Remove building with NOCRYPTO option
[minix.git] / external / bsd / nvi / dist / common / key.c
blob47998b14ca968bd5ffa4f7ac536184d00b45e532
1 /* $NetBSD: key.c,v 1.4 2014/01/26 21:43:45 christos Exp $ */
2 /*-
3 * Copyright (c) 1991, 1993, 1994
4 * The Regents of the University of California. All rights reserved.
5 * Copyright (c) 1991, 1993, 1994, 1995, 1996
6 * Keith Bostic. All rights reserved.
8 * See the LICENSE file for redistribution information.
9 */
11 #include "config.h"
13 #include <sys/cdefs.h>
14 #if 0
15 #ifndef lint
16 static const char sccsid[] = "Id: key.c,v 10.48 2001/06/25 15:19:10 skimo Exp (Berkeley) Date: 2001/06/25 15:19:10 ";
17 #endif /* not lint */
18 #else
19 __RCSID("$NetBSD: key.c,v 1.4 2014/01/26 21:43:45 christos Exp $");
20 #endif
22 #include <sys/types.h>
23 #include <sys/queue.h>
24 #include <sys/time.h>
26 #include <bitstring.h>
27 #include <ctype.h>
28 #include <errno.h>
29 #include <limits.h>
30 #include <locale.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <unistd.h>
36 #include "common.h"
37 #include "../vi/vi.h"
39 static int v_event_append __P((SCR *, EVENT *));
40 static int v_event_grow __P((SCR *, int));
41 static int v_key_cmp __P((const void *, const void *));
42 static void v_keyval __P((SCR *, int, scr_keyval_t));
43 static void v_sync __P((SCR *, int));
46 * !!!
47 * Historic vi always used:
49 * ^D: autoindent deletion
50 * ^H: last character deletion
51 * ^W: last word deletion
52 * ^Q: quote the next character (if not used in flow control).
53 * ^V: quote the next character
55 * regardless of the user's choices for these characters. The user's erase
56 * and kill characters worked in addition to these characters. Nvi wires
57 * down the above characters, but in addition permits the VEOF, VERASE, VKILL
58 * and VWERASE characters described by the user's termios structure.
60 * Ex was not consistent with this scheme, as it historically ran in tty
61 * cooked mode. This meant that the scroll command and autoindent erase
62 * characters were mapped to the user's EOF character, and the character
63 * and word deletion characters were the user's tty character and word
64 * deletion characters. This implementation makes it all consistent, as
65 * described above for vi.
67 * !!!
68 * This means that all screens share a special key set.
70 KEYLIST keylist[] = {
71 {K_BACKSLASH, '\\'}, /* \ */
72 {K_CARAT, '^'}, /* ^ */
73 {K_CNTRLD, '\004'}, /* ^D */
74 {K_CNTRLR, '\022'}, /* ^R */
75 {K_CNTRLT, '\024'}, /* ^T */
76 {K_CNTRLZ, '\032'}, /* ^Z */
77 {K_COLON, ':'}, /* : */
78 {K_CR, '\r'}, /* \r */
79 {K_ESCAPE, '\033'}, /* ^[ */
80 {K_FORMFEED, '\f'}, /* \f */
81 {K_HEXCHAR, '\030'}, /* ^X */
82 {K_NL, '\n'}, /* \n */
83 {K_RIGHTBRACE, '}'}, /* } */
84 {K_RIGHTPAREN, ')'}, /* ) */
85 {K_TAB, '\t'}, /* \t */
86 {K_VERASE, '\b'}, /* \b */
87 {K_VKILL, '\025'}, /* ^U */
88 {K_VLNEXT, '\021'}, /* ^Q */
89 {K_VLNEXT, '\026'}, /* ^V */
90 {K_VWERASE, '\027'}, /* ^W */
91 {K_ZERO, '0'}, /* 0 */
93 #define ADDITIONAL_CHARACTERS 4
94 {K_NOTUSED, 0}, /* VEOF, VERASE, VKILL, VWERASE */
95 {K_NOTUSED, 0},
96 {K_NOTUSED, 0},
97 {K_NOTUSED, 0},
99 static int nkeylist =
100 (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
103 * v_key_init --
104 * Initialize the special key lookup table.
