* If we're supposed to flush a freed inode, just toss it */
286 if (ip
->i_lfs_iflags
& LFSI_DELETED
) {
287 DLOG((DLOG_VNODE
, "lfs_vflush: ino %d freed, not flushing\n",
289 /* Drain v_numoutput */
290 mutex_enter(vp
->v_interlock
);
291 while (vp
->v_numoutput
> 0) {
292 cv_wait(&vp
->v_cv
, vp
->v_interlock
);
294 KASSERT(vp
->v_numoutput
== 0);
295 mutex_exit(vp
->v_interlock
);
297 mutex_enter(&bufcache_lock
);
298 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
299 nbp
= LIST_NEXT(bp
, b_vnbufs
);
301 KASSERT((bp
->b_flags
& B_GATHERED
) == 0);
302 if (bp
->b_oflags
& BO_DELWRI
) { /* XXX always true? */
303 fs
->lfs_avail
+= btofsb(fs
, bp
->b_bcount
);
304 wakeup(&fs
->lfs_avail
);
306 /* Copied from lfs_writeseg */
307 if (bp
->b_iodone
!= NULL
) {
308 mutex_exit(&bufcache_lock
);
310 mutex_enter(&bufcache_lock
);
314 mutex_enter(vp
->v_interlock
);
315 bp
->b_flags
&= ~(B_READ
| B_GATHERED
);
316 bp
->b_oflags
= (bp
->b_oflags
& ~BO_DELWRI
) | BO_DONE
;
319 mutex_exit(vp
->v_interlock
);
323 mutex_exit(&bufcache_lock
);
324 LFS_CLR_UINO(ip
, IN_CLEANING
);
325 LFS_CLR_UINO(ip
, IN_MODIFIED
| IN_ACCESSED
);
326 ip
->i_flag
&= ~IN_ALLMOD
;
327 DLOG((DLOG_VNODE
, "lfs_vflush: done not flushing ino %d\n",
331 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
336 fs
->lfs_flushvp
= vp
;
337 if (LFS_SHOULD_CHECKPOINT(fs
, fs
->lfs_sp
->seg_flags
)) {
338 error
= lfs_segwrite(vp
->v_mount
, SEGM_CKP
| SEGM_SYNC
);
339 fs
->lfs_flushvp
= NULL
;
340 KASSERT(fs
->lfs_flushvp_fakevref
== 0);
343 /* Make sure that any pending buffers get written */
344 mutex_enter(vp
->v_interlock
);
345 while (vp
->v_numoutput
> 0) {
346 cv_wait(&vp
->v_cv
, vp
->v_interlock
);
348 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
349 KASSERT(vp
->v_numoutput
== 0);
350 mutex_exit(vp
->v_interlock
);
358 lfs_writevnodes(fs
, vp
->v_mount
, sp
, VN_EMPTY
);
360 } else if ((ip
->i_flag
& IN_CLEANING
) &&
361 (fs
->lfs_sp
->seg_flags
& SEGM_CLEAN
)) {
362 ivndebug(vp
,"vflush/clean");
363 lfs_writevnodes(fs
, vp
->v_mount
, sp
, VN_CLEAN
);
365 } else if (lfs_dostats
) {
366 if (!VPISEMPTY(vp
) || (VTOI(vp
)->i_flag
& IN_ALLMOD
))
367 ++lfs_stats
.vflush_invoked
;
368 ivndebug(vp
,"vflush");
372 if (vp
->v_uflag
& VU_DIROP
) {
373 DLOG((DLOG_VNODE
, "lfs_vflush: flushing VU_DIROP\n"));
374 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
381 if (LIST_FIRST(&vp
->v_dirtyblkhd
) != NULL
) {
382 relock
= lfs_writefile(fs
, sp
, vp
);
385 * Might have to wait for the
386 * cleaner to run; but we're
387 * still not done with this vnode.
389 KDASSERT(ip
->i_number
!= LFS_IFILE_INUM
);
390 lfs_writeinode(fs
, sp
, ip
);
391 mutex_enter(&lfs_lock
);
392 LFS_SET_UINO(ip
, IN_MODIFIED
);
393 mutex_exit(&lfs_lock
);
394 lfs_writeseg(fs
, sp
);
396 lfs_segunlock_relock(fs
);
401 * If we begin a new segment in the middle of writing
402 * the Ifile, it creates an inconsistent checkpoint,
403 * since the Ifile information for the new segment
404 * is not up-to-date. Take care of this here by
405 * sending the Ifile through again in case there
406 * are newly dirtied blocks. But wait, there's more!
407 * This second Ifile write could *also* cross a segment
408 * boundary, if the first one was large. The second
409 * one is guaranteed to be no more than 8 blocks,
410 * though (two segment blocks and supporting indirects)
411 * so the third write *will not* cross the boundary.
413 if (vp
== fs
->lfs_ivnode
) {
414 lfs_writefile(fs
, sp
, vp
);
415 lfs_writefile(fs
, sp
, vp
);
419 log(LOG_NOTICE
, "lfs_vflush: looping count=%d\n", loopcount
);
421 } while (lfs_writeinode(fs
, sp
, ip
));
422 } while (lfs_writeseg(fs
, sp
) && ip
->i_number
== LFS_IFILE_INUM
);
426 if (sp
->seg_flags
& SEGM_SYNC
)
427 ++lfs_stats
.nsync_writes
;
428 if (sp
->seg_flags
& SEGM_CKP
)
429 ++lfs_stats
.ncheckpoints
;
432 * If we were called from somewhere that has already held the seglock
433 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
434 * the write to complete because we are still locked.
435 * Since lfs_vflush() must return the vnode with no dirty buffers,
436 * we must explicitly wait, if that is the case.
438 * We compare the iocount against 1, not 0, because it is
439 * artificially incremented by lfs_seglock().
441 mutex_enter(&lfs_lock
);
442 if (fs
->lfs_seglock
> 1) {
443 while (fs
->lfs_iocount
> 1)
444 (void)mtsleep(&fs
->lfs_iocount
, PRIBIO
+ 1,
445 "lfs_vflush", 0, &lfs_lock
);
447 mutex_exit(&lfs_lock
);
451 /* Wait for these buffers to be recovered by aiodoned */
452 mutex_enter(vp
->v_interlock
);
453 while (vp
->v_numoutput
> 0) {
454 cv_wait(&vp
->v_cv
, vp
->v_interlock
);
456 KASSERT(LIST_FIRST(&vp
->v_dirtyblkhd
) == NULL
);
457 KASSERT(vp
->v_numoutput
== 0);
458 mutex_exit(vp
->v_interlock
);
460 fs
->lfs_flushvp
= NULL
;
461 KASSERT(fs
->lfs_flushvp_fakevref
== 0);
467 lfs_writevnodes(struct lfs
*fs
, struct mount
*mp
, struct segment
*sp
, int op
)
471 int inodes_written
= 0, only_cleaning
;
476 /* start at last (newest) vnode. */
477 mutex_enter(&mntvnode_lock
);
478 TAILQ_FOREACH_REVERSE(vp
, &mp
->mnt_vnodelist
, vnodelst
, v_mntvnodes
) {
480 * If the vnode that we are about to sync is no longer
481 * associated with this mount point, start over.
483 if (vp
->v_mount
!= mp
) {
484 DLOG((DLOG_VNODE
, "lfs_writevnodes: starting over\n"));
486 * After this, pages might be busy
487 * due to our own previous putpages.
488 * Start actual segment write here to avoid deadlock.
490 mutex_exit(&mntvnode_lock
);
491 (void)lfs_writeseg(fs
, sp
);
495 mutex_enter(vp
->v_interlock
);
496 if (vp
->v_type
== VNON
|| vismarker(vp
) ||
497 (vp
->v_iflag
& VI_CLEAN
) != 0) {
498 mutex_exit(vp
->v_interlock
);
503 if ((op
== VN_DIROP
&& !(vp
->v_uflag
& VU_DIROP
)) ||
504 (op
!= VN_DIROP
&& op
!= VN_CLEAN
&&
505 (vp
->v_uflag
& VU_DIROP
))) {
506 mutex_exit(vp
->v_interlock
);
511 if (op
== VN_EMPTY
&& !VPISEMPTY(vp
)) {
512 mutex_exit(vp
->v_interlock
);
517 if (op
== VN_CLEAN
&& ip
->i_number
!= LFS_IFILE_INUM
518 && vp
!= fs
->lfs_flushvp
519 && !(ip
->i_flag
& IN_CLEANING
)) {
520 mutex_exit(vp
->v_interlock
);
521 vndebug(vp
,"cleaning");
525 mutex_exit(&mntvnode_lock
);
528 mutex_enter(&mntvnode_lock
);
534 * Write the inode/file if dirty and it's not the IFILE.
536 if ((ip
->i_flag
& IN_ALLMOD
) || !VPISEMPTY(vp
)) {
538 ((ip
->i_flag
& IN_ALLMOD
) == IN_CLEANING
);
540 if (ip
->i_number
!= LFS_IFILE_INUM
) {
541 error
= lfs_writefile(fs
, sp
, vp
);
544 if (error
== EAGAIN
) {
546 * This error from lfs_putpages
547 * indicates we need to drop
548 * the segment lock and start
549 * over after the cleaner has
550 * had a chance to run.
552 lfs_writeinode(fs
, sp
, ip
);
553 lfs_writeseg(fs
, sp
);
554 if (!VPISEMPTY(vp
) &&
556 !(ip
->i_flag
& IN_ALLMOD
)) {
557 mutex_enter(&lfs_lock
);
558 LFS_SET_UINO(ip
, IN_MODIFIED
);
559 mutex_exit(&lfs_lock
);
561 mutex_enter(&mntvnode_lock
);
564 error
= 0; /* XXX not quite right */
565 mutex_enter(&mntvnode_lock
);
569 if (!VPISEMPTY(vp
)) {
570 if (WRITEINPROG(vp
)) {
571 ivndebug(vp
,"writevnodes/write2");
572 } else if (!(ip
->i_flag
& IN_ALLMOD
)) {
573 mutex_enter(&lfs_lock
);
574 LFS_SET_UINO(ip
, IN_MODIFIED
);
575 mutex_exit(&lfs_lock
);
578 (void) lfs_writeinode(fs
, sp
, ip
);
583 if (lfs_clean_vnhead
&& only_cleaning
)
588 mutex_enter(&mntvnode_lock
);
590 mutex_exit(&mntvnode_lock
);
598 lfs_segwrite(struct mount
*mp
, int flags
)
606 int do_ckp
, did_ckp
, error
;
607 unsigned n
, segleft
, maxseg
, sn
, i
, curseg
;
614 fs
= VFSTOUFS(mp
)->um_lfs
;
615 ASSERT_MAYBE_SEGLOCK(fs
);
623 * Allocate a segment structure and enough space to hold pointers to
624 * the maximum possible number of buffers which can be described in a
625 * single summary block.
627 do_ckp
= LFS_SHOULD_CHECKPOINT(fs
, flags
);
629 lfs_seglock(fs
, flags
| (do_ckp
? SEGM_CKP
: 0));
631 if (sp
->seg_flags
& (SEGM_CLEAN
| SEGM_CKP
))
635 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
636 * in which case we have to flush *all* buffers off of this vnode.
