7 * Written by Aaron D. Gifford <me@aarongifford.com>
9 * Copyright 2000 Aaron D. Gifford. All rights reserved.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the copyright holder nor the names of contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 #include <sys/types.h>
39 /* #include <sys/time.h> */
40 /* #include <sys/systm.h> */
41 /* #include <machine/endian.h> */
46 * Some sanity checking code is included using assert(). On my FreeBSD
47 * system, this additional code can be removed by compiling with NDEBUG
48 * defined. Check your own systems manpage on assert() to see how to
49 * compile WITHOUT the sanity checking code on your system.
51 * UNROLLED TRANSFORM LOOP NOTE:
52 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
53 * loop version for the hash transform rounds (defined using macros
54 * later in this file). Either define on the command line, for example:
56 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
60 * #define SHA2_UNROLL_TRANSFORM
64 #if defined(__bsdi__) || defined(__FreeBSD__)
69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
71 * SHA2_BYTE_ORDER NOTE:
73 * Please make sure that your system defines SHA2_BYTE_ORDER. If your
74 * architecture is little-endian, make sure it also defines
75 * SHA2_LITTLE_ENDIAN and that the two (SHA2_BYTE_ORDER and
76 * SHA2_LITTLE_ENDIAN) are equivilent.
78 * If your system does not define the above, then you can do so by
81 * #define SHA2_LITTLE_ENDIAN 1234
82 * #define SHA2_BIG_ENDIAN 4321
84 * And for little-endian machines, add:
86 * #define SHA2_BYTE_ORDER SHA2_LITTLE_ENDIAN
88 * Or for big-endian machines:
90 * #define SHA2_BYTE_ORDER SHA2_BIG_ENDIAN
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
97 #if !defined(SHA2_BYTE_ORDER) || (SHA2_BYTE_ORDER != SHA2_LITTLE_ENDIAN && SHA2_BYTE_ORDER != SHA2_BIG_ENDIAN)
98 #error Define SHA2_BYTE_ORDER to be equal to either SHA2_LITTLE_ENDIAN or SHA2_BIG_ENDIAN
102 * Define the followingsha2_* types to types of the correct length on
103 * the native archtecture. Most BSD systems and Linux define u_intXX_t
104 * types. Machines with very recent ANSI C headers, can use the
105 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
106 * during compile or in the sha.h header file.
108 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
109 * will need to define these three typedefs below (and the appropriate
110 * ones in sha.h too) by hand according to their system architecture.
112 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
113 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
115 #if 0 /*def SHA2_USE_INTTYPES_H*/
117 typedef uint8_t sha2_byte
; /* Exactly 1 byte */
118 typedef uint32_t sha2_word32
; /* Exactly 4 bytes */
119 typedef uint64_t sha2_word64
; /* Exactly 8 bytes */
121 #else /* SHA2_USE_INTTYPES_H */
123 typedef u_int8_t sha2_byte
; /* Exactly 1 byte */
124 typedef u_int32_t sha2_word32
; /* Exactly 4 bytes */
125 typedef u_int64_t sha2_word64
; /* Exactly 8 bytes */
127 #endif /* SHA2_USE_INTTYPES_H */
130 /*** SHA-256/384/512 Various Length Definitions ***********************/
131 /* NOTE: Most of these are in sha2.h */
132 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
133 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
134 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
137 /*** ENDIAN REVERSAL MACROS *******************************************/
138 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
139 #define REVERSE32(w,x) { \
140 sha2_word32 tmp = (w); \
141 tmp = (tmp >> 16) | (tmp << 16); \
142 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
144 #define REVERSE64(w,x) { \
145 sha2_word64 tmp = (w); \
146 tmp = (tmp >> 32) | (tmp << 32); \
147 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
148 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
149 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
150 ((tmp & 0x0000ffff0000ffffULL) << 16); \
154 #define REVERSE64(w,x) { \
156 REVERSE32(ex64hi((w)), lo); \
157 REVERSE32(ex64lo((w)), hi); \
158 (x) = make64(lo, hi); \
160 #endif /* MINIX_64BIT */
161 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
164 * Macro for incrementally adding the unsigned 64-bit integer n to the
165 * unsigned 128-bit integer (represented using a two-element array of
168 #define ADDINC128(w,n) { \
169 (w)[0] += (sha2_word64)(n); \
170 if ((w)[0] < (n)) { \
175 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
177 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
179 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
180 * S is a ROTATION) because the SHA-256/384/512 description document
181 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
182 * same "backwards" definition.
