Remove building with NOCRYPTO option
[minix.git] / crypto / external / bsd / openssl / lib / libcrypto / man / openssl_des.3
blobc4d80c617539ea7b63290ba24bf3234819dae2d9
1 .\"     $NetBSD: openssl_des.3,v 1.14 2015/06/12 17:01:14 christos Exp $
2 .\"
3 .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.28)
4 .\"
5 .\" Standard preamble:
6 .\" ========================================================================
7 .de Sp \" Vertical space (when we can't use .PP)
8 .if t .sp .5v
9 .if n .sp
11 .de Vb \" Begin verbatim text
12 .ft CW
13 .nf
14 .ne \\$1
16 .de Ve \" End verbatim text
17 .ft R
18 .fi
20 .\" Set up some character translations and predefined strings.  \*(-- will
21 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
22 .\" double quote, and \*(R" will give a right double quote.  \*(C+ will
23 .\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
24 .\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
25 .\" nothing in troff, for use with C<>.
26 .tr \(*W-
27 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
28 .ie n \{\
29 .    ds -- \(*W-
30 .    ds PI pi
31 .    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
32 .    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
33 .    ds L" ""
34 .    ds R" ""
35 .    ds C` ""
36 .    ds C' ""
37 'br\}
38 .el\{\
39 .    ds -- \|\(em\|
40 .    ds PI \(*p
41 .    ds L" ``
42 .    ds R" ''
43 .    ds C`
44 .    ds C'
45 'br\}
46 .\"
47 .\" Escape single quotes in literal strings from groff's Unicode transform.
48 .ie \n(.g .ds Aq \(aq
49 .el       .ds Aq '
50 .\"
51 .\" If the F register is turned on, we'll generate index entries on stderr for
52 .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
53 .\" entries marked with X<> in POD.  Of course, you'll have to process the
54 .\" output yourself in some meaningful fashion.
55 .\"
56 .\" Avoid warning from groff about undefined register 'F'.
57 .de IX
59 .nr rF 0
60 .if \n(.g .if rF .nr rF 1
61 .if (\n(rF:(\n(.g==0)) \{
62 .    if \nF \{
63 .        de IX
64 .        tm Index:\\$1\t\\n%\t"\\$2"
66 .        if !\nF==2 \{
67 .            nr % 0
68 .            nr F 2
69 .        \}
70 .    \}
71 .\}
72 .rr rF
73 .\"
74 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
75 .\" Fear.  Run.  Save yourself.  No user-serviceable parts.
76 .    \" fudge factors for nroff and troff
77 .if n \{\
78 .    ds #H 0
79 .    ds #V .8m
80 .    ds #F .3m
81 .    ds #[ \f1
82 .    ds #] \fP
83 .\}
84 .if t \{\
85 .    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
86 .    ds #V .6m
87 .    ds #F 0
88 .    ds #[ \&
89 .    ds #] \&
90 .\}
91 .    \" simple accents for nroff and troff
92 .if n \{\
93 .    ds ' \&
94 .    ds ` \&
95 .    ds ^ \&
96 .    ds , \&
97 .    ds ~ ~
98 .    ds /
99 .\}
100 .if t \{\
101 .    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
102 .    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
103 .    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
104 .    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
105 .    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
106 .    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
108 .    \" troff and (daisy-wheel) nroff accents
109 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
110 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
111 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
112 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
113 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
114 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
115 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
116 .ds ae a\h'-(\w'a'u*4/10)'e
117 .ds Ae A\h'-(\w'A'u*4/10)'E
118 .    \" corrections for vroff
119 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
120 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
121 .    \" for low resolution devices (crt and lpr)
122 .if \n(.H>23 .if \n(.V>19 \
124 .    ds : e
125 .    ds 8 ss
126 .    ds o a
127 .    ds d- d\h'-1'\(ga
128 .    ds D- D\h'-1'\(hy
129 .    ds th \o'bp'
130 .    ds Th \o'LP'
131 .    ds ae ae
132 .    ds Ae AE
134 .rm #[ #] #H #V #F C
135 .\" ========================================================================
137 .IX Title "des 3"
138 .TH des 3 "2014-08-10" "1.0.1n" "OpenSSL"
139 .\" For nroff, turn off justification.  Always turn off hyphenation; it makes
140 .\" way too many mistakes in technical documents.