637 * We don't care about other nodes, but write any non-dirop nodes
638 * anyway in anticipation of another getnewvnode().
640 * If we're cleaning we only write cleaning and ifile blocks, and
641 * no dirops, since otherwise we'd risk corruption in a crash.
643 if (sp
->seg_flags
& SEGM_CLEAN
)
644 lfs_writevnodes(fs
, mp
, sp
, VN_CLEAN
);
645 else if (!(sp
->seg_flags
& SEGM_FORCE_CKP
)) {
647 um_error
= lfs_writevnodes(fs
, mp
, sp
, VN_REG
);
649 if (do_ckp
|| fs
->lfs_dirops
== 0) {
651 lfs_writer_enter(fs
, "lfs writer");
654 error
= lfs_writevnodes(fs
, mp
, sp
, VN_DIROP
);
657 /* In case writevnodes errored out */
658 lfs_flush_dirops(fs
);
659 ((SEGSUM
*)(sp
->segsum
))->ss_flags
&= ~(SS_CONT
);
660 lfs_finalize_fs_seguse(fs
);
662 if (do_ckp
&& um_error
) {
663 lfs_segunlock_relock(fs
);
666 } while (do_ckp
&& um_error
!= 0);
670 * If we are doing a checkpoint, mark everything since the
671 * last checkpoint as no longer ACTIVE.
673 if (do_ckp
|| fs
->lfs_doifile
) {
674 segleft
= fs
->lfs_nseg
;
676 for (n
= 0; n
< fs
->lfs_segtabsz
; n
++) {
678 if (bread(fs
->lfs_ivnode
, fs
->lfs_cleansz
+ n
,
679 fs
->lfs_bsize
, NOCRED
, B_MODIFY
, &bp
))
680 panic("lfs_segwrite: ifile read");
681 segusep
= (SEGUSE
*)bp
->b_data
;
682 maxseg
= min(segleft
, fs
->lfs_sepb
);
683 for (i
= 0; i
< maxseg
; i
++) {
685 if (sn
!= dtosn(fs
, fs
->lfs_curseg
) &&
686 segusep
->su_flags
& SEGUSE_ACTIVE
) {
687 segusep
->su_flags
&= ~SEGUSE_ACTIVE
;
691 fs
->lfs_suflags
[fs
->lfs_activesb
][sn
] =
693 if (fs
->lfs_version
> 1)
697 ((SEGUSE_V1
*)segusep
+ 1);
701 error
= LFS_BWRITE_LOG(bp
); /* Ifile */
704 segleft
-= fs
->lfs_sepb
;
705 curseg
+= fs
->lfs_sepb
;
709 KASSERT(LFS_SEGLOCK_HELD(fs
));
712 if (do_ckp
|| fs
->lfs_doifile
) {
714 vn_lock(vp
, LK_EXCLUSIVE
);
718 LFS_ENTER_LOG("pretend", __FILE__
, __LINE__
, 0, 0, curproc
->p_pid
);
720 mutex_enter(&lfs_lock
);
721 fs
->lfs_flags
&= ~LFS_IFDIRTY
;
722 mutex_exit(&lfs_lock
);
726 if (LIST_FIRST(&vp
->v_dirtyblkhd
) != NULL
) {
728 * Ifile has no pages, so we don't need
729 * to check error return here.
731 lfs_writefile(fs
, sp
, vp
);
733 * Ensure the Ifile takes the current segment
734 * into account. See comment in lfs_vflush.
736 lfs_writefile(fs
, sp
, vp
);
737 lfs_writefile(fs
, sp
, vp
);
740 if (ip
->i_flag
& IN_ALLMOD
)
743 redo
= (do_ckp
? lfs_writeinode(fs
, sp
, ip
) : 0);
745 redo
= lfs_writeinode(fs
, sp
, ip
);
747 redo
+= lfs_writeseg(fs
, sp
);
748 mutex_enter(&lfs_lock
);
749 redo
+= (fs
->lfs_flags
& LFS_IFDIRTY
);
750 mutex_exit(&lfs_lock
);
753 log(LOG_NOTICE
, "lfs_segwrite: looping count=%d\n",
756 } while (redo
&& do_ckp
);
759 * Unless we are unmounting, the Ifile may continue to have
760 * dirty blocks even after a checkpoint, due to changes to
761 * inodes' atime. If we're checkpointing, it's "impossible"
762 * for other parts of the Ifile to be dirty after the loop
763 * above, since we hold the segment lock.
765 mutex_enter(vp
->v_interlock
);
766 if (LIST_EMPTY(&vp
->v_dirtyblkhd
)) {
767 LFS_CLR_UINO(ip
, IN_ALLMOD
);
772 LIST_FOREACH(bp
, &vp
->v_dirtyblkhd
, b_vnbufs
) {
773 if (bp
->b_lblkno
< fs
->lfs_cleansz
+
775 !(bp
->b_flags
& B_GATHERED
)) {
776 printf("ifile lbn %ld still dirty (flags %lx)\n",
783 panic("dirty blocks");
786 mutex_exit(vp
->v_interlock
);
789 (void) lfs_writeseg(fs
, sp
);
792 /* Note Ifile no longer needs to be written */
795 lfs_writer_leave(fs
);
798 * If we didn't write the Ifile, we didn't really do anything.
799 * That means that (1) there is a checkpoint on disk and (2)
800 * nothing has changed since it was written.
802 * Take the flags off of the segment so that lfs_segunlock
803 * doesn't have to write the superblock either.
805 if (do_ckp
&& !did_ckp
) {
806 sp
->seg_flags
&= ~SEGM_CKP
;
811 if (sp
->seg_flags
& SEGM_SYNC
)
812 ++lfs_stats
.nsync_writes
;
813 if (sp
->seg_flags
& SEGM_CKP
)
814 ++lfs_stats
.ncheckpoints
;
821 * Write the dirty blocks associated with a vnode.
824 lfs_writefile(struct lfs
*fs
, struct segment
*sp
, struct vnode
*vp
)
836 lfs_acquire_finfo(fs
, ip
->i_number
, ip
->i_gen
);
838 if (vp
->v_uflag
& VU_DIROP
)
839 ((SEGSUM
*)(sp
->segsum
))->ss_flags
|= (SS_DIROP
|SS_CONT
);
841 if (sp
->seg_flags
& SEGM_CLEAN
) {
842 lfs_gather(fs
, sp
, vp
, lfs_match_fake
);
844 * For a file being flushed, we need to write *all* blocks.
845 * This means writing the cleaning blocks first, and then
846 * immediately following with any non-cleaning blocks.
847 * The same is true of the Ifile since checkpoints assume
848 * that all valid Ifile blocks are written.
850 if (IS_FLUSHING(fs
, vp
) || vp
== fs
->lfs_ivnode
) {
851 lfs_gather(fs
, sp
, vp
, lfs_match_data
);
853 * Don't call VOP_PUTPAGES: if we're flushing,
854 * we've already done it, and the Ifile doesn't
855 * use the page cache.
859 lfs_gather(fs
, sp
, vp
, lfs_match_data
);
861 * If we're flushing, we've already called VOP_PUTPAGES
862 * so don't do it again. Otherwise, we want to write
863 * everything we've got.
865 if (!IS_FLUSHING(fs
, vp
)) {
866 mutex_enter(vp
->v_interlock
);
867 error
= VOP_PUTPAGES(vp
, 0, 0,
868 PGO_CLEANIT
| PGO_ALLPAGES
| PGO_LOCKED
);
873 * It may not be necessary to write the meta-data blocks at this point,
874 * as the roll-forward recovery code should be able to reconstruct the
877 * We have to write them anyway, though, under two conditions: (1) the
878 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
881 * BUT if we are cleaning, we might have indirect blocks that refer to
882 * new blocks not being written yet, in addition to fragments being
883 * moved out of a cleaned segment. If that is the case, don't
884 * write the indirect blocks, or the finfo will have a small block
885 * in the middle of it!
886 * XXX in this case isn't the inode size wrong too?
889 if (sp
->seg_flags
& SEGM_CLEAN
) {
890 for (i
= 0; i
< NDADDR
; i
++)
891 if (ip
->i_lfs_fragsize
[i
] > 0 &&
892 ip
->i_lfs_fragsize
[i
] < fs
->lfs_bsize
)
897 panic("lfs_writefile: more than one fragment!");
899 if (IS_FLUSHING(fs
, vp
) ||
900 (frag
== 0 && (lfs_writeindir
|| (sp
->seg_flags
& SEGM_CKP
)))) {
901 lfs_gather(fs
, sp
, vp
, lfs_match_indir
);
902 lfs_gather(fs
, sp
, vp
, lfs_match_dindir
);
903 lfs_gather(fs
, sp
, vp
, lfs_match_tindir
);
906 lfs_release_finfo(fs
);
912 * Update segment accounting to reflect this inode's change of address.
915 lfs_update_iaddr(struct lfs
*fs
, struct segment
*sp
, struct inode
*ip
, daddr_t ndaddr
)
922 int redo_ifile
, error
;
928 * If updating the ifile, update the super-block. Update the disk
929 * address and access times for this inode in the ifile.
932 if (ino
== LFS_IFILE_INUM
) {
933 daddr
= fs
->lfs_idaddr
;
934 fs
->lfs_idaddr
= dbtofsb(fs
, ndaddr
);
936 LFS_IENTRY(ifp
, fs
, ino
, bp
);
937 daddr
= ifp
->if_daddr
;
938 ifp
->if_daddr
= dbtofsb(fs
, ndaddr
);
939 error
= LFS_BWRITE_LOG(bp
); /* Ifile */
943 * If this is the Ifile and lfs_offset is set to the first block
944 * in the segment, dirty the new segment's accounting block
945 * (XXX should already be dirty?) and tell the caller to do it again.
947 if (ip
->i_number
== LFS_IFILE_INUM
) {
948 sn
= dtosn(fs
, fs
->lfs_offset
);
949 if (sntod(fs
, sn
) + btofsb(fs
, fs
->lfs_sumsize
) ==
951 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
952 KASSERT(bp
->b_oflags
& BO_DELWRI
);
953 LFS_WRITESEGENTRY(sup
, fs
, sn
, bp
);
954 /* fs->lfs_flags |= LFS_IFDIRTY; */
960 * The inode's last address should not be in the current partial
961 * segment, except under exceptional circumstances (lfs_writevnodes
962 * had to start over, and in the meantime more blocks were written
963 * to a vnode). Both inodes will be accounted to this segment
964 * in lfs_writeseg so we need to subtract the earlier version
965 * here anyway. The segment count can temporarily dip below
966 * zero here; keep track of how many duplicates we have in
967 * "dupino" so we don't panic below.
969 if (daddr
>= fs
->lfs_lastpseg
&& daddr
<= fs
->lfs_offset
) {
971 DLOG((DLOG_SEG
, "lfs_writeinode: last inode addr in current pseg "
972 "(ino %d daddr 0x%llx) ndupino=%d\n", ino
,
973 (long long)daddr
, sp
->ndupino
));
976 * Account the inode: it no longer belongs to its former segment,
977 * though it will not belong to the new segment until that segment
978 * is actually written.
