1 /* $NetBSD: n_jn.c,v 1.7 2011/11/02 02:34:56 christos Exp $ */
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 static char sccsid
[] = "@(#)jn.c 8.2 (Berkeley) 11/30/93";
39 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
43 * ====================================================
44 * Copyright (C) 1992 by Sun Microsystems, Inc.
46 * Developed at SunPro, a Sun Microsystems, Inc. business.
47 * Permission to use, copy, modify, and distribute this
48 * software is freely granted, provided that this notice
50 * ====================================================
52 * ******************* WARNING ********************
53 * This is an alpha version of SunPro's FDLIBM (Freely
54 * Distributable Math Library) for IEEE double precision
55 * arithmetic. FDLIBM is a basic math library written
56 * in C that runs on machines that conform to IEEE
57 * Standard 754/854. This alpha version is distributed
58 * for testing purpose. Those who use this software
59 * should report any bugs to
61 * fdlibm-comments@sunpro.eng.sun.com
63 * -- K.C. Ng, Oct 12, 1992
64 * ************************************************
68 * jn(int n, double x), yn(int n, double x)
69 * floating point Bessel's function of the 1st and 2nd kind
73 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
74 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
75 * Note 2. About jn(n,x), yn(n,x)
76 * For n=0, j0(x) is called,
77 * for n=1, j1(x) is called,
78 * for n<x, forward recursion us used starting
79 * from values of j0(x) and j1(x).
80 * for n>x, a continued fraction approximation to
81 * j(n,x)/j(n-1,x) is evaluated and then backward
82 * recursion is used starting from a supposed value
83 * for j(n,x). The resulting value of j(0,x) is
84 * compared with the actual value to correct the
85 * supposed value of j(n,x).
87 * yn(n,x) is similar in all respects, except
88 * that forward recursion is used for all
97 #if defined(__vax__) || defined(tahoe)
101 #define infnan(x) (0.0)
105 invsqrtpi
= 5.641895835477562869480794515607725858441e-0001,
117 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
118 * Thus, J(-n,x) = J(n,-x)
120 /* if J(n,NaN) is NaN */
122 if (snan(x
)) return x
+x
;
128 if (n
==0) return(j0(x
));
129 if (n
==1) return(j1(x
));
130 sgn
= (n
&1)&(x
< zero
); /* even n -- 0, odd n -- sign(x) */
132 if (x
== 0 || !finite (x
)) /* if x is 0 or inf */
134 else if ((double) n
<= x
) {
135 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
137 if (x
>= 8.148143905337944345e+090) {
140 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
141 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
142 * Let s=sin(x), c=cos(x),
143 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
145 * n sin(xn)*sqt2 cos(xn)*sqt2
146 * ----------------------------------
153 case 0: temp
= cos(x
)+sin(x
); break;
154 case 1: temp
= -cos(x
)+sin(x
); break;
155 case 2: temp
= -cos(x
)-sin(x
); break;
156 case 3: temp
= cos(x
)-sin(x
); break;
158 b
= invsqrtpi
*temp
/sqrt(x
);
166 b
= b
*((double)(i
+i
)/x
) - a
; /* avoid underflow */
171 if (x
< 1.86264514923095703125e-009) { /* x < 2**-29 */
172 /* x is tiny, return the first Taylor expansion of J(n,x)
173 * J(n,x) = 1/n!*(x/2)^n - ...
175 if (n
> 33) /* underflow */
178 temp
= x
*0.5; b
= temp
;
179 for (a
=one
,i
=2;i
<=n
;i
++) {
180 a
*= (double)i
; /* a = n! */
181 b
*= temp
; /* b = (x/2)^n */
186 /* use backward recurrence */
188 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
189 * 2n - 2(n+1) - 2(n+2)
192 * (for large x) = ---- ------ ------ .....
194 * -- - ------ - ------ -
197 * Let w = 2n/x and h=2/x, then the above quotient
198 * is equal to the continued fraction:
200 * = -----------------------
202 * w - -----------------
207 * To determine how many terms needed, let
208 * Q(0) = w, Q(1) = w(w+h) - 1,
209 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
210 * When Q(k) > 1e4 good for single
211 * When Q(k) > 1e9 good for double
212 * When Q(k) > 1e17 good for quadruple
216 double q0
,q1
,h
,tmp
; int k
,m
;
217 w
= (n
+n
)/(double)x
; h
= 2.0/(double)x
;
218 q0
= w
; z
= w
+h
; q1
= w
*z
- 1.0; k
=1;
226 for(t
=zero
, i
= 2*(n
+k
); i
>=m
; i
-= 2) t
= one
/(i
/x
-t
);
229 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
230 * Hence, if n*(log(2n/x)) > ...
231 * single 8.8722839355e+01
232 * double 7.09782712893383973096e+02
233 * long double 1.1356523406294143949491931077970765006170e+04
234 * then recurrent value may overflow and the result will
235 * likely underflow to zero
239 tmp
= tmp
*log(fabs(v
*tmp
));
244 /* scale b to avoid spurious overflow */
245 # if defined(__vax__) || defined(tahoe)
249 # endif /* defined(__vax__) || defined(tahoe) */
259 return ((sgn
== 1) ? -b
: b
);
268 /* