kernel: restore stacktraces
[minix.git] / drivers / random / aes / rijndael_alg.c
blob07f71f5cce1b7c0386b81a2d6947ac76ed1f8fe3
1 /*
2 * rijndael-alg.c v2.4 April '2000
4 * Optimised ANSI C code
6 * authors: v1.0: Antoon Bosselaers
7 * v2.0: Vincent Rijmen, K.U.Leuven
8 * v2.3: Paulo Barreto
9 * v2.4: Vincent Rijmen, K.U.Leuven
11 * This code is placed in the public domain.
14 #include <stdio.h>
15 #include <stdlib.h>
17 #include "rijndael-alg.h"
19 #include "boxes.dat"
21 int rijndael_KeySched(word8 k[MAXKC][4], word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
22 /* Calculate the necessary round keys
23 * The number of calculations depends on keyBits and blockBits
24 */
25 int j, r, t, rconpointer = 0;
26 word8 tk[MAXKC][4];
27 int KC = ROUNDS - 6;
29 for (j = KC-1; j >= 0; j--) {
30 *((word32*)tk[j]) = *((word32*)k[j]);
32 r = 0;
33 t = 0;
34 /* copy values into round key array */
35 for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
36 for (; (j < KC) && (t < 4); j++, t++) {
37 *((word32*)W[r][t]) = *((word32*)tk[j]);
39 if (t == 4) {
40 r++;
41 t = 0;
45 while (r < ROUNDS + 1) { /* while not enough round key material calculated */
46 /* calculate new values */
47 tk[0][0] ^= S[tk[KC-1][1]];
48 tk[0][1] ^= S[tk[KC-1][2]];
49 tk[0][2] ^= S[tk[KC-1][3]];
50 tk[0][3] ^= S[tk[KC-1][0]];
51 tk[0][0] ^= rcon[rconpointer++];
53 if (KC != 8) {
54 for (j = 1; j < KC; j++) {
55 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
57 } else {
58 for (j = 1; j < KC/2; j++) {
59 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
61 tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
62 tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
63 tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
64 tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
65 for (j = KC/2 + 1; j < KC; j++) {
66 *((word32*)tk[j]) ^= *((word32*)tk[j-1]);
69 /* copy values into round key array */
70 for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
71 for (; (j < KC) && (t < 4); j++, t++) {
72 *((word32*)W[r][t]) = *((word32*)tk[j]);
74 if (t == 4) {
75 r++;
76 t = 0;
80 return 0;
83 int rijndael_KeyEncToDec(word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
84 int r;
85 word8 *w;
87 for (r = 1; r < ROUNDS; r++) {
88 w = W[r][0];
89 *((word32*)w) =
90 *((word32*)U1[w[0]])
91 ^ *((word32*)U2[w[1]])
92 ^ *((word32*)U3[w[2]])
93 ^ *((word32*)U4[w[3]]);
95 w = W[r][1];
96 *((word32*)w) =
97 *((word32*)U1[w[0]])
98 ^ *((word32*)U2[w[1]])
99 ^ *((word32*)U3[w[2]])
100 ^ *((word32*)U4[w[3]]);
102 w = W[r][2];
103 *((word32*)w) =
104 *((word32*)U1[w[0]])
105 ^ *((word32*)U2[w[1]])
106 ^ *((word32*)U3[w[2]])
107 ^ *((word32*)U4[w[3]]);
109 w = W[r][3];
110 *((word32*)w) =
111 *((word32*)U1[w[0]])
112 ^ *((word32*)U2[w[1]])
113 ^ *((word32*)U3[w[2]])
114 ^ *((word32*)U4[w[3]]);
116 return 0;
120 * Encrypt a single block.