980 if (daddr
!= LFS_UNUSED_DADDR
) {
981 u_int32_t oldsn
= dtosn(fs
, daddr
);
983 int ndupino
= (sp
->seg_number
== oldsn
) ? sp
->ndupino
: 0;
985 LFS_SEGENTRY(sup
, fs
, oldsn
, bp
);
988 sizeof (struct ufs1_dinode
) * ndupino
989 < sizeof (struct ufs1_dinode
)) {
990 printf("lfs_writeinode: negative bytes "
991 "(segment %" PRIu32
" short by %d, "
992 "oldsn=%" PRIu32
", cursn=%" PRIu32
993 ", daddr=%" PRId64
", su_nbytes=%u, "
996 (int)sizeof (struct ufs1_dinode
) *
997 (1 - sp
->ndupino
) - sup
->su_nbytes
,
998 oldsn
, sp
->seg_number
, daddr
,
999 (unsigned int)sup
->su_nbytes
,
1001 panic("lfs_writeinode: negative bytes");
1002 sup
->su_nbytes
= sizeof (struct ufs1_dinode
);
1005 DLOG((DLOG_SU
, "seg %d -= %d for ino %d inode\n",
1006 dtosn(fs
, daddr
), sizeof (struct ufs1_dinode
), ino
));
1007 sup
->su_nbytes
-= sizeof (struct ufs1_dinode
);
1009 (ino
== LFS_IFILE_INUM
&& !(bp
->b_flags
& B_GATHERED
));
1011 mutex_enter(&lfs_lock
);
1012 fs
->lfs_flags
|= LFS_IFDIRTY
;
1013 mutex_exit(&lfs_lock
);
1014 /* Don't double-account */
1015 fs
->lfs_idaddr
= 0x0;
1017 LFS_WRITESEGENTRY(sup
, fs
, oldsn
, bp
); /* Ifile */
1024 lfs_writeinode(struct lfs
*fs
, struct segment
*sp
, struct inode
*ip
)
1027 struct ufs1_dinode
*cdp
;
1029 int32_t *daddrp
; /* XXX ondisk32 */
1036 if (!(ip
->i_flag
& IN_ALLMOD
))
1039 /* Can't write ifile when writer is not set */
1040 KASSERT(ip
->i_number
!= LFS_IFILE_INUM
|| fs
->lfs_writer
> 0 ||
1041 (sp
->seg_flags
& SEGM_CLEAN
));
1044 * If this is the Ifile, see if writing it here will generate a
1045 * temporary misaccounting. If it will, do the accounting and write
1046 * the blocks, postponing the inode write until the accounting is
1050 while (ip
->i_number
== LFS_IFILE_INUM
) {
1053 if (sp
->idp
== NULL
&& sp
->ibp
== NULL
&&
1054 (sp
->seg_bytes_left
< fs
->lfs_ibsize
||
1055 sp
->sum_bytes_left
< sizeof(int32_t))) {
1056 (void) lfs_writeseg(fs
, sp
);
1060 /* Look for dirty Ifile blocks */
1061 LIST_FOREACH(bp
, &fs
->lfs_ivnode
->v_dirtyblkhd
, b_vnbufs
) {
1062 if (!(bp
->b_flags
& B_GATHERED
)) {
1069 redo
= lfs_update_iaddr(fs
, sp
, ip
, 0x0);
1074 sp
->idp
->di_inumber
= 0;
1079 log(LOG_NOTICE
, "lfs_writeinode: looping count=%d\n", count
);
1080 lfs_writefile(fs
, sp
, fs
->lfs_ivnode
);
1083 /* Allocate a new inode block if necessary. */
1084 if ((ip
->i_number
!= LFS_IFILE_INUM
|| sp
->idp
== NULL
) &&
1086 /* Allocate a new segment if necessary. */
1087 if (sp
->seg_bytes_left
< fs
->lfs_ibsize
||
1088 sp
->sum_bytes_left
< sizeof(int32_t))
1089 (void) lfs_writeseg(fs
, sp
);
1091 /* Get next inode block. */
1092 daddr
= fs
->lfs_offset
;
1093 fs
->lfs_offset
+= btofsb(fs
, fs
->lfs_ibsize
);
1094 sp
->ibp
= *sp
->cbpp
++ =
1095 getblk(VTOI(fs
->lfs_ivnode
)->i_devvp
,
1096 fsbtodb(fs
, daddr
), fs
->lfs_ibsize
, 0, 0);
1099 /* Zero out inode numbers */
1100 for (i
= 0; i
< INOPB(fs
); ++i
)
1101 ((struct ufs1_dinode
*)sp
->ibp
->b_data
)[i
].di_inumber
=
1105 fs
->lfs_avail
-= btofsb(fs
, fs
->lfs_ibsize
);
1106 /* Set remaining space counters. */
1107 sp
->seg_bytes_left
-= fs
->lfs_ibsize
;
1108 sp
->sum_bytes_left
-= sizeof(int32_t);
1109 ndx
= fs
->lfs_sumsize
/ sizeof(int32_t) -
1110 sp
->ninodes
/ INOPB(fs
) - 1;
1111 ((int32_t *)(sp
->segsum
))[ndx
] = daddr
;
1114 /* Check VU_DIROP in case there is a new file with no data blocks */
1115 if (ITOV(ip
)->v_uflag
& VU_DIROP
)
1116 ((SEGSUM
*)(sp
->segsum
))->ss_flags
|= (SS_DIROP
|SS_CONT
);
1118 /* Update the inode times and copy the inode onto the inode page. */
1119 /* XXX kludge --- don't redirty the ifile just to put times on it */
1120 if (ip
->i_number
!= LFS_IFILE_INUM
)
1121 LFS_ITIMES(ip
, NULL
, NULL
, NULL
);
1124 * If this is the Ifile, and we've already written the Ifile in this
1125 * partial segment, just overwrite it (it's not on disk yet) and
1128 * XXX we know that the bp that we get the second time around has
1129 * already been gathered.
1131 if (ip
->i_number
== LFS_IFILE_INUM
&& sp
->idp
) {
1132 *(sp
->idp
) = *ip
->i_din
.ffs1_din
;
1133 ip
->i_lfs_osize
= ip
->i_size
;
1138 cdp
= ((struct ufs1_dinode
*)bp
->b_data
) + (sp
->ninodes
% INOPB(fs
));
1139 *cdp
= *ip
->i_din
.ffs1_din
;
1142 * If cleaning, link counts and directory file sizes cannot change,
1143 * since those would be directory operations---even if the file
1144 * we are writing is marked VU_DIROP we should write the old values.
1145 * If we're not cleaning, of course, update the values so we get
1146 * current values the next time we clean.
1148 if (sp
->seg_flags
& SEGM_CLEAN
) {
1149 if (ITOV(ip
)->v_uflag
& VU_DIROP
) {
1150 cdp
->di_nlink
= ip
->i_lfs_odnlink
;
1151 /* if (ITOV(ip)->v_type == VDIR) */
1152 cdp
->di_size
= ip
->i_lfs_osize
;
1155 ip
->i_lfs_odnlink
= cdp
->di_nlink
;
1156 ip
->i_lfs_osize
= ip
->i_size
;
1160 /* We can finish the segment accounting for truncations now */
1161 lfs_finalize_ino_seguse(fs
, ip
);
1164 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1165 * addresses to disk; possibly change the on-disk record of
1166 * the inode size, either by reverting to the previous size
1167 * (in the case of cleaning) or by verifying the inode's block
1168 * holdings (in the case of files being allocated as they are being
1170 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1171 * XXX count on disk wrong by the same amount. We should be
1172 * XXX able to "borrow" from lfs_avail and return it after the
1173 * XXX Ifile is written. See also in lfs_writeseg.
1176 /* Check file size based on highest allocated block */
1177 if (((ip
->i_ffs1_mode
& IFMT
) == IFREG
||
1178 (ip
->i_ffs1_mode
& IFMT
) == IFDIR
) &&
1179 ip
->i_size
> ((ip
->i_lfs_hiblk
+ 1) << fs
->lfs_bshift
)) {
1180 cdp
->di_size
= (ip
->i_lfs_hiblk
+ 1) << fs
->lfs_bshift
;
1181 DLOG((DLOG_SEG
, "lfs_writeinode: ino %d size %" PRId64
" -> %"
1182 PRId64
"\n", (int)ip
->i_number
, ip
->i_size
, cdp
->di_size
));
1184 if (ip
->i_lfs_effnblks
!= ip
->i_ffs1_blocks
) {
1185 DLOG((DLOG_SEG
, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1186 " at %x\n", ip
->i_number
, ip
->i_lfs_effnblks
,
1187 ip
->i_ffs1_blocks
, fs
->lfs_offset
));
1188 for (daddrp
= cdp
->di_db
; daddrp
< cdp
->di_ib
+ NIADDR
;
1190 if (*daddrp
== UNWRITTEN
) {
1191 DLOG((DLOG_SEG
, "lfs_writeinode: wiping UNWRITTEN\n"));
1199 * Check dinode held blocks against dinode size.
1200 * This should be identical to the check in lfs_vget().
1202 for (i
= (cdp
->di_size
+ fs
->lfs_bsize
- 1) >> fs
->lfs_bshift
;
1205 if ((cdp
->di_mode
& IFMT
) == IFLNK
)
1207 if (((cdp
->di_mode
& IFMT
) == IFBLK
||
1208 (cdp
->di_mode
& IFMT
) == IFCHR
) && i
== 0)
1210 if (cdp
->di_db
[i
] != 0) {
1212 lfs_dump_dinode(cdp
);
1214 panic("writing inconsistent inode");
1217 #endif /* DIAGNOSTIC */
1219 if (ip
->i_flag
& IN_CLEANING
)
1220 LFS_CLR_UINO(ip
, IN_CLEANING
);
1223 LFS_CLR_UINO(ip
, IN_ACCESSED
| IN_ACCESS
| IN_CHANGE
|
1224 IN_UPDATE
| IN_MODIFY
);
1225 if (ip
->i_lfs_effnblks
== ip
->i_ffs1_blocks
)
1226 LFS_CLR_UINO(ip
, IN_MODIFIED
);
1228 DLOG((DLOG_VNODE
, "lfs_writeinode: ino %d: real "
1229 "blks=%d, eff=%d\n", ip
->i_number
,
1230 ip
->i_ffs1_blocks
, ip
->i_lfs_effnblks
));
1234 if (ip
->i_number
== LFS_IFILE_INUM
) {
1235 /* We know sp->idp == NULL */
1236 sp
->idp
= ((struct ufs1_dinode
*)bp
->b_data
) +
1237 (sp
->ninodes
% INOPB(fs
));
1239 /* Not dirty any more */
1240 mutex_enter(&lfs_lock
);
1241 fs
->lfs_flags
&= ~LFS_IFDIRTY
;
1242 mutex_exit(&lfs_lock
);
1246 mutex_enter(&bufcache_lock
);
1249 mutex_exit(&bufcache_lock
);
1252 /* Increment inode count in segment summary block. */
1253 ++((SEGSUM
*)(sp
->segsum
))->ss_ninos
;
1255 /* If this page is full, set flag to allocate a new page. */
1256 if (++sp
->ninodes
% INOPB(fs
) == 0)
1259 redo_ifile
= lfs_update_iaddr(fs
, sp
, ip
, bp
->b_blkno
);
1261 KASSERT(redo_ifile
== 0);
1262 return (redo_ifile
);
1266 lfs_gatherblock(struct segment
*sp
, struct buf
*bp
, kmutex_t
*mptr
)
1272 ASSERT_SEGLOCK(sp
->fs
);
1274 * If full, finish this segment. We may be doing I/O, so
1275 * release and reacquire the splbio().