141 .if n .ad l
143 .SH "NAME"
144 DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
145 DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
146 DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
147 DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
148 DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
149 DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
150 DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
151 DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
152 DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write \- DES encryption
153 .SH "LIBRARY"
154 libcrypto, -lcrypto
155 .SH "SYNOPSIS"
156 .IX Header "SYNOPSIS"
157 .Vb 1
158 \& #include <openssl/des.h>
160 \& void DES_random_key(DES_cblock *ret);
162 \& int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
163 \& int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
164 \& int DES_set_key_checked(const_DES_cblock *key,
165 \&        DES_key_schedule *schedule);
166 \& void DES_set_key_unchecked(const_DES_cblock *key,
167 \&        DES_key_schedule *schedule);
169 \& void DES_set_odd_parity(DES_cblock *key);
170 \& int DES_is_weak_key(const_DES_cblock *key);
172 \& void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
173 \&        DES_key_schedule *ks, int enc);
174 \& void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
175 \&        DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
176 \& void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
177 \&        DES_key_schedule *ks1, DES_key_schedule *ks2,
178 \&        DES_key_schedule *ks3, int enc);
180 \& void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
181 \&        long length, DES_key_schedule *schedule, DES_cblock *ivec,
182 \&        int enc);
183 \& void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
184 \&        int numbits, long length, DES_key_schedule *schedule,
185 \&        DES_cblock *ivec, int enc);
186 \& void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
187 \&        int numbits, long length, DES_key_schedule *schedule,
188 \&        DES_cblock *ivec);
189 \& void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
190 \&        long length, DES_key_schedule *schedule, DES_cblock *ivec,
191 \&        int enc);
192 \& void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
193 \&        long length, DES_key_schedule *schedule, DES_cblock *ivec,
194 \&        int *num, int enc);
195 \& void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
196 \&        long length, DES_key_schedule *schedule, DES_cblock *ivec,
197 \&        int *num);
199 \& void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
200 \&        long length, DES_key_schedule *schedule, DES_cblock *ivec,
201 \&        const_DES_cblock *inw, const_DES_cblock *outw, int enc);
203 \& void DES_ede2_cbc_encrypt(const unsigned char *input,
204 \&        unsigned char *output, long length, DES_key_schedule *ks1,
205 \&        DES_key_schedule *ks2, DES_cblock *ivec, int enc);
206 \& void DES_ede2_cfb64_encrypt(const unsigned char *in,
207 \&        unsigned char *out, long length, DES_key_schedule *ks1,
208 \&        DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
209 \& void DES_ede2_ofb64_encrypt(const unsigned char *in,
210 \&        unsigned char *out, long length, DES_key_schedule *ks1,
211 \&        DES_key_schedule *ks2, DES_cblock *ivec, int *num);
213 \& void DES_ede3_cbc_encrypt(const unsigned char *input,
214 \&        unsigned char *output, long length, DES_key_schedule *ks1,
215 \&        DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
216 \&        int enc);
217 \& void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
218 \&        long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
219 \&        DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
220 \&        int enc);
221 \& void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
222 \&        long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
223 \&        DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
224 \& void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
225 \&        long length, DES_key_schedule *ks1,
226 \&        DES_key_schedule *ks2, DES_key_schedule *ks3,
227 \&        DES_cblock *ivec, int *num);
229 \& DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
230 \&        long length, DES_key_schedule *schedule,
231 \&        const_DES_cblock *ivec);
232 \& DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
233 \&        long length, int out_count, DES_cblock *seed);
234 \& void DES_string_to_key(const char *str, DES_cblock *key);
235 \& void DES_string_to_2keys(const char *str, DES_cblock *key1,
236 \&        DES_cblock *key2);
238 \& char *DES_fcrypt(const char *buf, const char *salt, char *ret);
239 \& char *DES_crypt(const char *buf, const char *salt);
241 \& int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
242 \&        DES_cblock *iv);
243 \& int DES_enc_write(int fd, const void *buf, int len,
244 \&        DES_key_schedule *sched, DES_cblock *iv);
246 .SH "DESCRIPTION"
247 .IX Header "DESCRIPTION"
248 This library contains a fast implementation of the \s-1DES\s0 encryption
249 algorithm.