184 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
185 #define R(b,x) ((x) >> (b))
186 /* 32-bit Rotate-right (used in SHA-256): */
187 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
188 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
189 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
191 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
192 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
193 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
195 /* Four of six logical functions used in SHA-256: */
196 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
197 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
198 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
199 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
201 /* Four of six logical functions used in SHA-384 and SHA-512: */
202 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
203 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
204 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
205 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
207 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
208 /* NOTE: These should not be accessed directly from outside this
209 * library -- they are intended for private internal visibility/use
212 void SHA512_Last(SHA512_CTX
*);
213 void SHA256_Transform(SHA256_CTX
*, const sha2_word32
*);
214 void SHA512_Transform(SHA512_CTX
*, const sha2_word64
*);
217 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
218 /* Hash constant words K for SHA-256: */
219 const static sha2_word32 K256
[64] = {
220 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
221 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
222 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
223 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
224 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
225 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
226 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
227 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
228 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
229 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
230 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
231 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
232 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
233 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
234 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
235 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
238 /* Initial hash value H for SHA-256: */
239 const static sha2_word32 sha256_initial_hash_value
[8] = {
251 /* Hash constant words K for SHA-384 and SHA-512: */
252 const static sha2_word64 K512
[80] = {
253 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
254 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
255 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
256 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
257 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
258 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
259 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
260 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
261 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
262 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
263 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
264 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
265 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
266 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
267 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
268 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
269 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
270 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
271 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
272 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
273 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
274 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
275 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
276 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
277 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
278 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
279 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
280 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
281 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
282 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