1279 panic ("lfs_gatherblock: Null vp in segment");
1282 blksinblk
= howmany(bp
->b_bcount
, fs
->lfs_bsize
);
1283 if (sp
->sum_bytes_left
< sizeof(int32_t) * blksinblk
||
1284 sp
->seg_bytes_left
< bp
->b_bcount
) {
1289 vers
= sp
->fip
->fi_version
;
1290 (void) lfs_writeseg(fs
, sp
);
1292 /* Add the current file to the segment summary. */
1293 lfs_acquire_finfo(fs
, VTOI(sp
->vp
)->i_number
, vers
);
1300 if (bp
->b_flags
& B_GATHERED
) {
1301 DLOG((DLOG_SEG
, "lfs_gatherblock: already gathered! Ino %d,"
1302 " lbn %" PRId64
"\n",
1303 sp
->fip
->fi_ino
, bp
->b_lblkno
));
1307 /* Insert into the buffer list, update the FINFO block. */
1308 bp
->b_flags
|= B_GATHERED
;
1311 for (j
= 0; j
< blksinblk
; j
++) {
1312 sp
->fip
->fi_blocks
[sp
->fip
->fi_nblocks
++] = bp
->b_lblkno
+ j
;
1313 /* This block's accounting moves from lfs_favail to lfs_avail */
1314 lfs_deregister_block(sp
->vp
, bp
->b_lblkno
+ j
);
1317 sp
->sum_bytes_left
-= sizeof(int32_t) * blksinblk
;
1318 sp
->seg_bytes_left
-= bp
->b_bcount
;
1323 lfs_gather(struct lfs
*fs
, struct segment
*sp
, struct vnode
*vp
,
1324 int (*match
)(struct lfs
*, struct buf
*))
1326 struct buf
*bp
, *nbp
;
1330 if (vp
->v_type
== VBLK
)
1332 KASSERT(sp
->vp
== NULL
);
1334 mutex_enter(&bufcache_lock
);
1336 #ifndef LFS_NO_BACKBUF_HACK
1337 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1338 # define BUF_OFFSET \
1339 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1340 # define BACK_BUF(BP) \
1341 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1342 # define BEG_OF_LIST \
1343 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1346 /* Find last buffer. */
1347 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
);
1348 bp
&& LIST_NEXT(bp
, b_vnbufs
) != NULL
;
1349 bp
= LIST_NEXT(bp
, b_vnbufs
))
1351 for (; bp
&& bp
!= BEG_OF_LIST
; bp
= nbp
) {
1353 #else /* LFS_NO_BACKBUF_HACK */
1355 for (bp
= LIST_FIRST(&vp
->v_dirtyblkhd
); bp
; bp
= nbp
) {
1356 nbp
= LIST_NEXT(bp
, b_vnbufs
);
1357 #endif /* LFS_NO_BACKBUF_HACK */
1358 if ((bp
->b_cflags
& BC_BUSY
) != 0 ||
1359 (bp
->b_flags
& B_GATHERED
) != 0 || !match(fs
, bp
)) {
1361 if (vp
== fs
->lfs_ivnode
&&
1362 (bp
->b_cflags
& BC_BUSY
) != 0 &&
1363 (bp
->b_flags
& B_GATHERED
) == 0)
1364 log(LOG_NOTICE
, "lfs_gather: ifile lbn %"
1365 PRId64
" busy (%x) at 0x%x",
1366 bp
->b_lblkno
, bp
->b_flags
,
1367 (unsigned)fs
->lfs_offset
);
1372 # ifdef LFS_USE_B_INVAL
1373 if ((bp
->b_flags
& BC_INVAL
) != 0 && bp
->b_iodone
== NULL
) {
1374 DLOG((DLOG_SEG
, "lfs_gather: lbn %" PRId64
1375 " is BC_INVAL\n", bp
->b_lblkno
));
1376 VOP_PRINT(bp
->b_vp
);
1378 # endif /* LFS_USE_B_INVAL */
1379 if (!(bp
->b_oflags
& BO_DELWRI
))
1380 panic("lfs_gather: bp not BO_DELWRI");
1381 if (!(bp
->b_flags
& B_LOCKED
)) {
1382 DLOG((DLOG_SEG
, "lfs_gather: lbn %" PRId64
1383 " blk %" PRId64
" not B_LOCKED\n",
1385 dbtofsb(fs
, bp
->b_blkno
)));
1386 VOP_PRINT(bp
->b_vp
);
1387 panic("lfs_gather: bp not B_LOCKED");
1390 if (lfs_gatherblock(sp
, bp
, &bufcache_lock
)) {
1395 mutex_exit(&bufcache_lock
);
1397 KASSERT(sp
->vp
== vp
);
1403 # define DEBUG_OOFF(n) do { \
1405 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1406 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \
1407 ", was 0x0 (or %" PRId64 ")\n", \
1408 (n), ip->i_number, lbn, ndaddr, daddr)); \
1412 # define DEBUG_OOFF(n)
1416 * Change the given block's address to ndaddr, finding its previous
1417 * location using ufs_bmaparray().
1419 * Account for this change in the segment table.
1421 * called with sp == NULL by roll-forwarding code.
1424 lfs_update_single(struct lfs
*fs
, struct segment
*sp
,
1425 struct vnode
*vp
, daddr_t lbn
, int32_t ndaddr
, int size
)
1429 struct indir a
[NIADDR
+ 2], *ap
;
1431 daddr_t daddr
, ooff
;
1436 KASSERT(sp
== NULL
|| sp
->vp
== vp
);
1439 error
= ufs_bmaparray(vp
, lbn
, &daddr
, a
, &num
, NULL
, NULL
);
1441 panic("lfs_updatemeta: ufs_bmaparray returned %d", error
);
1443 daddr
= (daddr_t
)((int32_t)daddr
); /* XXX ondisk32 */
1444 KASSERT(daddr
<= LFS_MAX_DADDR
);
1446 daddr
= dbtofsb(fs
, daddr
);
1448 bb
= numfrags(fs
, size
);
1451 ooff
= ip
->i_ffs1_db
[lbn
];
1453 if (ooff
== UNWRITTEN
)
1454 ip
->i_ffs1_blocks
+= bb
;
1456 /* possible fragment truncation or extension */
1457 obb
= btofsb(fs
, ip
->i_lfs_fragsize
[lbn
]);
1458 ip
->i_ffs1_blocks
+= (bb
- obb
);
1460 ip
->i_ffs1_db
[lbn
] = ndaddr
;
1463 ooff
= ip
->i_ffs1_ib
[a
[0].in_off
];
1465 if (ooff
== UNWRITTEN
)
1466 ip
->i_ffs1_blocks
+= bb
;
1467 ip
->i_ffs1_ib
[a
[0].in_off
] = ndaddr
;
1471 if (bread(vp
, ap
->in_lbn
, fs
->lfs_bsize
, NOCRED
,
1473 panic("lfs_updatemeta: bread bno %" PRId64
,
1477 ooff
= ((int32_t *)bp
->b_data
)[ap
->in_off
];
1479 if (ooff
== UNWRITTEN
)
1480 ip
->i_ffs1_blocks
+= bb
;
1482 ((int32_t *)bp
->b_data
)[ap
->in_off
] = ndaddr
;
1483 (void) VOP_BWRITE(bp
->b_vp
, bp
);
1486 KASSERT(ooff
== 0 || ooff
== UNWRITTEN
|| ooff
== daddr
);
1488 /* Update hiblk when extending the file */
1489 if (lbn
> ip
->i_lfs_hiblk
)
1490 ip
->i_lfs_hiblk
= lbn
;
1493 * Though we'd rather it couldn't, this *can* happen right now
1494 * if cleaning blocks and regular blocks coexist.
1496 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1499 * Update segment usage information, based on old size
1503 u_int32_t oldsn
= dtosn(fs
, daddr
);
1507 if (sp
&& sp
->seg_number
== oldsn
) {
1508 ndupino
= sp
->ndupino
;
1513 KASSERT(oldsn
< fs
->lfs_nseg
);
1514 if (lbn
>= 0 && lbn
< NDADDR
)
1515 osize
= ip
->i_lfs_fragsize
[lbn
];
1517 osize
= fs
->lfs_bsize
;
1518 LFS_SEGENTRY(sup
, fs
, oldsn
, bp
);
1520 if (sup
->su_nbytes
+ sizeof (struct ufs1_dinode
) * ndupino
1522 printf("lfs_updatemeta: negative bytes "
1523 "(segment %" PRIu32
" short by %" PRId64
1524 ")\n", dtosn(fs
, daddr
),
1526 (sizeof (struct ufs1_dinode
) * ndupino
+
1528 printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1529 ", addr = 0x%" PRIx64
"\n",
1530 (unsigned long long)ip
->i_number
, lbn
, daddr
);
1531 printf("lfs_updatemeta: ndupino=%d\n", ndupino
);
1532 panic("lfs_updatemeta: negative bytes");
1533 sup
->su_nbytes
= osize
-
1534 sizeof (struct ufs1_dinode
) * ndupino
;
1537 DLOG((DLOG_SU
, "seg %" PRIu32
" -= %d for ino %d lbn %" PRId64
1538 " db 0x%" PRIx64
"\n",
1539 dtosn(fs
, daddr
), osize
,
1540 ip
->i_number
, lbn
, daddr
));
1541 sup
->su_nbytes
-= osize
;
1542 if (!(bp
->b_flags
& B_GATHERED
)) {
1543 mutex_enter(&lfs_lock
);
1544 fs
->lfs_flags
|= LFS_IFDIRTY
;
1545 mutex_exit(&lfs_lock
);
1547 LFS_WRITESEGENTRY(sup
, fs
, oldsn
, bp
);
1550 * Now that this block has a new address, and its old
1551 * segment no longer owns it, we can forget about its
1554 if (lbn
>= 0 && lbn
< NDADDR
)
1555 ip
->i_lfs_fragsize
[lbn
] = size
;
1559 * Update the metadata that points to the blocks listed in the FINFO
1563 lfs_updatemeta(struct segment
*sp
)
1569 int i
, nblocks
, num
;
1571 int bytesleft
, size
;
1573 ASSERT_SEGLOCK(sp
->fs
);
1575 nblocks
= &sp
->fip
->fi_blocks
[sp
->fip
->fi_nblocks
] - sp
->start_lbp
;
1576 KASSERT(nblocks
>= 0);
1577 KASSERT(vp
!= NULL
);
1582 * This count may be high due to oversize blocks from lfs_gop_write.