251 There are two phases to the use of \s-1DES\s0 encryption.  The first is the
252 generation of a \fIDES_key_schedule\fR from a key, the second is the
253 actual encryption.  A \s-1DES\s0 key is of type \fIDES_cblock\fR. This type is
254 consists of 8 bytes with odd parity.  The least significant bit in
255 each byte is the parity bit.  The key schedule is an expanded form of
256 the key; it is used to speed the encryption process.
258 \&\fIDES_random_key()\fR generates a random key.  The \s-1PRNG\s0 must be seeded
259 prior to using this function (see \fIopenssl_rand\fR\|(3)).  If the \s-1PRNG\s0
260 could not generate a secure key, 0 is returned.
262 Before a \s-1DES\s0 key can be used, it must be converted into the
263 architecture dependent \fIDES_key_schedule\fR via the
264 \&\fIDES_set_key_checked()\fR or \fIDES_set_key_unchecked()\fR function.
266 \&\fIDES_set_key_checked()\fR will check that the key passed is of odd parity
267 and is not a week or semi-weak key.  If the parity is wrong, then \-1
268 is returned.  If the key is a weak key, then \-2 is returned.  If an
269 error is returned, the key schedule is not generated.
271 \&\fIDES_set_key()\fR works like
272 \&\fIDES_set_key_checked()\fR if the \fIDES_check_key\fR flag is non-zero,
273 otherwise like \fIDES_set_key_unchecked()\fR.  These functions are available
274 for compatibility; it is recommended to use a function that does not
275 depend on a global variable.
277 \&\fIDES_set_odd_parity()\fR sets the parity of the passed \fIkey\fR to odd.
279 \&\fIDES_is_weak_key()\fR returns 1 if the passed key is a weak key, 0 if it
280 is ok.
282 The following routines mostly operate on an input and output stream of
283 \&\fIDES_cblock\fRs.
285 \&\fIDES_ecb_encrypt()\fR is the basic \s-1DES\s0 encryption routine that encrypts or
286 decrypts a single 8\-byte \fIDES_cblock\fR in \fIelectronic code book\fR
287 (\s-1ECB\s0) mode.  It always transforms the input data, pointed to by
288 \&\fIinput\fR, into the output data, pointed to by the \fIoutput\fR argument.
289 If the \fIencrypt\fR argument is non-zero (\s-1DES_ENCRYPT\s0), the \fIinput\fR
290 (cleartext) is encrypted in to the \fIoutput\fR (ciphertext) using the
291 key_schedule specified by the \fIschedule\fR argument, previously set via
292 \&\fIDES_set_key\fR. If \fIencrypt\fR is zero (\s-1DES_DECRYPT\s0), the \fIinput\fR (now
293 ciphertext) is decrypted into the \fIoutput\fR (now cleartext).  Input
294 and output may overlap.  \fIDES_ecb_encrypt()\fR does not return a value.
296 \&\fIDES_ecb3_encrypt()\fR encrypts/decrypts the \fIinput\fR block by using
297 three-key Triple-DES encryption in \s-1ECB\s0 mode.  This involves encrypting
298 the input with \fIks1\fR, decrypting with the key schedule \fIks2\fR, and
299 then encrypting with \fIks3\fR.  This routine greatly reduces the chances
300 of brute force breaking of \s-1DES\s0 and has the advantage of if \fIks1\fR,
301 \&\fIks2\fR and \fIks3\fR are the same, it is equivalent to just encryption
302 using \s-1ECB\s0 mode and \fIks1\fR as the key.