106 * PUBLIC: int v_key_init __P((SCR *));
109 v_key_init(SCR *sp)
111 int ch;
112 GS *gp;
113 KEYLIST *kp;
114 int cnt;
116 gp = sp->gp;
119 * XXX
120 * 8-bit only, for now. Recompilation should get you any 8-bit
121 * character set, as long as nul isn't a character.
123 (void)setlocale(LC_ALL, "");
124 #if __linux__
126 * In libc 4.5.26, setlocale(LC_ALL, ""), doesn't setup the table
127 * for ctype(3c) correctly. This bug is fixed in libc 4.6.x.
129 * This code works around this problem for libc 4.5.x users.
130 * Note that this code is harmless if you're using libc 4.6.x.
132 (void)setlocale(LC_CTYPE, "");
133 #endif
134 v_key_ilookup(sp);
136 v_keyval(sp, K_CNTRLD, KEY_VEOF);
137 v_keyval(sp, K_VERASE, KEY_VERASE);
138 v_keyval(sp, K_VKILL, KEY_VKILL);
139 v_keyval(sp, K_VWERASE, KEY_VWERASE);
141 /* Sort the special key list. */
142 qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
144 /* Initialize the fast lookup table. */
145 for (kp = keylist, cnt = nkeylist; cnt--; ++kp)
146 gp->special_key[kp->ch] = kp->value;
148 /* Find a non-printable character to use as a message separator. */
149 for (ch = 1; ch <= UCHAR_MAX; ++ch)
150 if (!isprint(ch)) {
151 gp->noprint = ch;
152 break;
154 if (ch != gp->noprint) {
155 msgq(sp, M_ERR, "079|No non-printable character found");
156 return (1);
158 return (0);
162 * v_keyval --
163 * Set key values.
165 * We've left some open slots in the keylist table, and if these values exist,
166 * we put them into place. Note, they may reset (or duplicate) values already
167 * in the table, so we check for that first.
169 static void
170 v_keyval(SCR *sp, int val, scr_keyval_t name)
172 KEYLIST *kp;
173 CHAR_T ch;
174 int dne;
176 /* Get the key's value from the screen. */
177 if (sp->gp->scr_keyval(sp, name, &ch, &dne))
178 return;
179 if (dne)
180 return;
182 /* Check for duplication. */
183 for (kp = keylist; kp->value != K_NOTUSED; ++kp)
184 if (kp->ch == ch) {
185 kp->value = val;
186 return;
189 /* Add a new entry. */
190 if (kp->value == K_NOTUSED) {
191 keylist[nkeylist].ch = ch;
192 keylist[nkeylist].value = val;
193 ++nkeylist;
198 * v_key_ilookup --
199 * Build the fast-lookup key display array.
201 * PUBLIC: void v_key_ilookup __P((SCR *));
203 void
204 v_key_ilookup(SCR *sp)
206 UCHAR_T ch;
207 unsigned char *p, *t;
208 GS *gp;
209 size_t len;
211 for (gp = sp->gp, ch = 0;; ++ch) {
212 for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
213 len = gp->cname[ch].len = sp->clen; len--;)
214 *p++ = *t++;
215 if (ch == MAX_FAST_KEY)
216 break;
221 * v_key_len --
222 * Return the length of the string that will display the key.
223 * This routine is the backup for the KEY_LEN() macro.
225 * PUBLIC: size_t v_key_len __P((SCR *, ARG_CHAR_T));
227 size_t
228 v_key_len(SCR *sp, ARG_CHAR_T ch)
230 (void)v_key_name(sp, ch);
231 return (sp->clen);
235 * v_key_name --
236 * Return the string that will display the key. This routine
237 * is the backup for the KEY_NAME() macro.