122 int rijndael_Encrypt(const void *va, void *vb, word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
123 const word8 *a = va;
124 word8 *b = vb;
125 int r;
126 word8 temp[4][4];
128 *((word32*)temp[0]) = *((word32*)(a )) ^ *((word32*)rk[0][0]);
129 *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[0][1]);
130 *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[0][2]);
131 *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]);
132 *((word32*)(b )) = *((word32*)T1[temp[0][0]])
133 ^ *((word32*)T2[temp[1][1]])
134 ^ *((word32*)T3[temp[2][2]])
135 ^ *((word32*)T4[temp[3][3]]);
136 *((word32*)(b + 4)) = *((word32*)T1[temp[1][0]])
137 ^ *((word32*)T2[temp[2][1]])
138 ^ *((word32*)T3[temp[3][2]])
139 ^ *((word32*)T4[temp[0][3]]);
140 *((word32*)(b + 8)) = *((word32*)T1[temp[2][0]])
141 ^ *((word32*)T2[temp[3][1]])
142 ^ *((word32*)T3[temp[0][2]])
143 ^ *((word32*)T4[temp[1][3]]);
144 *((word32*)(b +12)) = *((word32*)T1[temp[3][0]])
145 ^ *((word32*)T2[temp[0][1]])
146 ^ *((word32*)T3[temp[1][2]])
147 ^ *((word32*)T4[temp[2][3]]);
148 for (r = 1; r < ROUNDS-1; r++) {
149 *((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[r][0]);
150 *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
151 *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
152 *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
154 *((word32*)(b )) = *((word32*)T1[temp[0][0]])
155 ^ *((word32*)T2[temp[1][1]])
156 ^ *((word32*)T3[temp[2][2]])
157 ^ *((word32*)T4[temp[3][3]]);
158 *((word32*)(b + 4)) = *((word32*)T1[temp[1][0]])
159 ^ *((word32*)T2[temp[2][1]])
160 ^ *((word32*)T3[temp[3][2]])
161 ^ *((word32*)T4[temp[0][3]]);
162 *((word32*)(b + 8)) = *((word32*)T1[temp[2][0]])
163 ^ *((word32*)T2[temp[3][1]])
164 ^ *((word32*)T3[temp[0][2]])
165 ^ *((word32*)T4[temp[1][3]]);
166 *((word32*)(b +12)) = *((word32*)T1[temp[3][0]])
167 ^ *((word32*)T2[temp[0][1]])
168 ^ *((word32*)T3[temp[1][2]])
169 ^ *((word32*)T4[temp[2][3]]);
171 /* last round is special */
172 *((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[ROUNDS-1][0]);
173 *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[ROUNDS-1][1]);
174 *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[ROUNDS-1][2]);
175 *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[ROUNDS-1][3]);
176 b[ 0] = T1[temp[0][0]][1];
177 b[ 1] = T1[temp[1][1]][1];
178 b[ 2] = T1[temp[2][2]][1];
179 b[ 3] = T1[temp[3][3]][1];
180 b[ 4] = T1[temp[1][0]][1];
181 b[ 5] = T1[temp[2][1]][1];
182 b[ 6] = T1[temp[3][2]][1];
183 b[ 7] = T1[temp[0][3]][1];
184 b[ 8] = T1[temp[2][0]][1];
185 b[ 9] = T1[temp[3][1]][1];
186 b[10] = T1[temp[0][2]][1];
187 b[11] = T1[temp[1][3]][1];
188 b[12] = T1[temp[3][0]][1];
189 b[13] = T1[temp[0][1]][1];
190 b[14] = T1[temp[1][2]][1];
191 b[15] = T1[temp[2][3]][1];
192 *((word32*)(b )) ^= *((word32*)rk[ROUNDS][0]);
193 *((word32*)(b+ 4)) ^= *((word32*)rk[ROUNDS][1]);
194 *((word32*)(b+ 8)) ^= *((word32*)rk[ROUNDS][2]);
195 *((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]);
197 return 0;
200 #ifdef INTERMEDIATE_VALUE_KAT
202 * Encrypt only a certain number of rounds.
203 * Only used in the Intermediate Value Known Answer Test.
205 int rijndaelEncryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
206 int r;
207 word8 temp[4][4];
209 /* make number of rounds sane */
210 if (rounds > ROUNDS) {
211 rounds = ROUNDS;
214 *((word32*)a[0]) = *((word32*)a[0]) ^ *((word32*)rk[0][0]);
215 *((word32*)a[1]) = *((word32*)a[1]) ^ *((word32*)rk[0][1]);
216 *((word32*)a[2]) = *((word32*)a[2]) ^ *((word32*)rk[0][2]);
217 *((word32*)a[3]) = *((word32*)a[3]) ^ *((word32*)rk[0][3]);
219 for (r = 1; (r <= rounds) && (r < ROUNDS); r++) {
220 *((word32*)temp[0]) = *((word32*)T1[a[0][0]])
221 ^ *((word32*)T2[a[1][1]])
222 ^ *((word32*)T3[a[2][2]])
223 ^ *((word32*)T4[a[3][3]]);
224 *((word32*)temp[1]) = *((word32*)T1[a[1][0]])
225 ^ *((word32*)T2[a[2][1]])
226 ^ *((word32*)T3[a[3][2]])
227 ^ *((word32*)T4[a[0][3]]);
228 *((word32*)temp[2]) = *((word32*)T1[a[2][0]])
229 ^ *((word32*)T2[a[3][1]])
230 ^ *((word32*)T3[a[0][2]])
231 ^ *((word32*)T4[a[1][3]]);
232 *((word32*)temp[3]) = *((word32*)T1[a[3][0]])
233 ^ *((word32*)T2[a[0][1]])
234 ^ *((word32*)T3[a[1][2]])
235 ^ *((word32*)T4[a[2][3]]);
236 *((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[r][0]);
237 *((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[r][1]);
238 *((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[r][2]);
239 *((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[r][3]);
241 if (rounds == ROUNDS) {
242 /* last round is special */
243 temp[0][0] = T1[a[0][0]][1];
244 temp[0][1] = T1[a[1][1]][1];
245 temp[0][2] = T1[a[2][2]][1];
246 temp[0][3] = T1[a[3][3]][1];
247 temp[1][0] = T1[a[1][0]][1];
248 temp[1][1] = T1[a[2][1]][1];
249 temp[1][2] = T1[a[3][2]][1];
250 temp[1][3] = T1[a[0][3]][1];
251 temp[2][0] = T1[a[2][0]][1];
252 temp[2][1] = T1[a[3][1]][1];
253 temp[2][2] = T1[a[0][2]][1];
254 temp[2][3] = T1[a[1][3]][1];
255 temp[3][0] = T1[a[3][0]][1];
256 temp[3][1] = T1[a[0][1]][1];
257 temp[3][2] = T1[a[1][2]][1];
258 temp[3][3] = T1[a[2][3]][1];
259 *((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[ROUNDS][0]);
260 *((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[ROUNDS][1]);
261 *((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[ROUNDS][2]);
262 *((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[ROUNDS][3]);
265 return 0;
267 #endif /* INTERMEDIATE_VALUE_KAT */
270 * Decrypt a single block.