304 The macro \fIDES_ecb2_encrypt()\fR is provided to perform two-key Triple-DES
305 encryption by using \fIks1\fR for the final encryption.
307 \&\fIDES_ncbc_encrypt()\fR encrypts/decrypts using the \fIcipher-block-chaining\fR
308 (\s-1CBC\s0) mode of \s-1DES. \s0 If the \fIencrypt\fR argument is non-zero, the
309 routine cipher-block-chain encrypts the cleartext data pointed to by
310 the \fIinput\fR argument into the ciphertext pointed to by the \fIoutput\fR
311 argument, using the key schedule provided by the \fIschedule\fR argument,
312 and initialization vector provided by the \fIivec\fR argument.  If the
313 \&\fIlength\fR argument is not an integral multiple of eight bytes, the
314 last block is copied to a temporary area and zero filled.  The output
315 is always an integral multiple of eight bytes.
317 \&\fIDES_xcbc_encrypt()\fR is \s-1RSA\s0's \s-1DESX\s0 mode of \s-1DES. \s0 It uses \fIinw\fR and
318 \&\fIoutw\fR to 'whiten' the encryption.  \fIinw\fR and \fIoutw\fR are secret
319 (unlike the iv) and are as such, part of the key.  So the key is sort
320 of 24 bytes.  This is much better than \s-1CBC DES.\s0
322 \&\fIDES_ede3_cbc_encrypt()\fR implements outer triple \s-1CBC DES\s0 encryption with
323 three keys. This means that each \s-1DES\s0 operation inside the \s-1CBC\s0 mode is
324 an \f(CW\*(C`C=E(ks3,D(ks2,E(ks1,M)))\*(C'\fR.  This mode is used by \s-1SSL.\s0
326 The \fIDES_ede2_cbc_encrypt()\fR macro implements two-key Triple-DES by
327 reusing \fIks1\fR for the final encryption.  \f(CW\*(C`C=E(ks1,D(ks2,E(ks1,M)))\*(C'\fR.
328 This form of Triple-DES is used by the \s-1RSAREF\s0 library.
330 \&\fIDES_pcbc_encrypt()\fR encrypt/decrypts using the propagating cipher block
331 chaining mode used by Kerberos v4. Its parameters are the same as
332 \&\fIDES_ncbc_encrypt()\fR.
334 \&\fIDES_cfb_encrypt()\fR encrypt/decrypts using cipher feedback mode.  This
335 method takes an array of characters as input and outputs and array of
336 characters.  It does not require any padding to 8 character groups.
337 Note: the \fIivec\fR variable is changed and the new changed value needs to
338 be passed to the next call to this function.  Since this function runs
339 a complete \s-1DES ECB\s0 encryption per \fInumbits\fR, this function is only
340 suggested for use when sending small numbers of characters.
342 \&\fIDES_cfb64_encrypt()\fR
343 implements \s-1CFB\s0 mode of \s-1DES\s0 with 64bit feedback.  Why is this
344 useful you ask?  Because this routine will allow you to encrypt an
345 arbitrary number of bytes, no 8 byte padding.  Each call to this
346 routine will encrypt the input bytes to output and then update ivec
347 and num.  num contains 'how far' we are though ivec.  If this does
348 not make much sense, read more about cfb mode of \s-1DES :\-\s0).
350 \&\fIDES_ede3_cfb64_encrypt()\fR and \fIDES_ede2_cfb64_encrypt()\fR is the same as
351 \&\fIDES_cfb64_encrypt()\fR except that Triple-DES is used.
353 \&\fIDES_ofb_encrypt()\fR encrypts using output feedback mode.  This method
354 takes an array of characters as input and outputs and array of
355 characters.  It does not require any padding to 8 character groups.
356 Note: the \fIivec\fR variable is changed and the new changed value needs to
357 be passed to the next call to this function.  Since this function runs
358 a complete \s-1DES ECB\s0 encryption per numbits, this function is only
359 suggested for use when sending small numbers of characters.