283 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
284 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
285 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
286 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
287 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
288 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
289 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
290 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
291 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
292 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
295 /* Initial hash value H for SHA-384 */
296 const static sha2_word64 sha384_initial_hash_value
[8] = {
297 0xcbbb9d5dc1059ed8ULL
,
298 0x629a292a367cd507ULL
,
299 0x9159015a3070dd17ULL
,
300 0x152fecd8f70e5939ULL
,
301 0x67332667ffc00b31ULL
,
302 0x8eb44a8768581511ULL
,
303 0xdb0c2e0d64f98fa7ULL
,
304 0x47b5481dbefa4fa4ULL
307 /* Initial hash value H for SHA-512 */
308 const static sha2_word64 sha512_initial_hash_value
[8] = {
309 0x6a09e667f3bcc908ULL
,
310 0xbb67ae8584caa73bULL
,
311 0x3c6ef372fe94f82bULL
,
312 0xa54ff53a5f1d36f1ULL
,
313 0x510e527fade682d1ULL
,
314 0x9b05688c2b3e6c1fULL
,
315 0x1f83d9abfb41bd6bULL
,
316 0x5be0cd19137e2179ULL
318 #endif /* !NO_64BIT */
321 * Constant used by SHA256/384/512_End() functions for converting the
322 * digest to a readable hexadecimal character string:
324 static const char *sha2_hex_digits
= "0123456789abcdef";
327 /*** SHA-256: *********************************************************/
328 void SHA256_Init(SHA256_CTX
* context
) {
329 if (context
== (SHA256_CTX
*)0) {
332 bcopy(sha256_initial_hash_value
, context
->state
, SHA256_DIGEST_LENGTH
);
333 bzero(context
->buffer
, SHA256_BLOCK_LENGTH
);
335 context
->bitcount
= cvu64(0);
336 #else /* !MINIX_64BIT */
337 context
->bitcount
= 0;
338 #endif /* MINIX_64BIT */
341 #ifdef SHA2_UNROLL_TRANSFORM
343 /* Unrolled SHA-256 round macros: */
345 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
347 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
348 REVERSE32(*data++, W256[j]); \
349 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
352 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
356 #else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
358 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
359 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
360 K256[j] + (W256[j] = *data++); \
362 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
365 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
367 #define ROUND256(a,b,c,d,e,f,g,h) \
368 s0 = W256[(j+1)&0x0f]; \
369 s0 = sigma0_256(s0); \
370 s1 = W256[(j+14)&0x0f]; \
371 s1 = sigma1_256(s1); \
372 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
373 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
375 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
378 void SHA256_Transform(SHA256_CTX
* context
, const sha2_word32
* data
) {
379 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
380 sha2_word32 T1
, *W256
;
383 W256
= (sha2_word32
*)context
->buffer
;
385 /* Initialize registers with the prev. intermediate value */
386 a
= context
->state
[0];
387 b
= context
->state
[1];
388 c
= context
->state
[2];
389 d
= context
->state
[3];
390 e
= context
->state
[4];
391 f
= context
->state
[5];
392 g
= context
->state
[6];
393 h
= context
->state
[7];
397 /* Rounds 0 to 15 (unrolled): */
398 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
399 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
400 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
401 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
402 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
403 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
404 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
405 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
408 /* Now for the remaining rounds to 64: */
410 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
411 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
412 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
413 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
414 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
415 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
416 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
417 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
420 /* Compute the current intermediate hash value */
421 context
->state
[0] += a
;
422 context
->state
