Remove building with NOCRYPTO option
[minix.git] / crypto / external / bsd / heimdal / dist / lib / hcrypto / sha256.c
blob7846334611473a7f0a6a0e06d501d518c3f53c38
1 /* $NetBSD: sha256.c,v 1.1.1.2 2014/04/24 12:45:30 pettai Exp $ */
3 /*
4 * Copyright (c) 2006 Kungliga Tekniska Högskolan
5 * (Royal Institute of Technology, Stockholm, Sweden).
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the Institute nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
36 #include "config.h"
38 #include "hash.h"
39 #include "sha.h"
41 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
42 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
44 #define ROTR(x,n) (((x)>>(n)) | ((x) << (32 - (n))))
46 #define Sigma0(x) (ROTR(x,2) ^ ROTR(x,13) ^ ROTR(x,22))
47 #define Sigma1(x) (ROTR(x,6) ^ ROTR(x,11) ^ ROTR(x,25))
48 #define sigma0(x) (ROTR(x,7) ^ ROTR(x,18) ^ ((x)>>3))
49 #define sigma1(x) (ROTR(x,17) ^ ROTR(x,19) ^ ((x)>>10))
51 #define A m->counter[0]
52 #define B m->counter[1]
53 #define C m->counter[2]
54 #define D m->counter[3]
55 #define E m->counter[4]
56 #define F m->counter[5]
57 #define G m->counter[6]
58 #define H m->counter[7]
60 static const uint32_t constant_256[64] = {
61 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
62 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
63 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
64 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
65 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
66 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
67 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
68 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
69 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
70 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
71 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
72 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
73 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
74 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
75 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
76 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
79 void
80 SHA256_Init (SHA256_CTX *m)
82 m->sz[0] = 0;
83 m->sz[1] = 0;
84 A = 0x6a09e667;
85 B = 0xbb67ae85;
86 C = 0x3c6ef372;
87 D = 0xa54ff53a;
88 E = 0x510e527f;
89 F = 0x9b05688c;
90 G = 0x1f83d9ab;
91 H = 0x5be0cd19;
94 static void
95 calc (SHA256_CTX *m, uint32_t *in)
97 uint32_t AA, BB, CC, DD, EE, FF, GG, HH;
98 uint32_t data[64];
99 int i;
101 AA = A;
102 BB = B;
103 CC = C;
104 DD = D;
105 EE = E;
106 FF = F;
107 GG = G;
108 HH = H;
110 for (i = 0; i < 16; ++i)
111 data[i] = in[i];
112 for (i = 16; i < 64; ++i)
113 data[i] = sigma1(data[i-2]) + data[i-7] +
114 sigma0(data[i-15]) + data[i - 16];
116 for (i = 0; i < 64; i++) {
117 uint32_t T1, T2;
119 T1 = HH + Sigma1(EE) + Ch(EE, FF, GG) + constant_256[i] + data[i];
120 T2 = Sigma0(AA) + Maj(AA,BB,CC);
122 HH = GG;
123 GG = FF;
124 FF = EE;
125 EE = DD + T1;
126 DD = CC;
127 CC = BB;
128 BB = AA;
129 AA = T1 + T2;
132 A += AA;
133 B += BB;
134 C += CC;
135 D += DD;
136 E += EE;
137 F += FF;
138 G += GG;
139 H += HH;
143 * From `Performance analysis of MD5' by Joseph D. Touch <touch@isi.edu>
146 #if !defined(WORDS_BIGENDIAN) || defined(_CRAY)
147 static inline uint32_t
148 swap_uint32_t (uint32_t t)
150 #define ROL(x,n) ((x)<<(n))|((x)>>(32-(n)))
151 uint32_t temp1, temp2;
153 temp1 = cshift(t, 16);
154 temp2 = temp1 >> 8;
155 temp1 &= 0x00ff00ff;
156 temp2 &= 0x00ff00ff;
157 temp1 <<= 8;
158 return temp1 | temp2;
160 #endif
162 struct x32{
163 unsigned int a:32;
164 unsigned int b:32;
167 void
168 SHA256_Update (SHA256_CTX *m, const void *v, size_t len)
170 const unsigned char *p = v;
171 size_t old_sz = m->sz[0];
172 size_t offset;
174 m->sz[0] += len * 8;
175 if (m->sz[0] < old_sz)
176 ++m->sz[1];
177 offset = (old_sz / 8) % 64;
178 while(len > 0){
179 size_t l = min(len, 64 - offset);
180 memcpy(m->save + offset, p, l);
181 offset += l;
182 p += l;
183 len -= l;
184 if(offset == 64){
185 #if !defined(WORDS_BIGENDIAN) || defined(_CRAY)
186 int i;
187 uint32_t current[16];
188 struct x32 *us = (struct x32*)m->save;
189 for(i = 0; i < 8; i++){
190 current[2*i+0] = swap_uint32_t(us[i].a);
191 current[2*i+1] = swap_uint32_t(us[i].b);
193 calc(m, current);
194 #else
195 calc(m, (uint32_t*)m->save);
196 #endif
197 offset = 0;
202 void
203 SHA256_Final (void *res, SHA256_CTX *m)
205 unsigned char zeros[72];
206 unsigned offset = (m->sz[0] / 8) % 64;
207 unsigned int dstart = (120 - offset - 1) % 64 + 1;
209 *zeros = 0x80;
210 memset (zeros + 1, 0, sizeof(zeros) - 1);
211 zeros[dstart+7] = (m->sz[0] >> 0) & 0xff;
212 zeros[dstart+6] = (m->sz[0] >> 8) & 0xff;
213 zeros[dstart+5] = (m->sz[0] >> 16) & 0xff;
214 zeros[dstart+4] = (m->sz[0] >> 24) & 0xff;
215 zeros[dstart+3] = (m->sz[1] >> 0) & 0xff;
216 zeros[dstart+2] = (m->sz[1] >> 8) & 0xff;
217 zeros[dstart+1] = (m->sz[1] >> 16) & 0xff;
218 zeros[dstart+0] = (m->sz[1] >> 24) & 0xff;
219 SHA256_Update (m, zeros, dstart + 8);
221 int i;
222 unsigned char *r = (unsigned char*)res;
224 for (i = 0; i < 8; ++i) {
225 r[4*i+3] = m->counter[i] & 0xFF;
226 r[4*i+2] = (m->counter[i] >> 8) & 0xFF;
227 r[4*i+1] = (m->counter[i] >> 16) & 0xFF;
228 r[4*i] = (m->counter[i] >> 24) & 0xFF;