361 \&\fIDES_ofb64_encrypt()\fR is the same as \fIDES_cfb64_encrypt()\fR using Output
362 Feed Back mode.
364 \&\fIDES_ede3_ofb64_encrypt()\fR and \fIDES_ede2_ofb64_encrypt()\fR is the same as
365 \&\fIDES_ofb64_encrypt()\fR, using Triple-DES.
367 The following functions are included in the \s-1DES\s0 library for
368 compatibility with the \s-1MIT\s0 Kerberos library.
370 \&\fIDES_cbc_cksum()\fR produces an 8 byte checksum based on the input stream
371 (via \s-1CBC\s0 encryption).  The last 4 bytes of the checksum are returned
372 and the complete 8 bytes are placed in \fIoutput\fR. This function is
373 used by Kerberos v4.  Other applications should use
374 \&\fIEVP_DigestInit\fR\|(3) etc. instead.
376 \&\fIDES_quad_cksum()\fR is a Kerberos v4 function.  It returns a 4 byte
377 checksum from the input bytes.  The algorithm can be iterated over the
378 input, depending on \fIout_count\fR, 1, 2, 3 or 4 times.  If \fIoutput\fR is
379 non-NULL, the 8 bytes generated by each pass are written into
380 \&\fIoutput\fR.
382 The following are DES-based transformations:
384 \&\fIDES_fcrypt()\fR is a fast version of the Unix \fIcrypt\fR\|(3) function.  This
385 version takes only a small amount of space relative to other fast
386 \&\fIcrypt()\fR implementations.  This is different to the normal crypt in
387 that the third parameter is the buffer that the return value is
388 written into.  It needs to be at least 14 bytes long.  This function
389 is thread safe, unlike the normal crypt.
391 \&\fIDES_crypt()\fR is a faster replacement for the normal system \fIcrypt()\fR.
392 This function calls \fIDES_fcrypt()\fR with a static array passed as the
393 third parameter.  This emulates the normal non-thread safe semantics
394 of \fIcrypt\fR\|(3).
396 \&\fIDES_enc_write()\fR writes \fIlen\fR bytes to file descriptor \fIfd\fR from
397 buffer \fIbuf\fR. The data is encrypted via \fIpcbc_encrypt\fR (default)
398 using \fIsched\fR for the key and \fIiv\fR as a starting vector.  The actual
399 data send down \fIfd\fR consists of 4 bytes (in network byte order)
400 containing the length of the following encrypted data.  The encrypted
401 data then follows, padded with random data out to a multiple of 8
402 bytes.
404 \&\fIDES_enc_read()\fR is used to read \fIlen\fR bytes from file descriptor
405 \&\fIfd\fR into buffer \fIbuf\fR. The data being read from \fIfd\fR is assumed to
406 have come from \fIDES_enc_write()\fR and is decrypted using \fIsched\fR for
407 the key schedule and \fIiv\fR for the initial vector.
409 \&\fBWarning:\fR The data format used by \fIDES_enc_write()\fR and \fIDES_enc_read()\fR
410 has a cryptographic weakness: When asked to write more than \s-1MAXWRITE\s0
411 bytes, \fIDES_enc_write()\fR will split the data into several chunks that
412 are all encrypted using the same \s-1IV. \s0 So don't use these functions
413 unless you are sure you know what you do (in which case you might not
414 want to use them anyway).  They cannot handle non-blocking sockets.
415 \&\fIDES_enc_read()\fR uses an internal state and thus cannot be used on
416 multiple files.
418 \&\fIDES_rw_mode\fR is used to specify the encryption mode to use with
419 \&\fIDES_enc_read()\fR and \fIDES_end_write()\fR.  If set to \fI\s-1DES_PCBC_MODE\s0\fR (the
420 default), DES_pcbc_encrypt is used.  If set to \fI\s-1DES_CBC_MODE\s0\fR
421 DES_cbc_encrypt is used.
422 .SH "NOTES"
423 .IX Header "NOTES"
424 Single-key \s-1DES\s0 is insecure due to its short key size.  \s-1ECB\s0 mode is
425 not suitable for most applications; see \fIdes_modes\fR\|(7).