[1] += b
;
423 context
->state
[2] += c
;
424 context
->state
[3] += d
;
425 context
->state
[4] += e
;
426 context
->state
[5] += f
;
427 context
->state
[6] += g
;
428 context
->state
[7] += h
;
431 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
434 #else /* SHA2_UNROLL_TRANSFORM */
436 void SHA256_Transform(SHA256_CTX
* context
, const sha2_word32
* data
) {
437 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
438 sha2_word32 T1
, T2
, *W256
;
441 W256
= (sha2_word32
*)context
->buffer
;
443 /* Initialize registers with the prev. intermediate value */
444 a
= context
->state
[0];
445 b
= context
->state
[1];
446 c
= context
->state
[2];
447 d
= context
->state
[3];
448 e
= context
->state
[4];
449 f
= context
->state
[5];
450 g
= context
->state
[6];
451 h
= context
->state
[7];
455 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
456 /* Copy data while converting to host byte order */
457 REVERSE32(*data
++,W256
[j
]);
458 /* Apply the SHA-256 compression function to update a..h */
459 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
460 #else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
461 /* Apply the SHA-256 compression function to update a..h with copy */
462 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + (W256
[j
] = *data
++);
463 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
464 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
478 /* Part of the message block expansion: */
479 s0
= W256
[(j
+1)&0x0f];
481 s1
= W256
[(j
+14)&0x0f];
484 /* Apply the SHA-256 compression function to update a..h */
485 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
486 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
487 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
500 /* Compute the current intermediate hash value */
501 context
->state
[0] += a
;
502 context
->state
[1] += b
;
503 context
->state
[2] += c
;
504 context
->state
[3] += d
;
505 context
->state
[4] += e
;
506 context
->state
[5] += f
;
507 context
->state
[6] += g
;
508 context
->state
[7] += h
;
511 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
514 #endif /* SHA2_UNROLL_TRANSFORM */
516 void SHA256_Update(SHA256_CTX
* context
, const sha2_byte
*data
, size_t len
) {
517 unsigned int freespace
, usedspace
;
520 /* Calling with no data is valid - we do nothing */
525 assert(context
!= (SHA256_CTX
*)0 && data
!= (sha2_byte
*)0);
528 usedspace
= rem64u(context
->bitcount
, SHA256_BLOCK_LENGTH
*8)/8;
529 #else /* !MINIX_64BIT */
530 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
531 #endif /* MINIX_64BIT */
533 /* Calculate how much free space is available in the buffer */
534 freespace
= SHA256_BLOCK_LENGTH
- usedspace
;
536 if (len
>= freespace
) {
537 /* Fill the buffer completely and process it */
538 bcopy(data
, &context
->buffer
[usedspace
], freespace
);
540 context
->bitcount
= add64u(context
->bitcount
,
542 #else /* !MINIX_64BIT */
543 context
->bitcount
+= freespace
<< 3;
544 #endif /* MINIX_64BIT */
547 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
549 /* The buffer is not yet full */
550 bcopy(data
, &context
->buffer
[usedspace
], len
);
552 context
->bitcount
= add64u(context
->bitcount
, len
<< 3);
553 #else /* !MINIX_64BIT */
554 context
->bitcount
+= len
<< 3;
555 #endif /* MINIX_64BIT */
557 usedspace
= freespace
= 0;
561 while (len
>= SHA256_BLOCK_LENGTH
) {
562 /* Process as many complete blocks as we can */
563 SHA256_Transform(context
, (const sha2_word32
*)data
);
565 context
->bitcount
= add64u(context
->bitcount
,
566 SHA256_BLOCK_LENGTH
<< 3);
567 #else /* !MINIX_64BIT */
568 context
->bitcount
+= SHA256_BLOCK_LENGTH
<< 3;
569 #endif /* MINIX_64BIT */
570 len
-= SHA256_BLOCK_LENGTH
;
571 data
+= SHA256_BLOCK_LENGTH
;
574 /* There's left-overs, so save 'em */
575 bcopy(data
, context
->buffer
, len
);
577 context
->bitcount
= add64u(context
->bitcount
, len
<< 3);
578 #else /* !MINIX_64BIT */
579 context
->bitcount
+= len
<< 3;
580 #endif /* MINIX_64BIT */
583 usedspace
= freespace
= 0;
586 void SHA256_Final(sha2_byte digest
[], SHA256_CTX
* context
) {
587 sha2_word32
*d
= (sha2_word32
*)digest
;
588 unsigned int usedspace
;
591 assert(context
!= (SHA256_CTX
*)0);
593 /* If no digest buffer is passed, we don't bother doing this: */
594 if (digest
!= (sha2_byte
*)0) {
596 usedspace
= rem64u(context
->bitcount
, SHA256_BLOCK_LENGTH
*8)/8;
597 #else /* !MINIX_64BIT */
598 usedspace
= (context
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