1583 * Correct for this. (XXX we should be able to keep track of these.)
1586 for (i
= 0; i
< nblocks
; i
++) {
1587 if (sp
->start_bpp
[i
] == NULL
) {
1588 DLOG((DLOG_SEG
, "lfs_updatemeta: nblocks = %d, not %d\n", i
, nblocks
));
1592 num
= howmany(sp
->start_bpp
[i
]->b_bcount
, fs
->lfs_bsize
);
1593 KASSERT(sp
->start_bpp
[i
]->b_lblkno
>= 0 || num
== 1);
1597 KASSERT(vp
->v_type
== VREG
||
1598 nblocks
== &sp
->fip
->fi_blocks
[sp
->fip
->fi_nblocks
] - sp
->start_lbp
);
1599 KASSERT(nblocks
== sp
->cbpp
- sp
->start_bpp
);
1604 * We have to sort even if the blocks come from the
1605 * cleaner, because there might be other pending blocks on the
1606 * same inode...and if we don't sort, and there are fragments
1607 * present, blocks may be written in the wrong place.
1609 lfs_shellsort(sp
->start_bpp
, sp
->start_lbp
, nblocks
, fs
->lfs_bsize
);
1612 * Record the length of the last block in case it's a fragment.
1613 * If there are indirect blocks present, they sort last. An
1614 * indirect block will be lfs_bsize and its presence indicates
1615 * that you cannot have fragments.
1617 * XXX This last is a lie. A cleaned fragment can coexist with
1618 * XXX a later indirect block. This will continue to be
1619 * XXX true until lfs_markv is fixed to do everything with
1620 * XXX fake blocks (including fake inodes and fake indirect blocks).
1622 sp
->fip
->fi_lastlength
= ((sp
->start_bpp
[nblocks
- 1]->b_bcount
- 1) &
1626 * Assign disk addresses, and update references to the logical
1627 * block and the segment usage information.
1629 for (i
= nblocks
; i
--; ++sp
->start_bpp
) {
1630 sbp
= *sp
->start_bpp
;
1631 lbn
= *sp
->start_lbp
;
1632 KASSERT(sbp
->b_lblkno
== lbn
);
1634 sbp
->b_blkno
= fsbtodb(fs
, fs
->lfs_offset
);
1637 * If we write a frag in the wrong place, the cleaner won't
1638 * be able to correctly identify its size later, and the
1639 * segment will be uncleanable. (Even worse, it will assume
1640 * that the indirect block that actually ends the list
1641 * is of a smaller size!)
1643 if ((sbp
->b_bcount
& fs
->lfs_bmask
) && i
!= 0)
1644 panic("lfs_updatemeta: fragment is not last block");
1647 * For each subblock in this possibly oversized block,
1648 * update its address on disk.
1650 KASSERT(lbn
>= 0 || sbp
->b_bcount
== fs
->lfs_bsize
);
1651 KASSERT(vp
== sbp
->b_vp
);
1652 for (bytesleft
= sbp
->b_bcount
; bytesleft
> 0;
1653 bytesleft
-= fs
->lfs_bsize
) {
1654 size
= MIN(bytesleft
, fs
->lfs_bsize
);
1655 bb
= numfrags(fs
, size
);
1656 lbn
= *sp
->start_lbp
++;
1657 lfs_update_single(fs
, sp
, sp
->vp
, lbn
, fs
->lfs_offset
,
1659 fs
->lfs_offset
+= bb
;
1664 /* This inode has been modified */
1665 LFS_SET_UINO(VTOI(vp
), IN_MODIFIED
);
1669 * Move lfs_offset to a segment earlier than sn.
1672 lfs_rewind(struct lfs
*fs
, int newsn
)
1674 int sn
, osn
, isdirty
;
1680 osn
= dtosn(fs
, fs
->lfs_offset
);
1684 /* lfs_avail eats the remaining space in this segment */
1685 fs
->lfs_avail
-= fs
->lfs_fsbpseg
- (fs
->lfs_offset
- fs
->lfs_curseg
);
1687 /* Find a low-numbered segment */
1688 for (sn
= 0; sn
< fs
->lfs_nseg
; ++sn
) {
1689 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
1690 isdirty
= sup
->su_flags
& SEGUSE_DIRTY
;
1696 if (sn
== fs
->lfs_nseg
)
1697 panic("lfs_rewind: no clean segments");
1698 if (newsn
>= 0 && sn
>= newsn
)
1700 fs
->lfs_nextseg
= sn
;
1702 fs
->lfs_offset
= fs
->lfs_curseg
;
1708 * Start a new partial segment.
1710 * Return 1 when we entered to a new segment.
1711 * Otherwise, return 0.
1714 lfs_initseg(struct lfs
*fs
)
1716 struct segment
*sp
= fs
->lfs_sp
;
1718 struct buf
*sbp
; /* buffer for SEGSUM */
1719 int repeat
= 0; /* return value */
1722 /* Advance to the next segment. */
1723 if (!LFS_PARTIAL_FITS(fs
)) {
1727 /* lfs_avail eats the remaining space */
1728 fs
->lfs_avail
-= fs
->lfs_fsbpseg
- (fs
->lfs_offset
-
1730 /* Wake up any cleaning procs waiting on this file system. */
1731 lfs_wakeup_cleaner(fs
);
1734 fs
->lfs_offset
= fs
->lfs_curseg
;
1736 sp
->seg_number
= dtosn(fs
, fs
->lfs_curseg
);
1737 sp
->seg_bytes_left
= fsbtob(fs
, fs
->lfs_fsbpseg
);
1740 * If the segment contains a superblock, update the offset
1741 * and summary address to skip over it.
1743 LFS_SEGENTRY(sup
, fs
, sp
->seg_number
, bp
);
1744 if (sup
->su_flags
& SEGUSE_SUPERBLOCK
) {
1745 fs
->lfs_offset
+= btofsb(fs
, LFS_SBPAD
);
1746 sp
->seg_bytes_left
-= LFS_SBPAD
;
1749 /* Segment zero could also contain the labelpad */
1750 if (fs
->lfs_version
> 1 && sp
->seg_number
== 0 &&
1751 fs
->lfs_start
< btofsb(fs
, LFS_LABELPAD
)) {
1753 btofsb(fs
, LFS_LABELPAD
) - fs
->lfs_start
;
1754 sp
->seg_bytes_left
-=
1755 LFS_LABELPAD
- fsbtob(fs
, fs
->lfs_start
);
1758 sp
->seg_number
= dtosn(fs
, fs
->lfs_curseg
);
1759 sp
->seg_bytes_left
= fsbtob(fs
, fs
->lfs_fsbpseg
-
1760 (fs
->lfs_offset
- fs
->lfs_curseg
));
1762 fs
->lfs_lastpseg
= fs
->lfs_offset
;
1764 /* Record first address of this partial segment */
1765 if (sp
->seg_flags
& SEGM_CLEAN
) {
1766 fs
->lfs_cleanint
[fs
->lfs_cleanind
] = fs
->lfs_offset
;
1767 if (++fs
->lfs_cleanind
>= LFS_MAX_CLEANIND
) {
1768 /* "1" is the artificial inc in lfs_seglock */
1769 mutex_enter(&lfs_lock
);
1770 while (fs
->lfs_iocount
> 1) {
1771 mtsleep(&fs
->lfs_iocount
, PRIBIO
+ 1,
1772 "lfs_initseg", 0, &lfs_lock
);
1774 mutex_exit(&lfs_lock
);
1775 fs
->lfs_cleanind
= 0;
1787 /* Get a new buffer for SEGSUM */
1788 sbp
= lfs_newbuf(fs
, VTOI(fs
->lfs_ivnode
)->i_devvp
,
1789 fsbtodb(fs
, fs
->lfs_offset
), fs
->lfs_sumsize
, LFS_NB_SUMMARY
);
1791 /* ... and enter it into the buffer list. */
1794 fs
->lfs_offset
+= btofsb(fs
, fs
->lfs_sumsize
);
1796 sp
->start_bpp
= sp
->cbpp
;
1798 /* Set point to SEGSUM, initialize it. */
1799 ssp
= sp
->segsum
= sbp
->b_data
;
1800 memset(ssp
, 0, fs
->lfs_sumsize
);
1801 ssp
->ss_next
= fs
->lfs_nextseg
;
1802 ssp
->ss_nfinfo
= ssp
->ss_ninos
= 0;
1803 ssp
->ss_magic
= SS_MAGIC
;
1805 /* Set pointer to first FINFO, initialize it. */
1806 sp
->fip
= (struct finfo
*)((char *)sp
->segsum
+ SEGSUM_SIZE(fs
));
1807 sp
->fip
->fi_nblocks
= 0;
1808 sp
->start_lbp
= &sp
->fip
->fi_blocks
[0];
1809 sp
->fip
->fi_lastlength
= 0;
1811 sp
->seg_bytes_left
-= fs
->lfs_sumsize
;
1812 sp
->sum_bytes_left
= fs
->lfs_sumsize
- SEGSUM_SIZE(fs
);
1818 * Remove SEGUSE_INVAL from all segments.
1821 lfs_unset_inval_all(struct lfs
*fs
)
1827 for (i
= 0; i
< fs
->lfs_nseg
; i
++) {
1828 LFS_SEGENTRY(sup
, fs
, i
, bp
);
1829 if (sup
->su_flags
& SEGUSE_INVAL
) {
1830 sup
->su_flags
&= ~SEGUSE_INVAL
;
1831 LFS_WRITESEGENTRY(sup
, fs
, i
, bp
);
1838 * Return the next segment to write.