239 * PUBLIC: u_char *v_key_name __P((SCR *, ARG_CHAR_T));
241 u_char *
242 v_key_name(SCR *sp, ARG_CHAR_T ach)
244 static const char hexdigit[] = "0123456789abcdef";
245 static const char octdigit[] = "01234567";
246 int ch;
247 size_t len, i;
248 const char *chp;
250 if (INTISWIDE(ach))
251 goto vis;
252 ch = (unsigned char)ach;
254 /* See if the character was explicitly declared printable or not. */
255 if ((chp = O_STR(sp, O_PRINT)) != NULL)
256 for (; *chp != '\0'; ++chp)
257 if (*chp == ch)
258 goto pr;
259 if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
260 for (; *chp != '\0'; ++chp)
261 if (*chp == ch)
262 goto nopr;
265 * Historical (ARPA standard) mappings. Printable characters are left
266 * alone. Control characters less than 0x20 are represented as '^'
267 * followed by the character offset from the '@' character in the ASCII
268 * character set. Del (0x7f) is represented as '^' followed by '?'.
270 * XXX
271 * The following code depends on the current locale being identical to
272 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f). I'm
273 * told that this is a reasonable assumption...
275 * XXX
276 * This code will only work with CHAR_T's that are multiples of 8-bit
277 * bytes.
279 * XXX
280 * NB: There's an assumption here that all printable characters take
281 * up a single column on the screen. This is not always correct.
283 if (isprint(ch)) {
284 pr: sp->cname[0] = ch;
285 len = 1;
286 goto done;
288 nopr: if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
289 sp->cname[0] = '^';
290 sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
291 len = 2;
292 goto done;
294 vis: for (i = 1; i <= sizeof(CHAR_T); ++i)
295 if ((ach >> i * CHAR_BIT) == 0)
296 break;
297 ch = (ach >> --i * CHAR_BIT) & UCHAR_MAX;
298 if (O_ISSET(sp, O_OCTAL)) {
299 sp->cname[0] = '\\';
300 sp->cname[1] = octdigit[(ch & 0300) >> 6];
301 sp->cname[2] = octdigit[(ch & 070) >> 3];
302 sp->cname[3] = octdigit[ ch & 07 ];
303 } else {
304 sp->cname[0] = '\\';
305 sp->cname[1] = 'x';
306 sp->cname[2] = hexdigit[(ch & 0xf0) >> 4];
307 sp->cname[3] = hexdigit[ ch & 0x0f ];
309 len = 4;
310 done: sp->cname[sp->clen = len] = '\0';
311 return (sp->cname);
315 * v_key_val --
316 * Fill in the value for a key. This routine is the backup
317 * for the KEY_VAL() macro.
319 * PUBLIC: e_key_t v_key_val __P((SCR *, ARG_CHAR_T));
321 e_key_t
322 v_key_val(SCR *sp, ARG_CHAR_T ch)
324 KEYLIST k, *kp;
326 k.ch = ch;
327 kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
328 return (kp == NULL ? K_NOTUSED : kp->value);
332 * v_event_push --
333 * Push events/keys onto the front of the buffer.
335 * There is a single input buffer in ex/vi. Characters are put onto the
336 * end of the buffer by the terminal input routines, and pushed onto the
337 * front of the buffer by various other functions in ex/vi. Each key has
338 * an associated flag value, which indicates if it has already been quoted,
339 * and if it is the result of a mapping or an abbreviation.
341 * PUBLIC: int v_event_push __P((SCR *, EVENT *, const CHAR_T *, size_t, u_int));
344 v_event_push(SCR *sp, EVENT *p_evp, const CHAR_T *p_s, size_t nitems, u_int flags)
346 /* Push event. */
347 /* Push characters. */
348 /* Number of items to push. */
349 /* CH_* flags. */
351 EVENT *evp;
352 WIN *wp;
353 size_t total;
355 /* If we have room, stuff the items into the buffer. */
356 wp = sp->wp;
357 if (nitems <= wp->i_next ||
358 (wp->i_event != NULL && wp->i_cnt == 0 && nitems <= wp->i_nelem)) {
359 if (wp->i_cnt != 0)
360 wp->i_next -= nitems;
361 goto copy;
365 * If there are currently items in the queue, shift them up,
366 * leaving some extra room. Get enough space plus a little
367 * extra.