272 int rijndael_Decrypt(const void *va, void *vb, word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
273 const word8 *a = va;
274 word8 *b = vb;
275 int r;
276 word8 temp[4][4];
278 *((word32*)temp[0]) = *((word32*)(a )) ^ *((word32*)rk[ROUNDS][0]);
279 *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[ROUNDS][1]);
280 *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[ROUNDS][2]);
281 *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[ROUNDS][3]);
283 *((word32*)(b )) = *((word32*)T5[temp[0][0]])
284 ^ *((word32*)T6[temp[3][1]])
285 ^ *((word32*)T7[temp[2][2]])
286 ^ *((word32*)T8[temp[1][3]]);
287 *((word32*)(b+ 4)) = *((word32*)T5[temp[1][0]])
288 ^ *((word32*)T6[temp[0][1]])
289 ^ *((word32*)T7[temp[3][2]])
290 ^ *((word32*)T8[temp[2][3]]);
291 *((word32*)(b+ 8)) = *((word32*)T5[temp[2][0]])
292 ^ *((word32*)T6[temp[1][1]])
293 ^ *((word32*)T7[temp[0][2]])
294 ^ *((word32*)T8[temp[3][3]]);
295 *((word32*)(b+12)) = *((word32*)T5[temp[3][0]])
296 ^ *((word32*)T6[temp[2][1]])
297 ^ *((word32*)T7[temp[1][2]])
298 ^ *((word32*)T8[temp[0][3]]);
299 for (r = ROUNDS-1; r > 1; r--) {
300 *((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[r][0]);
301 *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
302 *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
303 *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
304 *((word32*)(b )) = *((word32*)T5[temp[0][0]])
305 ^ *((word32*)T6[temp[3][1]])
306 ^ *((word32*)T7[temp[2][2]])
307 ^ *((word32*)T8[temp[1][3]]);
308 *((word32*)(b+ 4)) = *((word32*)T5[temp[1][0]])
309 ^ *((word32*)T6[temp[0][1]])
310 ^ *((word32*)T7[temp[3][2]])
311 ^ *((word32*)T8[temp[2][3]]);
312 *((word32*)(b+ 8)) = *((word32*)T5[temp[2][0]])
313 ^ *((word32*)T6[temp[1][1]])
314 ^ *((word32*)T7[temp[0][2]])
315 ^ *((word32*)T8[temp[3][3]]);
316 *((word32*)(b+12)) = *((word32*)T5[temp[3][0]])
317 ^ *((word32*)T6[temp[2][1]])
318 ^ *((word32*)T7[temp[1][2]])
319 ^ *((word32*)T8[temp[0][3]]);
321 /* last round is special */
322 *((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[1][0]);
323 *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[1][1]);
324 *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[1][2]);
325 *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[1][3]);
326 b[ 0] = S5[temp[0][0]];
327 b[ 1] = S5[temp[3][1]];
328 b[ 2] = S5[temp[2][2]];
329 b[ 3] = S5[temp[1][3]];
330 b[ 4] = S5[temp[1][0]];
331 b[ 5] = S5[temp[0][1]];
332 b[ 6] = S5[temp[3][2]];
333 b[ 7] = S5[temp[2][3]];
334 b[ 8] = S5[temp[2][0]];
335 b[ 9] = S5[temp[1][1]];
336 b[10] = S5[temp[0][2]];
337 b[11] = S5[temp[3][3]];
338 b[12] = S5[temp[3][0]];
339 b[13] = S5[temp[2][1]];
340 b[14] = S5[temp[1][2]];
341 b[15] = S5[temp[0][3]];
342 *((word32*)(b )) ^= *((word32*)rk[0][0]);
343 *((word32*)(b+ 4)) ^= *((word32*)rk[0][1]);
344 *((word32*)(b+ 8)) ^= *((word32*)rk[0][2]);
345 *((word32*)(b+12)) ^= *((word32*)rk[0][3]);
347 return 0;
350 #ifdef INTERMEDIATE_VALUE_KAT
352 * Decrypt only a certain number of rounds.