1841 lfs_newseg(struct lfs
*fs
)
1846 int curseg
, isdirty
, sn
, skip_inval
;
1850 /* Honor LFCNWRAPSTOP */
1851 mutex_enter(&lfs_lock
);
1852 while (fs
->lfs_nextseg
< fs
->lfs_curseg
&& fs
->lfs_nowrap
) {
1853 if (fs
->lfs_wrappass
) {
1854 log(LOG_NOTICE
, "%s: wrappass=%d\n",
1855 fs
->lfs_fsmnt
, fs
->lfs_wrappass
);
1856 fs
->lfs_wrappass
= 0;
1859 fs
->lfs_wrapstatus
= LFS_WRAP_WAITING
;
1860 wakeup(&fs
->lfs_nowrap
);
1861 log(LOG_NOTICE
, "%s: waiting at log wrap\n", fs
->lfs_fsmnt
);
1862 mtsleep(&fs
->lfs_wrappass
, PVFS
, "newseg", 10 * hz
,
1865 fs
->lfs_wrapstatus
= LFS_WRAP_GOING
;
1866 mutex_exit(&lfs_lock
);
1868 LFS_SEGENTRY(sup
, fs
, dtosn(fs
, fs
->lfs_nextseg
), bp
);
1869 DLOG((DLOG_SU
, "lfs_newseg: seg %d := 0 in newseg\n",
1870 dtosn(fs
, fs
->lfs_nextseg
)));
1871 sup
->su_flags
|= SEGUSE_DIRTY
| SEGUSE_ACTIVE
;
1875 LFS_WRITESEGENTRY(sup
, fs
, dtosn(fs
, fs
->lfs_nextseg
), bp
);
1877 LFS_CLEANERINFO(cip
, fs
, bp
);
1880 fs
->lfs_nclean
= cip
->clean
;
1881 LFS_SYNC_CLEANERINFO(cip
, fs
, bp
, 1);
1883 fs
->lfs_lastseg
= fs
->lfs_curseg
;
1884 fs
->lfs_curseg
= fs
->lfs_nextseg
;
1886 for (sn
= curseg
= dtosn(fs
, fs
->lfs_curseg
) + fs
->lfs_interleave
;;) {
1887 sn
= (sn
+ 1) % fs
->lfs_nseg
;
1893 panic("lfs_nextseg: no clean segments");
1895 LFS_SEGENTRY(sup
, fs
, sn
, bp
);
1896 isdirty
= sup
->su_flags
& (SEGUSE_DIRTY
| (skip_inval
? SEGUSE_INVAL
: 0));
1897 /* Check SEGUSE_EMPTY as we go along */
1898 if (isdirty
&& sup
->su_nbytes
== 0 &&
1899 !(sup
->su_flags
& SEGUSE_EMPTY
))
1900 LFS_WRITESEGENTRY(sup
, fs
, sn
, bp
);
1907 if (skip_inval
== 0)
1908 lfs_unset_inval_all(fs
);
1911 fs
->lfs_nextseg
= sntod(fs
, sn
);
1913 ++lfs_stats
.segsused
;
1918 lfs_newclusterbuf(struct lfs
*fs
, struct vnode
*vp
, daddr_t addr
,
1921 struct lfs_cluster
*cl
;
1922 struct buf
**bpp
, *bp
;
1925 cl
= (struct lfs_cluster
*)pool_get(&fs
->lfs_clpool
, PR_WAITOK
);
1926 bpp
= (struct buf
**)pool_get(&fs
->lfs_bpppool
, PR_WAITOK
);
1927 memset(cl
, 0, sizeof(*cl
));
1933 /* If this segment is being written synchronously, note that */
1934 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
) {
1935 cl
->flags
|= LFS_CL_SYNC
;
1936 cl
->seg
= fs
->lfs_sp
;
1937 ++cl
->seg
->seg_iocount
;
1940 /* Get an empty buffer header, or maybe one with something on it */
1941 bp
= getiobuf(vp
, true);
1943 bp
->b_blkno
= bp
->b_lblkno
= addr
;
1944 bp
->b_iodone
= lfs_cluster_callback
;
1951 lfs_writeseg(struct lfs
*fs
, struct segment
*sp
)
1953 struct buf
**bpp
, *bp
, *cbp
, *newbp
, *unbusybp
;
1957 int do_again
, nblocks
, byteoffset
;
1959 struct lfs_cluster
*cl
;
1961 struct vnode
*devvp
;
1964 int32_t *daddrp
; /* XXX ondisk32 */
1974 ssp
= (SEGSUM
*)sp
->segsum
;
1977 * If there are no buffers other than the segment summary to write,
1978 * don't do anything. If we are the end of a dirop sequence, however,
1979 * write the empty segment summary anyway, to help out the
1980 * roll-forward agent.
1982 if ((nblocks
= sp
->cbpp
- sp
->bpp
) == 1) {
1983 if ((ssp
->ss_flags
& (SS_DIROP
| SS_CONT
)) != SS_DIROP
)
1987 /* Note if partial segment is being written by the cleaner */
1988 if (sp
->seg_flags
& SEGM_CLEAN
)
1989 ssp
->ss_flags
|= SS_CLEAN
;
1991 devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
1993 /* Update the segment usage information. */
1994 LFS_SEGENTRY(sup
, fs
, sp
->seg_number
, bp
);
1996 /* Loop through all blocks, except the segment summary. */
1997 for (bpp
= sp
->bpp
; ++bpp
< sp
->cbpp
; ) {
1998 if ((*bpp
)->b_vp
!= devvp
) {
1999 sup
->su_nbytes
+= (*bpp
)->b_bcount
;
2000 DLOG((DLOG_SU
, "seg %" PRIu32
" += %ld for ino %d"
2001 " lbn %" PRId64
" db 0x%" PRIx64
"\n",
2002 sp
->seg_number
, (*bpp
)->b_bcount
,
2003 VTOI((*bpp
)->b_vp
)->i_number
, (*bpp
)->b_lblkno
,
2009 /* Check for zero-length and zero-version FINFO entries. */
2010 fip
= (struct finfo
*)((char *)ssp
+ SEGSUM_SIZE(fs
));
2011 for (findex
= 0; findex
< ssp
->ss_nfinfo
; findex
++) {
2012 KDASSERT(fip
->fi_nblocks
> 0);
2013 KDASSERT(fip
->fi_version
> 0);
2014 fip
= (FINFO
*)((char *)fip
+ FINFOSIZE
+
2015 sizeof(int32_t) * fip
->fi_nblocks
);
2019 ninos
= (ssp
->ss_ninos
+ INOPB(fs
) - 1) / INOPB(fs
);
2020 DLOG((DLOG_SU
, "seg %d += %d for %d inodes\n",
2021 sp
->seg_number
, ssp
->ss_ninos
* sizeof (struct ufs1_dinode
),
2023 sup
->su_nbytes
+= ssp
->ss_ninos
* sizeof (struct ufs1_dinode
);
2024 /* sup->su_nbytes += fs->lfs_sumsize; */
2025 if (fs
->lfs_version
== 1)
2026 sup
->su_olastmod
= time_second
;
2028 sup
->su_lastmod
= time_second
;
2029 sup
->su_ninos
+= ninos
;
2031 fs
->lfs_avail
-= btofsb(fs
, fs
->lfs_sumsize
);
2033 do_again
= !(bp
->b_flags
& B_GATHERED
);
2034 LFS_WRITESEGENTRY(sup
, fs
, sp
->seg_number
, bp
); /* Ifile */
2037 * Mark blocks B_BUSY, to prevent then from being changed between
2038 * the checksum computation and the actual write.
2040 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2041 * there are any, replace them with copies that have UNASSIGNED
2044 mutex_enter(&bufcache_lock
);
2045 for (bpp
= sp
->bpp
, i
= nblocks
- 1; i
--;) {
2048 if (bp
->b_iodone
!= NULL
) { /* UBC or malloced buffer */
2049 bp
->b_cflags
|= BC_BUSY
;
2053 while (bp
->b_cflags
& BC_BUSY
) {
2054 DLOG((DLOG_SEG
, "lfs_writeseg: avoiding potential"
2055 " data summary corruption for ino %d, lbn %"
2057 VTOI(bp
->b_vp
)->i_number
, bp
->b_lblkno
));
2058 bp
->b_cflags
|= BC_WANTED
;
2059 cv_wait(&bp
->b_busy
, &bufcache_lock
);
2061 bp
->b_cflags
|= BC_BUSY
;
2062 mutex_exit(&bufcache_lock
);
2066 * Check and replace indirect block UNWRITTEN bogosity.
2067 * XXX See comment in lfs_writefile.
2069 if (bp
->b_lblkno
< 0 && bp
->b_vp
!= devvp
&& bp
->b_vp
&&
2070 VTOI(bp
->b_vp
)->i_ffs1_blocks
!=
2071 VTOI(bp
->b_vp
)->i_lfs_effnblks
) {
2072 DLOG((DLOG_VNODE
, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2073 VTOI(bp
->b_vp
)->i_number
,
2074 VTOI(bp
->b_vp
)->i_lfs_effnblks
,
2075 VTOI(bp
->b_vp
)->i_ffs1_blocks
));
2076 /* Make a copy we'll make changes to */
2077 newbp
= lfs_newbuf(fs
, bp
->b_vp
, bp
->b_lblkno
,
2078 bp
->b_bcount
, LFS_NB_IBLOCK
);
2079 newbp
->b_blkno
= bp
->b_blkno
;
2080 memcpy(newbp
->b_data
, bp
->b_data
,
2085 for (daddrp
= (int32_t *)(newbp
->b_data
);
2086 daddrp
< (int32_t *)((char *)newbp
->b_data
+
2087 newbp
->b_bcount
); daddrp
++) {
2088 if (*daddrp
== UNWRITTEN
) {
2094 * Get rid of the old buffer. Don't mark it clean,
2095 * though, if it still has dirty data on it.
2098 DLOG((DLOG_SEG
, "lfs_writeseg: replacing UNWRITTEN(%d):"
2099 " bp = %p newbp = %p\n", changed
, bp
,
2102 bp
->b_flags
&= ~B_GATHERED
;
2104 if (bp
->b_iodone
!= NULL
) {
2105 DLOG((DLOG_SEG
, "lfs_writeseg: "
2106 "indir bp should not be B_CALL\n"));
2110 /* Still on free list, leave it there */
2113 * We have to re-decrement lfs_avail
2114 * since this block is going to come
2115 * back around to us in the next
2119 btofsb(fs
, bp
->b_bcount
);
2122 lfs_freebuf(fs
, newbp
);
2125 mutex_enter(&bufcache_lock
);
2126 if (unbusybp
!= NULL
) {
2127 unbusybp
->b_cflags
&= ~BC_BUSY
;
2128 if (unbusybp
->b_cflags
& BC_WANTED
)
2129 cv_broadcast(&bp
->b_busy
);
2132 mutex_exit(&bufcache_lock
);
2135 * Compute checksum across data and then across summary; the first
2136 * block (the summary block) is skipped. Set the create time here
2137 * so that it's guaranteed to be later than the inode mod times.
2140 if (fs
->lfs_version
== 1)
2141 el_size
= sizeof(u_long
);
2143 el_size
= sizeof(u_int32_t
);
2144 for (bpp
= sp
->bpp
, i
= nblocks
- 1; i
--; ) {
2146 /* Loop through gop_write cluster blocks */
2147 for (byteoffset
= 0; byteoffset
< (*bpp
)->b_bcount
;
2148 byteoffset
+= fs
->lfs_bsize
) {
2149 #ifdef LFS_USE_B_INVAL
2150 if (((*bpp
)->b_cflags
& BC_INVAL
) != 0 &&
2151 (*bpp
)->b_iodone
!= NULL
) {
2152 if (copyin((void *)(*bpp
)->b_saveaddr
+
2153 byteoffset
, dp
, el_size
)) {
2154 panic("lfs_writeseg: copyin failed [1]:"
2155 " ino %d blk %" PRId64
,
2156 VTOI((*bpp
)->b_vp
)->i_number
,
2160 #endif /* LFS_USE_B_INVAL */
2162 sum
= lfs_cksum_part((char *)
2163 (*bpp
)->b_data
+ byteoffset
, el_size
, sum
);
2167 if (fs
->lfs_version
== 1)
2168 ssp
->ss_ocreate
= time_second
;
2170 ssp
->ss_create
= time_second
;
2171 ssp
->ss_serial
= ++fs
->lfs_serial
;
2172 ssp
->ss_ident
= fs
->lfs_ident
;
2174 ssp
->ss_datasum
= lfs_cksum_fold(sum
);
2175 ssp
->ss_sumsum
= cksum(&ssp
->ss_datasum
,
2176 fs
->lfs_sumsize
- sizeof(ssp
->ss_sumsum
));
2178 mutex_enter(&lfs_lock
);
2179 fs
->lfs_bfree
-= (btofsb(fs
, ninos
* fs
->lfs_ibsize
) +
2180 btofsb(fs
, fs
->lfs_sumsize
));
2181 fs
->lfs_dmeta
+= (btofsb(fs
, ninos
* fs
->lfs_ibsize
) +
2182 btofsb(fs
, fs
->lfs_sumsize
));
2183 mutex_exit(&lfs_lock
);
2186 * When we simply write the blocks we lose a rotation for every block
2187 * written. To avoid this problem, we cluster the buffers into a
2188 * chunk and write the chunk. MAXPHYS is the largest size I/O
2189 * devices can handle, use that for the size of the chunks.