369 #define TERM_PUSH_SHIFT 30
370 total = wp->i_cnt + wp->i_next + nitems + TERM_PUSH_SHIFT;
371 if (total >= wp->i_nelem && v_event_grow(sp, MAX(total, 64)))
372 return (1);
373 if (wp->i_cnt)
374 MEMMOVE(wp->i_event + TERM_PUSH_SHIFT + nitems,
375 wp->i_event + wp->i_next, wp->i_cnt);
376 wp->i_next = TERM_PUSH_SHIFT;
378 /* Put the new items into the queue. */
379 copy: wp->i_cnt += nitems;
380 for (evp = wp->i_event + wp->i_next; nitems--; ++evp) {
381 if (p_evp != NULL)
382 *evp = *p_evp++;
383 else {
384 evp->e_event = E_CHARACTER;
385 evp->e_c = *p_s++;
386 evp->e_value = KEY_VAL(sp, evp->e_c);
387 FL_INIT(evp->e_flags, flags);
390 return (0);
394 * v_event_append --
395 * Append events onto the tail of the buffer.
397 static int
398 v_event_append(SCR *sp, EVENT *argp)
400 CHAR_T *s; /* Characters. */
401 EVENT *evp;
402 WIN *wp;
403 size_t nevents; /* Number of events. */
405 /* Grow the buffer as necessary. */
406 nevents = argp->e_event == E_STRING ? argp->e_len : 1;
407 wp = sp->wp;
408 if (wp->i_event == NULL ||
409 nevents > wp->i_nelem - (wp->i_next + wp->i_cnt))
410 v_event_grow(sp, MAX(nevents, 64));
411 evp = wp->i_event + wp->i_next + wp->i_cnt;
412 wp->i_cnt += nevents;
414 /* Transform strings of characters into single events. */
415 if (argp->e_event == E_STRING)
416 for (s = argp->e_csp; nevents--; ++evp) {
417 evp->e_event = E_CHARACTER;
418 evp->e_c = *s++;
419 evp->e_value = KEY_VAL(sp, evp->e_c);
420 evp->e_flags = 0;
422 else
423 *evp = *argp;
424 return (0);
427 /* Remove events from the queue. */
428 #define QREM(len) { \
429 if ((wp->i_cnt -= len) == 0) \
430 wp->i_next = 0; \
431 else \
432 wp->i_next += len; \
436 * v_event_get --
437 * Return the next event.
439 * !!!
440 * The flag EC_NODIGIT probably needs some explanation. First, the idea of
441 * mapping keys is that one or more keystrokes act like a function key.
442 * What's going on is that vi is reading a number, and the character following
443 * the number may or may not be mapped (EC_MAPCOMMAND). For example, if the
444 * user is entering the z command, a valid command is "z40+", and we don't want
445 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
446 * into "z40xxx". However, if the user enters "35x", we want to put all of the
447 * characters through the mapping code.
449 * Historical practice is a bit muddled here. (Surprise!) It always permitted
450 * mapping digits as long as they weren't the first character of the map, e.g.
451 * ":map ^A1 xxx" was okay. It also permitted the mapping of the digits 1-9
452 * (the digit 0 was a special case as it doesn't indicate the start of a count)
453 * as the first character of the map, but then ignored those mappings. While
454 * it's probably stupid to map digits, vi isn't your mother.
456 * The way this works is that the EC_MAPNODIGIT causes term_key to return the
457 * end-of-digit without "looking" at the next character, i.e. leaving it as the
458 * user entered it. Presumably, the next term_key call will tell us how the
459 * user wants it handled.
