Remove building with NOCRYPTO option
[minix.git] / external / bsd / libc++ / dist / libcxxrt / src / guard.cc
blobdf5d3c586bad49682b73f5eff6f49ef714f0f224
1 /*
2 * Copyright 2010-2012 PathScale, Inc. All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
7 * 1. Redistributions of source code must retain the above copyright notice,
8 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
15 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
16 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
21 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
22 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
23 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
24 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 /**
28 * guard.cc: Functions for thread-safe static initialisation.
30 * Static values in C++ can be initialised lazily their first use. This file
31 * contains functions that are used to ensure that two threads attempting to
32 * initialize the same static do not call the constructor twice. This is
33 * important because constructors can have side effects, so calling the
34 * constructor twice may be very bad.
36 * Statics that require initialisation are protected by a 64-bit value. Any
37 * platform that can do 32-bit atomic test and set operations can use this
38 * value as a low-overhead lock. Because statics (in most sane code) are
39 * accessed far more times than they are initialised, this lock implementation
40 * is heavily optimised towards the case where the static has already been
41 * initialised.
43 #include <stdint.h>
44 #include <stdlib.h>
45 #include <stdio.h>
47 #if !defined(__minix)
48 #include <pthread.h>
49 #else
50 #define _MTHREADIFY_PTHREADS 1
51 #include <minix/mthread.h>
52 #pragma weak sched_yield
53 #define sched_yield() do {\
54 if (sched_yield) sched_yield();\
55 } while(0)
56 #endif /* !defined(__minix) */
58 #include <assert.h>
59 #include "atomic.h"
61 // Older GCC doesn't define __LITTLE_ENDIAN__
62 #ifndef __LITTLE_ENDIAN__
63 // If __BYTE_ORDER__ is defined, use that instead
64 # ifdef __BYTE_ORDER__
65 # if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
66 # define __LITTLE_ENDIAN__
67 # endif
68 // x86 and ARM are the most common little-endian CPUs, so let's have a
69 // special case for them (ARM is already special cased). Assume everything
70 // else is big endian.
71 # elif defined(__x86_64) || defined(__i386)
72 # define __LITTLE_ENDIAN__
73 # endif
74 #endif
78 * The least significant bit of the guard variable indicates that the object
79 * has been initialised, the most significant bit is used for a spinlock.
81 #ifdef __arm__
82 // ARM ABI - 32-bit guards.
83 typedef uint32_t guard_t;
84 typedef uint32_t guard_lock_t;
85 static const uint32_t LOCKED = static_cast<guard_t>(1) << 31;
86 static const uint32_t INITIALISED = 1;
87 #define LOCK_PART(guard) (guard)
88 #define INIT_PART(guard) (guard)
89 #elif defined(_LP64)
90 typedef uint64_t guard_t;
91 typedef uint64_t guard_lock_t;
92 # if defined(__LITTLE_ENDIAN__)
93 static const guard_t LOCKED = static_cast<guard_t>(1) << 63;
94 static const guard_t INITIALISED = 1;
95 # else
96 static const guard_t LOCKED = 1;
97 static const guard_t INITIALISED = static_cast<guard_t>(1) << 56;
98 # endif
99 #define LOCK_PART(guard) (guard)
100 #define INIT_PART(guard) (guard)
101 #else
102 typedef uint32_t guard_lock_t;
103 # if defined(__LITTLE_ENDIAN__)
104 typedef struct {
105 uint32_t init_half;
106 uint32_t lock_half;
107 } guard_t;
108 static const uint32_t LOCKED = static_cast<guard_lock_t>(1) << 31;
109 static const uint32_t INITIALISED = 1;
110 # else
111 typedef struct {
112 uint32_t init_half;
113 uint32_t lock_half;
114 } guard_t;
115 static_assert(sizeof(guard_t) == sizeof(uint64_t), "");
116 static const uint32_t LOCKED = 1;
117 static const uint32_t INITIALISED = static_cast<guard_lock_t>(1) << 24;
118 # endif
119 #define LOCK_PART(guard) (&(guard)->lock_half)
120 #define INIT_PART(guard) (&(guard)->init_half)
121 #endif
122 static const guard_lock_t INITIAL = 0;
125 * Acquires a lock on a guard, returning 0 if the object has already been
126 * initialised, and 1 if it has not. If the object is already constructed then
127 * this function just needs to read a byte from memory and return.
129 extern "C" int __cxa_guard_acquire(volatile guard_t *guard_object)
131 guard_lock_t old;
132 // Not an atomic read, doesn't establish a happens-before relationship, but
133 // if one is already established and we end up seeing an initialised state
134 // then it's a fast path, otherwise we'll do something more expensive than
135 // this test anyway...
136 if (INITIALISED == *INIT_PART(guard_object))
137 return 0;
138 // Spin trying to do the initialisation
139 for (;;)
141 // Loop trying to move the value of the guard from 0 (not
142 // locked, not initialised) to the locked-uninitialised
143 // position.
144 old = __sync_val_compare_and_swap(LOCK_PART(guard_object),
145 INITIAL, LOCKED);
146 if (old == INITIAL) {
147 // Lock obtained. If lock and init bit are
148 // in separate words, check for init race.
149 if (INIT_PART(guard_object) == LOCK_PART(guard_object))
150 return 1;
151 if (INITIALISED != *INIT_PART(guard_object))
152 return 1;
154 // No need for a memory barrier here,
155 // see first comment.
156 *LOCK_PART(guard_object) = INITIAL;
157 return 0;
159 // If lock and init bit are in the same word, check again
160 // if we are done.
161 if (INIT_PART(guard_object) == LOCK_PART(guard_object) &&
162 old == INITIALISED)
163 return 0;
165 assert(old == LOCKED);
166 // Another thread holds the lock.
167 // If lock and init bit are in different words, check
168 // if we are done before yielding and looping.
169 if (INIT_PART(guard_object) != LOCK_PART(guard_object) &&
170 INITIALISED == *INIT_PART(guard_object))
171 return 0;
172 sched_yield();
177 * Releases the lock without marking the object as initialised. This function
178 * is called if initialising a static causes an exception to be thrown.
180 extern "C" void __cxa_guard_abort(volatile guard_t *guard_object)
182 __attribute__((unused))
183 bool reset = __sync_bool_compare_and_swap(LOCK_PART(guard_object),
184 LOCKED, INITIAL);
185 assert(reset);
188 * Releases the guard and marks the object as initialised. This function is
189 * called after successful initialisation of a static.
191 extern "C" void __cxa_guard_release(volatile guard_t *guard_object)
193 guard_lock_t old;
194 if (INIT_PART(guard_object) == LOCK_PART(guard_object))
195 old = LOCKED;
196 else
197 old = INITIAL;
198 __attribute__((unused))
199 bool reset = __sync_bool_compare_and_swap(INIT_PART(guard_object),
200 old, INITIALISED);
201 assert(reset);
202 if (INIT_PART(guard_object) != LOCK_PART(guard_object))
203 *LOCK_PART(guard_object) = INITIAL;