2191 * Blocks that are already clusters (from GOP_WRITE), however, we
2192 * don't bother to copy into other clusters.
2195 #define CHUNKSIZE MAXPHYS
2198 panic("devvp is NULL");
2199 for (bpp
= sp
->bpp
, i
= nblocks
; i
;) {
2200 cbp
= lfs_newclusterbuf(fs
, devvp
, (*bpp
)->b_blkno
, i
);
2201 cl
= cbp
->b_private
;
2203 cbp
->b_flags
|= B_ASYNC
;
2204 cbp
->b_cflags
|= BC_BUSY
;
2207 #if defined(DEBUG) && defined(DIAGNOSTIC)
2208 if (bpp
- sp
->bpp
> (fs
->lfs_sumsize
- SEGSUM_SIZE(fs
))
2209 / sizeof(int32_t)) {
2210 panic("lfs_writeseg: real bpp overwrite");
2212 if (bpp
- sp
->bpp
> segsize(fs
) / fs
->lfs_fsize
) {
2213 panic("lfs_writeseg: theoretical bpp overwrite");
2218 * Construct the cluster.
2220 mutex_enter(&lfs_lock
);
2222 mutex_exit(&lfs_lock
);
2223 while (i
&& cbp
->b_bcount
< CHUNKSIZE
) {
2226 if (bp
->b_bcount
> (CHUNKSIZE
- cbp
->b_bcount
))
2228 if (cbp
->b_bcount
> 0 && !(cl
->flags
& LFS_CL_MALLOC
))
2231 /* Clusters from GOP_WRITE are expedited */
2232 if (bp
->b_bcount
> fs
->lfs_bsize
) {
2233 if (cbp
->b_bcount
> 0)
2234 /* Put in its own buffer */
2237 cbp
->b_data
= bp
->b_data
;
2239 } else if (cbp
->b_bcount
== 0) {
2240 p
= cbp
->b_data
= lfs_malloc(fs
, CHUNKSIZE
,
2242 cl
->flags
|= LFS_CL_MALLOC
;
2245 if (dtosn(fs
, dbtofsb(fs
, bp
->b_blkno
+
2246 btodb(bp
->b_bcount
- 1))) !=
2248 printf("blk size %d daddr %" PRIx64
2250 bp
->b_bcount
, bp
->b_blkno
,
2252 panic("segment overwrite");
2256 #ifdef LFS_USE_B_INVAL
2258 * Fake buffers from the cleaner are marked as B_INVAL.
2259 * We need to copy the data from user space rather than
2260 * from the buffer indicated.
2261 * XXX == what do I do on an error?
2263 if ((bp
->b_cflags
& BC_INVAL
) != 0 &&
2264 bp
->b_iodone
!= NULL
) {
2265 if (copyin(bp
->b_saveaddr
, p
, bp
->b_bcount
))
2266 panic("lfs_writeseg: "
2267 "copyin failed [2]");
2269 #endif /* LFS_USE_B_INVAL */
2270 if (cl
->flags
& LFS_CL_MALLOC
) {
2271 /* copy data into our cluster. */
2272 memcpy(p
, bp
->b_data
, bp
->b_bcount
);
2276 cbp
->b_bcount
+= bp
->b_bcount
;
2277 cl
->bufsize
+= bp
->b_bcount
;
2279 bp
->b_flags
&= ~B_READ
;
2281 cl
->bpp
[cl
->bufcount
++] = bp
;
2284 mutex_enter(&bufcache_lock
);
2285 mutex_enter(vp
->v_interlock
);
2286 bp
->b_oflags
&= ~(BO_DELWRI
| BO_DONE
);
2287 reassignbuf(bp
, vp
);
2289 mutex_exit(vp
->v_interlock
);
2290 mutex_exit(&bufcache_lock
);
2295 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2296 BIO_SETPRIO(cbp
, BPRIO_TIMECRITICAL
);
2298 BIO_SETPRIO(cbp
, BPRIO_TIMELIMITED
);
2299 mutex_enter(devvp
->v_interlock
);
2300 devvp
->v_numoutput
++;
2301 mutex_exit(devvp
->v_interlock
);
2302 VOP_STRATEGY(devvp
, cbp
);
2303 curlwp
->l_ru
.ru_oublock
++;
2307 ++lfs_stats
.psegwrites
;
2308 lfs_stats
.blocktot
+= nblocks
- 1;
2309 if (fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2310 ++lfs_stats
.psyncwrites
;
2311 if (fs
->lfs_sp
->seg_flags
& SEGM_CLEAN
) {
2312 ++lfs_stats
.pcleanwrites
;
2313 lfs_stats
.cleanblocks
+= nblocks
- 1;
2317 return (lfs_initseg(fs
) || do_again
);
2321 lfs_writesuper(struct lfs
*fs
, daddr_t daddr
)
2324 struct vnode
*devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
2327 ASSERT_MAYBE_SEGLOCK(fs
);
2329 KASSERT(fs
->lfs_magic
== LFS_MAGIC
);
2332 * If we can write one superblock while another is in
2333 * progress, we risk not having a complete checkpoint if we crash.
2334 * So, block here if a superblock write is in progress.
2336 mutex_enter(&lfs_lock
);
2338 while (fs
->lfs_sbactive
) {
2339 mtsleep(&fs
->lfs_sbactive
, PRIBIO
+1, "lfs sb", 0,
2342 fs
->lfs_sbactive
= daddr
;
2344 mutex_exit(&lfs_lock
);
2346 /* Set timestamp of this version of the superblock */
2347 if (fs
->lfs_version
== 1)
2348 fs
->lfs_otstamp
= time_second
;
2349 fs
->lfs_tstamp
= time_second
;
2351 /* Checksum the superblock and copy it into a buffer. */
2352 fs
->lfs_cksum
= lfs_sb_cksum(&(fs
->lfs_dlfs
));
2353 bp
= lfs_newbuf(fs
, devvp
,
2354 fsbtodb(fs
, daddr
), LFS_SBPAD
, LFS_NB_SBLOCK
);
2355 memset((char *)bp
->b_data
+ sizeof(struct dlfs
), 0,
2356 LFS_SBPAD
- sizeof(struct dlfs
));
2357 *(struct dlfs
*)bp
->b_data
= fs
->lfs_dlfs
;
2359 bp
->b_cflags
|= BC_BUSY
;
2360 bp
->b_flags
= (bp
->b_flags
& ~B_READ
) | B_ASYNC
;
2361 bp
->b_oflags
&= ~(BO_DONE
| BO_DELWRI
);
2363 bp
->b_iodone
= lfs_supercallback
;
2365 if (fs
->lfs_sp
!= NULL
&& fs
->lfs_sp
->seg_flags
& SEGM_SYNC
)
2366 BIO_SETPRIO(bp
, BPRIO_TIMECRITICAL
);
2368 BIO_SETPRIO(bp
, BPRIO_TIMELIMITED
);
2369 curlwp
->l_ru
.ru_oublock
++;
2371 mutex_enter(devvp
->v_interlock
);
2372 devvp
->v_numoutput
++;
2373 mutex_exit(devvp
->v_interlock
);
2375 mutex_enter(&lfs_lock
);
2377 mutex_exit(&lfs_lock
);
2378 VOP_STRATEGY(devvp
, bp
);
2382 * Logical block number match routines used when traversing the dirty block
2386 lfs_match_fake(struct lfs
*fs
, struct buf
*bp
)
2390 return LFS_IS_MALLOC_BUF(bp
);
2395 lfs_match_real(struct lfs
*fs
, struct buf
*bp
)
2399 return (lfs_match_data(fs
, bp
) && !lfs_match_fake(fs
, bp
));
2404 lfs_match_data(struct lfs
*fs
, struct buf
*bp
)
2408 return (bp
->b_lblkno
>= 0);
2412 lfs_match_indir(struct lfs
*fs
, struct buf
*bp
)
2418 return (lbn
< 0 && (-lbn
- NDADDR
) % NINDIR(fs
) == 0);
2422 lfs_match_dindir(struct lfs
*fs
, struct buf
*bp
)
2428 return (lbn
< 0 && (-lbn
- NDADDR
) % NINDIR(fs
) == 1);
2432 lfs_match_tindir(struct lfs
*fs
, struct buf
*bp
)
2438 return (lbn
< 0 && (-lbn
- NDADDR
) % NINDIR(fs
) == 2);
2442 lfs_free_aiodone(struct buf
*bp
)
2446 KERNEL_LOCK(1, curlwp
);
2448 ASSERT_NO_SEGLOCK(fs
);
2449 lfs_freebuf(fs
, bp
);
2450 KERNEL_UNLOCK_LAST(curlwp
);
2454 lfs_super_aiodone(struct buf
*bp
)
2458 KERNEL_LOCK(1, curlwp
);
2460 ASSERT_NO_SEGLOCK(fs
);
2461 mutex_enter(&lfs_lock
);
2462 fs
->lfs_sbactive
= 0;
2463 if (--fs
->lfs_iocount
<= 1)
2464 wakeup(&fs
->lfs_iocount
);
2465 wakeup(&fs
->lfs_sbactive
);
2466 mutex_exit(&lfs_lock
);
2467 lfs_freebuf(fs
, bp
);
2468 KERNEL_UNLOCK_LAST(curlwp
);
2472 lfs_cluster_aiodone(struct buf
*bp
)
2474 struct lfs_cluster
*cl
;
2476 struct buf
*tbp
, *fbp
;
2477 struct vnode
*vp
, *devvp
, *ovp
;
2481 KERNEL_LOCK(1, curlwp
);
2483 error
= bp
->b_error
;
2486 devvp
= VTOI(fs
->lfs_ivnode
)->i_devvp
;
2487 ASSERT_NO_SEGLOCK(fs
);
2489 /* Put the pages back, and release the buffer */
2490 while (cl
->bufcount
--) {
2491 tbp
= cl
->bpp
[cl
->bufcount
];
2492 KASSERT(tbp
->b_cflags
& BC_BUSY
);
2494 tbp
->b_error
= error
;
2498 * We're done with tbp. If it has not been re-dirtied since
2499 * the cluster was written, free it. Otherwise, keep it on
2500 * the locked list to be written again.