461 * There is one more complication. Users might map keys to digits, and, as
462 * it's described above, the commands:
464 * :map g 1G
465 * d2g
467 * would return the keys "d2<end-of-digits>1G", when the user probably wanted
468 * "d21<end-of-digits>G". So, if a map starts off with a digit we continue as
469 * before, otherwise, we pretend we haven't mapped the character, and return
470 * <end-of-digits>.
472 * Now that that's out of the way, let's talk about Energizer Bunny macros.
473 * It's easy to create macros that expand to a loop, e.g. map x 3x. It's
474 * fairly easy to detect this example, because it's all internal to term_key.
475 * If we're expanding a macro and it gets big enough, at some point we can
476 * assume it's looping and kill it. The examples that are tough are the ones
477 * where the parser is involved, e.g. map x "ayyx"byy. We do an expansion
478 * on 'x', and get "ayyx"byy. We then return the first 4 characters, and then
479 * find the looping macro again. There is no way that we can detect this
480 * without doing a full parse of the command, because the character that might
481 * cause the loop (in this case 'x') may be a literal character, e.g. the map
482 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
484 * Historic vi tried to detect looping macros by disallowing obvious cases in
485 * the map command, maps that that ended with the same letter as they started
486 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
487 * too many times before keys were returned to the command parser. It didn't
488 * get many (most?) of the tricky cases right, however, and it was certainly
489 * possible to create macros that ran forever. And, even if it did figure out
490 * what was going on, the user was usually tossed into ex mode. Finally, any
491 * changes made before vi realized that the macro was recursing were left in
492 * place. We recover gracefully, but the only recourse the user has in an
493 * infinite macro loop is to interrupt.
495 * !!!
496 * It is historic practice that mapping characters to themselves as the first
497 * part of the mapped string was legal, and did not cause infinite loops, i.e.
498 * ":map! { {^M^T" and ":map n nz." were known to work. The initial, matching
499 * characters were returned instead of being remapped.
501 * !!!
502 * It is also historic practice that the macro "map ] ]]^" caused a single ]
503 * keypress to behave as the command ]] (the ^ got the map past the vi check
504 * for "tail recursion"). Conversely, the mapping "map n nn^" went recursive.
505 * What happened was that, in the historic vi, maps were expanded as the keys
506 * were retrieved, but not all at once and not centrally. So, the keypress ]
507 * pushed ]]^ on the stack, and then the first ] from the stack was passed to
508 * the ]] command code. The ]] command then retrieved a key without entering
509 * the mapping code. This could bite us anytime a user has a map that depends
510 * on secondary keys NOT being mapped. I can't see any possible way to make
511 * this work in here without the complete abandonment of Rationality Itself.
513 * XXX
514 * The final issue is recovery. It would be possible to undo all of the work
515 * that was done by the macro if we entered a record into the log so that we
516 * knew when the macro started, and, in fact, this might be worth doing at some
517 * point. Given that this might make the log grow unacceptably (consider that
518 * cursor keys are done with maps), for now we leave any changes made in place.
520 * PUBLIC: int v_event_get __P((SCR *, EVENT *, int, u_int32_t));
523 v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags)
525 EVENT *evp, ev;
526 GS *gp;
527 SEQ *qp;
528 int init_nomap, ispartial, istimeout, remap_cnt;
529 WIN *wp;
531 gp = sp->gp;
532 wp = sp->wp;
534 /* If simply checking for interrupts, argp may be NULL. */
535 if (argp == NULL)
536 argp = &ev;
538 retry: istimeout = remap_cnt = 0;
541 * If the queue isn't empty and we're timing out for characters,
542 * return immediately.
544 if (wp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
545 return (0);
548 * If the queue is empty, we're checking for interrupts, or we're
549 * timing out for characters, get more events.
551 if (wp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
553 * If we're reading new characters, check any scripting
554 * windows for input.
556 if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
557 return (1);
558 loop: if (gp->scr_event(sp, argp,
559 LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
560 return (1);
561 switch (argp->e_event) {
562 case E_ERR:
563 case E_SIGHUP:
564 case E_SIGTERM:
566 * Fatal conditions cause the file to be synced to
567 * disk immediately.