427 The \fIopenssl_evp\fR\|(3) library provides higher-level encryption functions.
428 .SH "BUGS"
429 .IX Header "BUGS"
430 \&\fIDES_3cbc_encrypt()\fR is flawed and must not be used in applications.
432 \&\fIDES_cbc_encrypt()\fR does not modify \fBivec\fR; use \fIDES_ncbc_encrypt()\fR
433 instead.
435 \&\fIDES_cfb_encrypt()\fR and \fIDES_ofb_encrypt()\fR operates on input of 8 bits.
436 What this means is that if you set numbits to 12, and length to 2, the
437 first 12 bits will come from the 1st input byte and the low half of
438 the second input byte.  The second 12 bits will have the low 8 bits
439 taken from the 3rd input byte and the top 4 bits taken from the 4th
440 input byte.  The same holds for output.  This function has been
441 implemented this way because most people will be using a multiple of 8
442 and because once you get into pulling bytes input bytes apart things
443 get ugly!
445 \&\fIDES_string_to_key()\fR is available for backward compatibility with the
446 \&\s-1MIT\s0 library.  New applications should use a cryptographic hash function.
447 The same applies for \fIDES_string_to_2key()\fR.
448 .SH "CONFORMING TO"
449 .IX Header "CONFORMING TO"
450 \&\s-1ANSI X3.106\s0
452 The \fBdes\fR library was written to be source code compatible with
453 the \s-1MIT\s0 Kerberos library.
454 .SH "SEE ALSO"
455 .IX Header "SEE ALSO"
456 \&\fIcrypt\fR\|(3), \fIdes_modes\fR\|(7), \fIopenssl_evp\fR\|(3), \fIopenssl_rand\fR\|(3)
457 .SH "HISTORY"
458 .IX Header "HISTORY"
459 In OpenSSL 0.9.7, all des_ functions were renamed to \s-1DES_\s0 to avoid
460 clashes with older versions of libdes.  Compatibility des_ functions
461 are provided for a short while, as well as \fIcrypt()\fR.
462 Declarations for these are in <openssl/des_old.h>. There is no \s-1DES_\s0
463 variant for \fIdes_random_seed()\fR.
464 This will happen to other functions
465 as well if they are deemed redundant (\fIdes_random_seed()\fR just calls
466 \&\fIRAND_seed()\fR and is present for backward compatibility only), buggy or
467 already scheduled for removal.
469 \&\fIdes_cbc_cksum()\fR, \fIdes_cbc_encrypt()\fR, \fIdes_ecb_encrypt()\fR,
470 \&\fIdes_is_weak_key()\fR, \fIdes_key_sched()\fR, \fIdes_pcbc_encrypt()\fR,
471 \&\fIdes_quad_cksum()\fR, \fIdes_random_key()\fR and \fIdes_string_to_key()\fR
472 are available in the \s-1MIT\s0 Kerberos library;
473 \&\fIdes_check_key_parity()\fR, \fIdes_fixup_key_parity()\fR and \fIdes_is_weak_key()\fR
474 are available in newer versions of that library.
476 \&\fIdes_set_key_checked()\fR and \fIdes_set_key_unchecked()\fR were added in
477 OpenSSL 0.9.5.
479 \&\fIdes_generate_random_block()\fR, \fIdes_init_random_number_generator()\fR,
480 \&\fIdes_new_random_key()\fR, \fIdes_set_random_generator_seed()\fR and
481 \&\fIdes_set_sequence_number()\fR and \fIdes_rand_data()\fR are used in newer
482 versions of Kerberos but are not implemented here.
484 \&\fIdes_random_key()\fR generated cryptographically weak random data in
485 SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
486 \&\s-1MIT\s0 library.
487 .SH "AUTHOR"
488 .IX Header "AUTHOR"
489 Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
490 (http://www.openssl.org).