Remove building with NOCRYPTO option
[minix.git] / crypto / external / bsd / heimdal / dist / lib / hcrypto / sha.c
blobac45f1c79682793c7e06a79aeebf0b584e144f7f
1 /* $NetBSD: sha.c,v 1.1.1.1 2011/04/13 18:14:51 elric Exp $ */
3 /*
4 * Copyright (c) 1995 - 2001 Kungliga Tekniska Högskolan
5 * (Royal Institute of Technology, Stockholm, Sweden).
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the Institute nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
36 #include "config.h"
38 #include "hash.h"
39 #include "sha.h"
41 #define A m->counter[0]
42 #define B m->counter[1]
43 #define C m->counter[2]
44 #define D m->counter[3]
45 #define E m->counter[4]
46 #define X data
48 void
49 SHA1_Init (struct sha *m)
51 m->sz[0] = 0;
52 m->sz[1] = 0;
53 A = 0x67452301;
54 B = 0xefcdab89;
55 C = 0x98badcfe;
56 D = 0x10325476;
57 E = 0xc3d2e1f0;
61 #define F0(x,y,z) CRAYFIX((x & y) | (~x & z))
62 #define F1(x,y,z) (x ^ y ^ z)
63 #define F2(x,y,z) ((x & y) | (x & z) | (y & z))
64 #define F3(x,y,z) F1(x,y,z)
66 #define K0 0x5a827999
67 #define K1 0x6ed9eba1
68 #define K2 0x8f1bbcdc
69 #define K3 0xca62c1d6
71 #define DO(t,f,k) \
72 do { \
73 uint32_t temp; \
75 temp = cshift(AA, 5) + f(BB,CC,DD) + EE + data[t] + k; \
76 EE = DD; \
77 DD = CC; \
78 CC = cshift(BB, 30); \
79 BB = AA; \
80 AA = temp; \
81 } while(0)
83 static inline void
84 calc (struct sha *m, uint32_t *in)
86 uint32_t AA, BB, CC, DD, EE;
87 uint32_t data[80];
88 int i;
90 AA = A;
91 BB = B;
92 CC = C;
93 DD = D;
94 EE = E;
96 for (i = 0; i < 16; ++i)
97 data[i] = in[i];
98 for (i = 16; i < 80; ++i)
99 data[i] = cshift(data[i-3] ^ data[i-8] ^ data[i-14] ^ data[i-16], 1);
101 /* t=[0,19] */
103 DO(0,F0,K0);
104 DO(1,F0,K0);
105 DO(2,F0,K0);
106 DO(3,F0,K0);
107 DO(4,F0,K0);
108 DO(5,F0,K0);
109 DO(6,F0,K0);
110 DO(7,F0,K0);
111 DO(8,F0,K0);
112 DO(9,F0,K0);
113 DO(10,F0,K0);
114 DO(11,F0,K0);
115 DO(12,F0,K0);
116 DO(13,F0,K0);
117 DO(14,F0,K0);
118 DO(15,F0,K0);
119 DO(16,F0,K0);
120 DO(17,F0,K0);
121 DO(18,F0,K0);
122 DO(19,F0,K0);
124 /* t=[20,39] */
126 DO(20,F1,K1);
127 DO(21,F1,K1);
128 DO(22,F1,K1);
129 DO(23,F1,K1);
130 DO(24,F1,K1);
131 DO(25,F1,K1);
132 DO(26,F1,K1);
133 DO(27,F1,K1);
134 DO(28,F1,K1);
135 DO(29,F1,K1);
136 DO(30,F1,K1);
137 DO(31,F1,K1);
138 DO(32,F1,K1);
139 DO(33,F1,K1);
140 DO(34,F1,K1);
141 DO(35,F1,K1);
142 DO(36,F1,K1);
143 DO(37,F1,K1);
144 DO(38,F1,K1);
145 DO(39,F1,K1);
147 /* t=[40,59] */
149 DO(40,F2,K2);
150 DO(41,F2,K2);
151 DO(42,F2,K2);
152 DO(43,F2,K2);
153 DO(44,F2,K2);
154 DO(45,F2,K2);
155 DO(46,F2,K2);
156 DO(47,F2,K2);
157 DO(48,F2,K2);
158 DO(49,F2,K2);
159 DO(50,F2,K2);
160 DO(51,F2,K2);
161 DO(52,F2,K2);
162 DO(53,F2,K2);
163 DO(54,F2,K2);
164 DO(55,F2,K2);
165 DO(56,F2,K2);
166 DO(57,F2,K2);
167 DO(58,F2,K2);