569 v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
570 (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
571 return (1);
572 case E_TIMEOUT:
573 istimeout = 1;
574 break;
575 case E_INTERRUPT:
576 /* Set the global interrupt flag. */
577 F_SET(sp->gp, G_INTERRUPTED);
580 * If the caller was interested in interrupts, return
581 * immediately.
583 if (LF_ISSET(EC_INTERRUPT))
584 return (0);
585 goto append;
586 default:
587 append: if (v_event_append(sp, argp))
588 return (1);
589 break;
594 * If the caller was only interested in interrupts or timeouts, return
595 * immediately. (We may have gotten characters, and that's okay, they
596 * were queued up for later use.)
598 if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
599 return (0);
601 newmap: evp = &wp->i_event[wp->i_next];
604 * If the next event in the queue isn't a character event, return
605 * it, we're done.
607 if (evp->e_event != E_CHARACTER) {
608 *argp = *evp;
609 QREM(1);
610 return (0);
614 * If the key isn't mappable because:
616 * + ... the timeout has expired
617 * + ... it's not a mappable key
618 * + ... neither the command or input map flags are set
619 * + ... there are no maps that can apply to it
621 * return it forthwith.
623 if (istimeout || FL_ISSET(evp->e_flags, CH_NOMAP) ||
624 !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
625 ((evp->e_c & ~MAX_BIT_SEQ) == 0 &&
626 !bit_test(gp->seqb, evp->e_c)))
627 goto nomap;
629 /* Search the map. */
630 qp = seq_find(sp, NULL, evp, NULL, wp->i_cnt,
631 LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
634 * If get a partial match, get more characters and retry the map.
635 * If time out without further characters, return the characters
636 * unmapped.
638 * !!!
639 * <escape> characters are a problem. Cursor keys start with <escape>
640 * characters, so there's almost always a map in place that begins with
641 * an <escape> character. If we timeout <escape> keys in the same way
642 * that we timeout other keys, the user will get a noticeable pause as
643 * they enter <escape> to terminate input mode. If key timeout is set
644 * for a slow link, users will get an even longer pause. Nvi used to
645 * simply timeout <escape> characters at 1/10th of a second, but this
646 * loses over PPP links where the latency is greater than 100Ms.
648 if (ispartial) {
649 if (O_ISSET(sp, O_TIMEOUT))
650 timeout = (evp->e_value == K_ESCAPE ?
651 O_VAL(sp, O_ESCAPETIME) :
652 O_VAL(sp, O_KEYTIME)) * 100;
653 else
654 timeout = 0;
655 goto loop;
658 /* If no map, return the character. */
659 if (qp == NULL) {
660 nomap: if (!ISDIGIT(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
661 goto not_digit;
662 *argp = *evp;
663 QREM(1);
664 return (0);
668 * If looking for the end of a digit string, and the first character
669 * of the map is it, pretend we haven't seen the character.
671 if (LF_ISSET(EC_MAPNODIGIT) &&
672 qp->output != NULL && !ISDIGIT(qp->output[0])) {
673 not_digit: argp->e_c = CH_NOT_DIGIT;
674 argp->e_value = K_NOTUSED;
675 argp->e_event = E_CHARACTER;
676 FL_INIT(argp->e_flags, 0);
677 return (0);
680 /* Find out if the initial segments are identical. */
681 init_nomap = !e_memcmp(qp->output, &wp->i_event[wp->i_next], qp->ilen);
683 /* Delete the mapped characters from the queue. */
684 QREM(qp->ilen);
686 /* If keys mapped to nothing, go get more. */
687 if (qp->output == NULL)
688 goto retry;
690 /* If remapping characters... */
691 if (O_ISSET(sp, O_REMAP)) {
693 * Periodically check for interrupts. Always check the first
694 * time through, because it's possible to set up a map that
695 * will return a character every time, but will expand to more,
696 * e.g. "map! a aaaa" will always return a 'a', but we'll never
697 * get anywhere useful.