599 #endif /* MINIX_64BIT */
600 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
601 /* Convert FROM host byte order */
602 REVERSE64(context
->bitcount
,context
->bitcount
);
605 /* Begin padding with a 1 bit: */
606 context
->buffer
[usedspace
++] = 0x80;
608 if (usedspace
<= SHA256_SHORT_BLOCK_LENGTH
) {
609 /* Set-up for the last transform: */
610 bzero(&context
->buffer
[usedspace
], SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
612 if (usedspace
< SHA256_BLOCK_LENGTH
) {
613 bzero(&context
->buffer
[usedspace
], SHA256_BLOCK_LENGTH
- usedspace
);
615 /* Do second-to-last transform: */
616 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
618 /* And set-up for the last transform: */
619 bzero(context
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
622 /* Set-up for the last transform: */
623 bzero(context
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
625 /* Begin padding with a 1 bit: */
626 *context
->buffer
= 0x80;
628 /* Set the bit count: */
629 *(sha2_word64
*)&context
->buffer
[SHA256_SHORT_BLOCK_LENGTH
] = context
->bitcount
;
631 /* Final transform: */
632 SHA256_Transform(context
, (sha2_word32
*)context
->buffer
);
634 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
636 /* Convert TO host byte order */
638 for (j
= 0; j
< 8; j
++) {
639 REVERSE32(context
->state
[j
],context
->state
[j
]);
640 *d
++ = context
->state
[j
];
644 bcopy(context
->state
, d
, SHA256_DIGEST_LENGTH
);
648 /* Clean up state data: */
649 bzero(context
, sizeof(context
));
653 char *SHA256_End(SHA256_CTX
* context
, char buffer
[]) {
654 sha2_byte digest
[SHA256_DIGEST_LENGTH
], *d
= digest
;
658 assert(context
!= (SHA256_CTX
*)0);
660 if (buffer
!= (char*)0) {
661 SHA256_Final(digest
, context
);
663 for (i
= 0; i
< SHA256_DIGEST_LENGTH
; i
++) {
664 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
665 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
670 bzero(context
, sizeof(context
));
672 bzero(digest
, SHA256_DIGEST_LENGTH
);
676 char* SHA256_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA256_DIGEST_STRING_LENGTH
]) {
679 SHA256_Init(&context
);
680 SHA256_Update(&context
, data
, len
);
681 return SHA256_End(&context
, digest
);
686 /*** SHA-512: *********************************************************/
687 void SHA512_Init(SHA512_CTX
* context
) {
688 if (context
== (SHA512_CTX
*)0) {
691 bcopy(sha512_initial_hash_value
, context
->state
, SHA512_DIGEST_LENGTH
);
692 bzero(context
->buffer
, SHA512_BLOCK_LENGTH
);
693 context
->bitcount
[0] = context
->bitcount
[1] = 0;
696 #ifdef SHA2_UNROLL_TRANSFORM
698 /* Unrolled SHA-512 round macros: */
699 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
701 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
702 REVERSE64(*data++, W512[j]); \
703 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
706 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
710 #else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
712 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
713 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
714 K512[j] + (W512[j] = *data++); \
716 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
719 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
721 #define ROUND512(a,b,c,d,e,f,g,h) \
722 s0 = W512[(j+1)&0x0f]; \
723 s0 = sigma0_512(s0); \
724 s1 = W512[(j+14)&0x0f]; \
725 s1 = sigma1_512(s1); \
726 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
727 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
729 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
732 void SHA512_Transform(SHA512_CTX
* context
, const sha2_word64
* data
) {
733 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
734 sha2_word64 T1
, *W512
= (sha2_word64
*)context
->buffer
;
737 /* Initialize registers with the prev. intermediate value */
738 a
= context
->state
[0];
739 b
= context
->state
[1];
740 c
= context
->state
[2];
741 d
= context
->state
[3];
742 e
= context
->state
[4];
743 f
= context
->state
[5];
744 g
= context
->state
[6];
745 h
= context
->state
[7];
749 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
750 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
751 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
752 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
753 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
754 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
755 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