353 * Only used in the Intermediate Value Known Answer Test.
354 * Operations rearranged such that the intermediate values
355 * of decryption correspond with the intermediate values
356 * of encryption.
358 int rijndaelDecryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
359 int r, i;
360 word8 temp[4], shift;
362 /* make number of rounds sane */
363 if (rounds > ROUNDS) {
364 rounds = ROUNDS;
366 /* first round is special: */
367 *(word32 *)a[0] ^= *(word32 *)rk[ROUNDS][0];
368 *(word32 *)a[1] ^= *(word32 *)rk[ROUNDS][1];
369 *(word32 *)a[2] ^= *(word32 *)rk[ROUNDS][2];
370 *(word32 *)a[3] ^= *(word32 *)rk[ROUNDS][3];
371 for (i = 0; i < 4; i++) {
372 a[i][0] = Si[a[i][0]];
373 a[i][1] = Si[a[i][1]];
374 a[i][2] = Si[a[i][2]];
375 a[i][3] = Si[a[i][3]];
377 for (i = 1; i < 4; i++) {
378 shift = (4 - i) & 3;
379 temp[0] = a[(0 + shift) & 3][i];
380 temp[1] = a[(1 + shift) & 3][i];
381 temp[2] = a[(2 + shift) & 3][i];
382 temp[3] = a[(3 + shift) & 3][i];
383 a[0][i] = temp[0];
384 a[1][i] = temp[1];
385 a[2][i] = temp[2];
386 a[3][i] = temp[3];
388 /* ROUNDS-1 ordinary rounds */
389 for (r = ROUNDS-1; r > rounds; r--) {
390 *(word32 *)a[0] ^= *(word32 *)rk[r][0];
391 *(word32 *)a[1] ^= *(word32 *)rk[r][1];
392 *(word32 *)a[2] ^= *(word32 *)rk[r][2];
393 *(word32 *)a[3] ^= *(word32 *)rk[r][3];
395 *((word32*)a[0]) =
396 *((word32*)U1[a[0][0]])
397 ^ *((word32*)U2[a[0][1]])
398 ^ *((word32*)U3[a[0][2]])
399 ^ *((word32*)U4[a[0][3]]);
401 *((word32*)a[1]) =
402 *((word32*)U1[a[1][0]])
403 ^ *((word32*)U2[a[1][1]])
404 ^ *((word32*)U3[a[1][2]])
405 ^ *((word32*)U4[a[1][3]]);
407 *((word32*)a[2]) =
408 *((word32*)U1[a[2][0]])
409 ^ *((word32*)U2[a[2][1]])
410 ^ *((word32*)U3[a[2][2]])
411 ^ *((word32*)U4[a[2][3]]);
413 *((word32*)a[3]) =
414 *((word32*)U1[a[3][0]])
415 ^ *((word32*)U2[a[3][1]])
416 ^ *((word32*)U3[a[3][2]])
417 ^ *((word32*)U4[a[3][3]]);
418 for (i = 0; i < 4; i++) {
419 a[i][0] = Si[a[i][0]];
420 a[i][1] = Si[a[i][1]];
421 a[i][2] = Si[a[i][2]];
422 a[i][3] = Si[a[i][3]];
424 for (i = 1; i < 4; i++) {
425 shift = (4 - i) & 3;
426 temp[0] = a[(0 + shift) & 3][i];
427 temp[1] = a[(1 + shift) & 3][i];
428 temp[2] = a[(2 + shift) & 3][i];
429 temp[3] = a[(3 + shift) & 3][i];
430 a[0][i] = temp[0];
431 a[1][i] = temp[1];
432 a[2][i] = temp[2];
433 a[3][i] = temp[3];
436 if (rounds == 0) {
437 /* End with the extra key addition */
438 *(word32 *)a[0] ^= *(word32 *)rk[0][0];
439 *(word32 *)a[1] ^= *(word32 *)rk[0][1];
440 *(word32 *)a[2] ^= *(word32 *)rk[0][2];
441 *(word32 *)a[3] ^= *(word32 *)rk[0][3];
443 return 0;
445 #endif /* INTERMEDIATE_VALUE_KAT */
448 * $PchId: rijndael_alg.c,v 1.2 2001/01/10 21:57:12 philip Exp $