699 if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
700 (gp->scr_event(sp, &ev,
701 EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
702 F_SET(sp->gp, G_INTERRUPTED);
703 argp->e_event = E_INTERRUPT;
704 return (0);
708 * If an initial part of the characters mapped, they are not
709 * further remapped -- return the first one. Push the rest
710 * of the characters, or all of the characters if no initial
711 * part mapped, back on the queue.
713 if (init_nomap) {
714 if (v_event_push(sp, NULL, qp->output + qp->ilen,
715 qp->olen - qp->ilen, CH_MAPPED))
716 return (1);
717 if (v_event_push(sp, NULL,
718 qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
719 return (1);
720 evp = &wp->i_event[wp->i_next];
721 goto nomap;
723 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
724 return (1);
725 goto newmap;
728 /* Else, push the characters on the queue and return one. */
729 if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
730 return (1);
732 goto nomap;
736 * v_sync --
737 * Walk the screen lists, sync'ing files to their backup copies.
739 static void
740 v_sync(SCR *sp, int flags)
742 GS *gp;
743 WIN *wp;
745 gp = sp->gp;
746 TAILQ_FOREACH(wp, &gp->dq, q)
747 TAILQ_FOREACH(sp, &wp->scrq, q)
748 rcv_sync(sp, flags);
749 TAILQ_FOREACH(sp, &gp->hq, q)
750 rcv_sync(sp, flags);
754 * v_event_err --
755 * Unexpected event.
757 * PUBLIC: void v_event_err __P((SCR *, EVENT *));
759 void
760 v_event_err(SCR *sp, EVENT *evp)
762 switch (evp->e_event) {
763 case E_CHARACTER:
764 msgq(sp, M_ERR, "276|Unexpected character event");
765 break;
766 case E_EOF:
767 msgq(sp, M_ERR, "277|Unexpected end-of-file event");
768 break;
769 case E_INTERRUPT:
770 msgq(sp, M_ERR, "279|Unexpected interrupt event");
771 break;
772 case E_IPCOMMAND:
773 msgq(sp, M_ERR, "318|Unexpected command or input");
774 break;
775 case E_REPAINT:
776 msgq(sp, M_ERR, "281|Unexpected repaint event");
777 break;
778 case E_STRING:
779 msgq(sp, M_ERR, "285|Unexpected string event");
780 break;
781 case E_TIMEOUT:
782 msgq(sp, M_ERR, "286|Unexpected timeout event");
783 break;
784 case E_WRESIZE:
785 msgq(sp, M_ERR, "316|Unexpected resize event");
786 break;
789 * Theoretically, none of these can occur, as they're handled at the
790 * top editor level.
792 case E_ERR:
793 case E_SIGHUP:
794 case E_SIGTERM:
795 default:
796 abort();
801 * v_event_flush --
802 * Flush any flagged keys, returning if any keys were flushed.
804 * PUBLIC: int v_event_flush __P((SCR *, u_int));
807 v_event_flush(SCR *sp, u_int flags)
809 WIN *wp;
810 int rval;
812 for (rval = 0, wp = sp->wp; wp->i_cnt != 0 &&
813 FL_ISSET(wp->i_event[wp->i_next].e_flags, flags); rval = 1)
814 QREM(1);
815 return (rval);
819 * v_event_grow --
820 * Grow the terminal queue.
822 static int
823 v_event_grow(SCR *sp, int add)
825 WIN *wp;
826 size_t new_nelem, olen;
828 wp = sp->wp;
829 new_nelem = wp->i_nelem + add;
830 olen = wp->i_nelem * sizeof(wp->i_event[0]);
831 BINC_RET(sp, EVENT, wp->i_event, olen, new_nelem * sizeof(EVENT));
832 wp->i_nelem = olen / sizeof(wp->i_event[0]);
833 return (0);
837 * v_key_cmp --
838 * Compare two keys for sorting.
840 static int
841 v_key_cmp(const void *ap, const void *bp)
843 return (((const KEYLIST *)ap)->ch - ((const KEYLIST *)bp)->ch);