756 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
759 /* Now for the remaining rounds up to 79: */
761 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
762 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
763 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
764 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
765 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
766 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
767 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
768 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
771 /* Compute the current intermediate hash value */
772 context
->state
[0] += a
;
773 context
->state
[1] += b
;
774 context
->state
[2] += c
;
775 context
->state
[3] += d
;
776 context
->state
[4] += e
;
777 context
->state
[5] += f
;
778 context
->state
[6] += g
;
779 context
->state
[7] += h
;
782 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
785 #else /* SHA2_UNROLL_TRANSFORM */
787 void SHA512_Transform(SHA512_CTX
* context
, const sha2_word64
* data
) {
788 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
789 sha2_word64 T1
, T2
, *W512
= (sha2_word64
*)context
->buffer
;
792 /* Initialize registers with the prev. intermediate value */
793 a
= context
->state
[0];
794 b
= context
->state
[1];
795 c
= context
->state
[2];
796 d
= context
->state
[3];
797 e
= context
->state
[4];
798 f
= context
->state
[5];
799 g
= context
->state
[6];
800 h
= context
->state
[7];
804 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
805 /* Convert TO host byte order */
806 REVERSE64(*data
++, W512
[j
]);
807 /* Apply the SHA-512 compression function to update a..h */
808 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
809 #else /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
810 /* Apply the SHA-512 compression function to update a..h with copy */
811 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + (W512
[j
] = *data
++);
812 #endif /* SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN */
813 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
827 /* Part of the message block expansion: */
828 s0
= W512
[(j
+1)&0x0f];
830 s1
= W512
[(j
+14)&0x0f];
833 /* Apply the SHA-512 compression function to update a..h */
834 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
835 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
836 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
849 /* Compute the current intermediate hash value */
850 context
->state
[0] += a
;
851 context
->state
[1] += b
;
852 context
->state
[2] += c
;
853 context
->state
[3] += d
;
854 context
->state
[4] += e
;
855 context
->state
[5] += f
;
856 context
->state
[6] += g
;
857 context
->state
[7] += h
;
860 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
863 #endif /* SHA2_UNROLL_TRANSFORM */
865 void SHA512_Update(SHA512_CTX
* context
, const sha2_byte
*data
, size_t len
) {
866 unsigned int freespace
, usedspace
;
869 /* Calling with no data is valid - we do nothing */
874 assert(context
!= (SHA512_CTX
*)0 && data
!= (sha2_byte
*)0);
876 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
878 /* Calculate how much free space is available in the buffer */
879 freespace
= SHA512_BLOCK_LENGTH
- usedspace
;
881 if (len
>= freespace
) {
882 /* Fill the buffer completely and process it */
883 bcopy(data
, &context
->buffer
[usedspace
], freespace
);
884 ADDINC128(context
->bitcount
, freespace
<< 3);
887 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
889 /* The buffer is not yet full */
890 bcopy(data
, &context
->buffer
[usedspace
], len
);
891 ADDINC128(context
->bitcount
, len
<< 3);
893 usedspace
= freespace
= 0;
897 while (len
>= SHA512_BLOCK_LENGTH
) {
898 /* Process as many complete blocks as we can */
899 SHA512_Transform(context
, (const sha2_word64
*)data
);
900 ADDINC128(context
->bitcount
, SHA512_BLOCK_LENGTH
<< 3);
901 len
-= SHA512_BLOCK_LENGTH
;
902 data
+= SHA512_BLOCK_LENGTH
;
905 /* There's left-overs, so save 'em */
906 bcopy(data
, context
->buffer
, len
);
907 ADDINC128(context
->bitcount
, len
<< 3);
910 usedspace
= freespace
= 0;
913 void SHA512_Last(SHA512_CTX
* context
) {
914 unsigned int usedspace
;
916 usedspace
= (context
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
917 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
918 /* Convert FROM host byte order */
919 REVERSE64(context
->bitcount
[0],context
->bitcount
[0]);
920 REVERSE64(context
->bitcount