168 DO(59,F2,K2);
170 /* t=[60,79] */
172 DO(60,F3,K3);
173 DO(61,F3,K3);
174 DO(62,F3,K3);
175 DO(63,F3,K3);
176 DO(64,F3,K3);
177 DO(65,F3,K3);
178 DO(66,F3,K3);
179 DO(67,F3,K3);
180 DO(68,F3,K3);
181 DO(69,F3,K3);
182 DO(70,F3,K3);
183 DO(71,F3,K3);
184 DO(72,F3,K3);
185 DO(73,F3,K3);
186 DO(74,F3,K3);
187 DO(75,F3,K3);
188 DO(76,F3,K3);
189 DO(77,F3,K3);
190 DO(78,F3,K3);
191 DO(79,F3,K3);
193 A += AA;
194 B += BB;
195 C += CC;
196 D += DD;
197 E += EE;
201 * From `Performance analysis of MD5' by Joseph D. Touch <touch@isi.edu>
204 #if !defined(WORDS_BIGENDIAN) || defined(_CRAY)
205 static inline uint32_t
206 swap_uint32_t (uint32_t t)
208 #define ROL(x,n) ((x)<<(n))|((x)>>(32-(n)))
209 uint32_t temp1, temp2;
211 temp1 = cshift(t, 16);
212 temp2 = temp1 >> 8;
213 temp1 &= 0x00ff00ff;
214 temp2 &= 0x00ff00ff;
215 temp1 <<= 8;
216 return temp1 | temp2;
218 #endif
220 struct x32{
221 unsigned int a:32;
222 unsigned int b:32;
225 void
226 SHA1_Update (struct sha *m, const void *v, size_t len)
228 const unsigned char *p = v;
229 size_t old_sz = m->sz[0];
230 size_t offset;
232 m->sz[0] += len * 8;
233 if (m->sz[0] < old_sz)
234 ++m->sz[1];
235 offset = (old_sz / 8) % 64;
236 while(len > 0){
237 size_t l = min(len, 64 - offset);
238 memcpy(m->save + offset, p, l);
239 offset += l;
240 p += l;
241 len -= l;
242 if(offset == 64){
243 #if !defined(WORDS_BIGENDIAN) || defined(_CRAY)
244 int i;
245 uint32_t SHA1current[16];
246 struct x32 *us = (struct x32*)m->save;
247 for(i = 0; i < 8; i++){
248 SHA1current[2*i+0] = swap_uint32_t(us[i].a);
249 SHA1current[2*i+1] = swap_uint32_t(us[i].b);
251 calc(m, SHA1current);
252 #else
253 calc(m, (uint32_t*)m->save);
254 #endif
255 offset = 0;
260 void
261 SHA1_Final (void *res, struct sha *m)
263 unsigned char zeros[72];
264 unsigned offset = (m->sz[0] / 8) % 64;
265 unsigned int dstart = (120 - offset - 1) % 64 + 1;
267 *zeros = 0x80;
268 memset (zeros + 1, 0, sizeof(zeros) - 1);
269 zeros[dstart+7] = (m->sz[0] >> 0) & 0xff;
270 zeros[dstart+6] = (m->sz[0] >> 8) & 0xff;
271 zeros[dstart+5] = (m->sz[0] >> 16) & 0xff;
272 zeros[dstart+4] = (m->sz[0] >> 24) & 0xff;
273 zeros[dstart+3] = (m->sz[1] >> 0) & 0xff;
274 zeros[dstart+2] = (m->sz[1] >> 8) & 0xff;
275 zeros[dstart+1] = (m->sz[1] >> 16) & 0xff;
276 zeros[dstart+0] = (m->sz[1] >> 24) & 0xff;
277 SHA1_Update (m, zeros, dstart + 8);
279 int i;
280 unsigned char *r = (unsigned char*)res;
282 for (i = 0; i < 5; ++i) {
283 r[4*i+3] = m->counter[i] & 0xFF;
284 r[4*i+2] = (m->counter[i] >> 8) & 0xFF;
285 r[4*i+1] = (m->counter[i] >> 16) & 0xFF;
286 r[4*i] = (m->counter[i] >> 24) & 0xFF;
289 #if 0
291 int i;
292 uint32_t *r = (uint32_t *)res;
294 for (i = 0; i < 5; ++i)
295 r[i] = swap_uint32_t (m->counter[i]);
297 #endif