2504 tbp
->b_flags
&= ~B_GATHERED
;
2506 LFS_BCLEAN_LOG(fs
, tbp
);
2508 mutex_enter(&bufcache_lock
);
2509 if (tbp
->b_iodone
== NULL
) {
2510 KASSERT(tbp
->b_flags
& B_LOCKED
);
2513 mutex_enter(vp
->v_interlock
);
2514 reassignbuf(tbp
, vp
);
2515 mutex_exit(vp
->v_interlock
);
2517 tbp
->b_flags
|= B_ASYNC
; /* for biodone */
2520 if (((tbp
->b_flags
| tbp
->b_oflags
) &
2521 (B_LOCKED
| BO_DELWRI
)) == B_LOCKED
)
2522 LFS_UNLOCK_BUF(tbp
);
2524 if (tbp
->b_oflags
& BO_DONE
) {
2525 DLOG((DLOG_SEG
, "blk %d biodone already (flags %lx)\n",
2526 cl
->bufcount
, (long)tbp
->b_flags
));
2529 if (tbp
->b_iodone
!= NULL
&& !LFS_IS_MALLOC_BUF(tbp
)) {
2531 * A buffer from the page daemon.
2532 * We use the same iodone as it does,
2533 * so we must manually disassociate its
2534 * buffers from the vp.
2536 if ((ovp
= tbp
->b_vp
) != NULL
) {
2537 /* This is just silly */
2538 mutex_enter(ovp
->v_interlock
);
2540 mutex_exit(ovp
->v_interlock
);
2542 tbp
->b_objlock
= vp
->v_interlock
;
2544 /* Put it back the way it was */
2545 tbp
->b_flags
|= B_ASYNC
;
2546 /* Master buffers have BC_AGE */
2547 if (tbp
->b_private
== tbp
)
2548 tbp
->b_cflags
|= BC_AGE
;
2550 mutex_exit(&bufcache_lock
);
2555 * If this is the last block for this vnode, but
2556 * there are other blocks on its dirty list,
2557 * set IN_MODIFIED/IN_CLEANING depending on what
2558 * sort of block. Only do this for our mount point,
2559 * not for, e.g., inode blocks that are attached to
2561 * XXX KS - Shouldn't we set *both* if both types
2562 * of blocks are present (traverse the dirty list?)
2564 mutex_enter(&lfs_lock
);
2565 mutex_enter(vp
->v_interlock
);
2566 if (vp
!= devvp
&& vp
->v_numoutput
== 0 &&
2567 (fbp
= LIST_FIRST(&vp
->v_dirtyblkhd
)) != NULL
) {
2569 DLOG((DLOG_SEG
, "lfs_cluster_aiodone: mark ino %d\n",
2571 if (LFS_IS_MALLOC_BUF(fbp
))
2572 LFS_SET_UINO(ip
, IN_CLEANING
);
2574 LFS_SET_UINO(ip
, IN_MODIFIED
);
2576 cv_broadcast(&vp
->v_cv
);
2577 mutex_exit(vp
->v_interlock
);
2578 mutex_exit(&lfs_lock
);
2581 /* Fix up the cluster buffer, and release it */
2582 if (cl
->flags
& LFS_CL_MALLOC
)
2583 lfs_free(fs
, bp
->b_data
, LFS_NB_CLUSTER
);
2587 if (cl
->flags
& LFS_CL_SYNC
) {
2588 if (--cl
->seg
->seg_iocount
== 0)
2589 wakeup(&cl
->seg
->seg_iocount
);
2591 mutex_enter(&lfs_lock
);
2593 if (fs
->lfs_iocount
== 0)
2594 panic("lfs_cluster_aiodone: zero iocount");
2596 if (--fs
->lfs_iocount
<= 1)
2597 wakeup(&fs
->lfs_iocount
);
2598 mutex_exit(&lfs_lock
);
2600 KERNEL_UNLOCK_LAST(curlwp
);
2602 pool_put(&fs
->lfs_bpppool
, cl
->bpp
);
2604 pool_put(&fs
->lfs_clpool
, cl
);
2608 lfs_generic_callback(struct buf
*bp
, void (*aiodone
)(struct buf
*))
2610 /* reset b_iodone for when this is a single-buf i/o. */
2611 bp
->b_iodone
= aiodone
;
2613 workqueue_enqueue(uvm
.aiodone_queue
, &bp
->b_work
, NULL
);
2617 lfs_cluster_callback(struct buf
*bp
)
2620 lfs_generic_callback(bp
, lfs_cluster_aiodone
);
2624 lfs_supercallback(struct buf
*bp
)
2627 lfs_generic_callback(bp
, lfs_super_aiodone
);
2631 * The only buffers that are going to hit these functions are the
2632 * segment write blocks, or the segment summaries, or the superblocks.
2634 * All of the above are created by lfs_newbuf, and so do not need to be
2635 * released via brelse.
2638 lfs_callback(struct buf
*bp
)
2641 lfs_generic_callback(bp
, lfs_free_aiodone
);
2645 * Shellsort (diminishing increment sort) from Data Structures and
2646 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2647 * see also Knuth Vol. 3, page 84. The increments are selected from
2648 * formula (8), page 95. Roughly O(N^3/2).
2651 * This is our own private copy of shellsort because we want to sort
2652 * two parallel arrays (the array of buffer pointers and the array of
2653 * logical block numbers) simultaneously. Note that we cast the array
2654 * of logical block numbers to a unsigned in this routine so that the
2655 * negative block numbers (meta data blocks) sort AFTER the data blocks.
2659 lfs_shellsort(struct buf
**bp_array
, int32_t *lb_array
, int nmemb
, int size
)
2661 static int __rsshell_increments
[] = { 4, 1, 0 };
2662 int incr
, *incrp
, t1
, t2
;
2663 struct buf
*bp_temp
;
2667 for (t1
= 0; t1
< nmemb
; t1
++) {
2668 for (t2
= 0; t2
* size
< bp_array
[t1
]->b_bcount
; t2
++) {
2669 if (lb_array
[incr
++] != bp_array
[t1
]->b_lblkno
+ t2
) {
2670 /* dump before panic */
2671 printf("lfs_shellsort: nmemb=%d, size=%d\n",
2674 for (t1
= 0; t1
< nmemb
; t1
++) {
2675 const struct buf
*bp
= bp_array
[t1
];
2677 printf("bp[%d]: lbn=%" PRIu64
", size=%"
2679 (uint64_t)bp
->b_bcount
,
2680 (uint64_t)bp
->b_lblkno
);
2682 for (t2
= 0; t2
* size
< bp
->b_bcount
;
2689 panic("lfs_shellsort: inconsistent input");
2695 for (incrp
= __rsshell_increments
; (incr
= *incrp
++) != 0;)
2696 for (t1
= incr
; t1
< nmemb
; ++t1
)
2697 for (t2
= t1
- incr
; t2
>= 0;)
2698 if ((u_int32_t
)bp_array
[t2
]->b_lblkno
>
2699 (u_int32_t
)bp_array
[t2
+ incr
]->b_lblkno
) {
2700 bp_temp
= bp_array
[t2
];
2701 bp_array
[t2
] = bp_array
[t2
+ incr
];
2702 bp_array
[t2
+ incr
] = bp_temp
;
2707 /* Reform the list of logical blocks */
2709 for (t1
= 0; t1
< nmemb
; t1
++) {
2710 for (t2
= 0; t2
* size
< bp_array
[t1
]->b_bcount
; t2
++) {
2711 lb_array
[incr
++] = bp_array
[t1
]->b_lblkno
+ t2
;
2717 * Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
2718 * however, we must press on. Just fake success in that case.
2721 lfs_vref(struct vnode
*vp
)
2726 KASSERT(mutex_owned(vp
->v_interlock
));
2728 fs
= VTOI(vp
)->i_lfs
;
2730 ASSERT_MAYBE_SEGLOCK(fs
);
2733 * If we return 1 here during a flush, we risk vinvalbuf() not
2734 * being able to flush all of the pages from this vnode, which
2735 * will cause it to panic. So, return 0 if a flush is in progress.
2737 error
= vget(vp
, LK_NOWAIT
);
2738 if (error
== EBUSY
&& IS_FLUSHING(VTOI(vp
)->i_lfs
, vp
)) {
2739 ++fs
->lfs_flushvp_fakevref
;
2746 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2747 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2750 lfs_vunref(struct vnode
*vp
)
2754 fs
= VTOI(vp
)->i_lfs
;
2755 ASSERT_MAYBE_SEGLOCK(fs
);
2758 * Analogous to lfs_vref, if the node is flushing, fake it.
2760 if (IS_FLUSHING(fs
, vp
) && fs
->lfs_flushvp_fakevref
) {
2761 --fs
->lfs_flushvp_fakevref
;
2765 /* does not call inactive */
2766 mutex_enter(vp
->v_interlock
);
2771 * We use this when we have vnodes that were loaded in solely for cleaning.
2772 * There is no reason to believe that these vnodes will be referenced again
2773 * soon, since the cleaning process is unrelated to normal filesystem
2774 * activity. Putting cleaned vnodes at the tail of the list has the effect
2775 * of flushing the vnode LRU. So, put vnodes that were loaded only for
2776 * cleaning at the head of the list, instead.
2779 lfs_vunref_head(struct vnode
*vp
)
2782 ASSERT_SEGLOCK(VTOI(vp
)->i_lfs
);
2784 /* does not call inactive, inserts non-held vnode at head of freelist */
2785 mutex_enter(vp
->v_interlock
);
2791 * Set up an FINFO entry for a new file. The fip pointer is assumed to
2792 * point at uninitialized space.
2795 lfs_acquire_finfo(struct lfs
*fs
, ino_t ino
, int vers
)
2797 struct segment
*sp
= fs
->lfs_sp
;
2801 if (sp
->seg_bytes_left
< fs
->lfs_bsize
||
2802 sp
->sum_bytes_left
< sizeof(struct finfo
))
2803 (void) lfs_writeseg(fs
, fs
->lfs_sp
);
2805 sp
->sum_bytes_left
-= FINFOSIZE
;
2806 ++((SEGSUM
*)(sp
->segsum
))->ss_nfinfo
;
2807 sp
->fip
->fi_nblocks
= 0;
2808 sp
->fip
->fi_ino
= ino
;
2809 sp
->fip
->fi_version
= vers
;
2813 * Release the FINFO entry, either clearing out an unused entry or
2814 * advancing us to the next available entry.
2817 lfs_release_finfo(struct lfs
*fs
)
2819 struct segment
*sp
= fs
->lfs_sp
;
2821 if (sp
->fip
->fi_nblocks
!= 0) {
2822 sp
->fip
= (FINFO
*)((char *)sp
->fip
+ FINFOSIZE
+
2823 sizeof(int32_t) * sp
->fip
->fi_nblocks
);
2824 sp
->start_lbp
= &sp
->fip
->fi_blocks
[0];
2826 sp
->sum_bytes_left
+= FINFOSIZE
;
2827 --((SEGSUM
*)(sp
->segsum
))->ss_nfinfo
;