[1],context
->bitcount
[1]);
923 /* Begin padding with a 1 bit: */
924 context
->buffer
[usedspace
++] = 0x80;
926 if (usedspace
<= SHA512_SHORT_BLOCK_LENGTH
) {
927 /* Set-up for the last transform: */
928 bzero(&context
->buffer
[usedspace
], SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
930 if (usedspace
< SHA512_BLOCK_LENGTH
) {
931 bzero(&context
->buffer
[usedspace
], SHA512_BLOCK_LENGTH
- usedspace
);
933 /* Do second-to-last transform: */
934 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
936 /* And set-up for the last transform: */
937 bzero(context
->buffer
, SHA512_BLOCK_LENGTH
- 2);
940 /* Prepare for final transform: */
941 bzero(context
->buffer
, SHA512_SHORT_BLOCK_LENGTH
);
943 /* Begin padding with a 1 bit: */
944 *context
->buffer
= 0x80;
946 /* Store the length of input data (in bits): */
947 *(sha2_word64
*)&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
] = context
->bitcount
[1];
948 *(sha2_word64
*)&context
->buffer
[SHA512_SHORT_BLOCK_LENGTH
+8] = context
->bitcount
[0];
950 /* Final transform: */
951 SHA512_Transform(context
, (sha2_word64
*)context
->buffer
);
954 void SHA512_Final(sha2_byte digest
[], SHA512_CTX
* context
) {
955 sha2_word64
*d
= (sha2_word64
*)digest
;
958 assert(context
!= (SHA512_CTX
*)0);
960 /* If no digest buffer is passed, we don't bother doing this: */
961 if (digest
!= (sha2_byte
*)0) {
962 SHA512_Last(context
);
964 /* Save the hash data for output: */
965 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
967 /* Convert TO host byte order */
969 for (j
= 0; j
< 8; j
++) {
970 REVERSE64(context
->state
[j
],context
->state
[j
]);
971 *d
++ = context
->state
[j
];
975 bcopy(context
->state
, d
, SHA512_DIGEST_LENGTH
);
979 /* Zero out state data */
980 bzero(context
, sizeof(context
));
983 char *SHA512_End(SHA512_CTX
* context
, char buffer
[]) {
984 sha2_byte digest
[SHA512_DIGEST_LENGTH
], *d
= digest
;
988 assert(context
!= (SHA512_CTX
*)0);
990 if (buffer
!= (char*)0) {
991 SHA512_Final(digest
, context
);
993 for (i
= 0; i
< SHA512_DIGEST_LENGTH
; i
++) {
994 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
995 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1000 bzero(context
, sizeof(context
));
1002 bzero(digest
, SHA512_DIGEST_LENGTH
);
1006 char* SHA512_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA512_DIGEST_STRING_LENGTH
]) {
1009 SHA512_Init(&context
);
1010 SHA512_Update(&context
, data
, len
);
1011 return SHA512_End(&context
, digest
);
1015 /*** SHA-384: *********************************************************/
1016 void SHA384_Init(SHA384_CTX
* context
) {
1017 if (context
== (SHA384_CTX
*)0) {
1020 bcopy(sha384_initial_hash_value
, context
->state
, SHA512_DIGEST_LENGTH
);
1021 bzero(context
->buffer
, SHA384_BLOCK_LENGTH
);
1022 context
->bitcount
[0] = context
->bitcount
[1] = 0;
1025 void SHA384_Update(SHA384_CTX
* context
, const sha2_byte
* data
, size_t len
) {
1026 SHA512_Update((SHA512_CTX
*)context
, data
, len
);
1029 void SHA384_Final(sha2_byte digest
[], SHA384_CTX
* context
) {
1030 sha2_word64
*d
= (sha2_word64
*)digest
;
1033 assert(context
!= (SHA384_CTX
*)0);
1035 /* If no digest buffer is passed, we don't bother doing this: */
1036 if (digest
!= (sha2_byte
*)0) {
1037 SHA512_Last((SHA512_CTX
*)context
);
1039 /* Save the hash data for output: */
1040 #if SHA2_BYTE_ORDER == SHA2_LITTLE_ENDIAN
1042 /* Convert TO host byte order */
1044 for (j
= 0; j
< 6; j
++) {
1045 REVERSE64(context
->state
[j
],context
->state
[j
]);
1046 *d
++ = context
->state
[j
];
1050 bcopy(context
->state
, d
, SHA384_DIGEST_LENGTH
);
1054 /* Zero out state data */
1055 bzero(context
, sizeof(context
));
1058 char *SHA384_End(SHA384_CTX
* context
, char buffer
[]) {
1059 sha2_byte digest
[SHA384_DIGEST_LENGTH
], *d
= digest
;
1063 assert(context
!= (SHA384_CTX
*)0);
1065 if (buffer
!= (char*)0) {
1066 SHA384_Final(digest
, context
);
1068 for (i
= 0; i
< SHA384_DIGEST_LENGTH
; i
++) {
1069 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1070 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1075 bzero(context
, sizeof(context
));
1077 bzero(digest
, SHA384_DIGEST_LENGTH
);
1081 char* SHA384_Data(const sha2_byte
* data
, size_t len
, char digest
[SHA384_DIGEST_STRING_LENGTH
]) {
1084 SHA384_Init(&context
);
1085 SHA384_Update(&context
, data
, len
);
1086 return SHA384_End(&context
, digest
);
1089 #endif /* !NO_64BIT */
1092 * $PchId: sha2.c,v 1.1 2005/06/28 14:29:23 philip Exp $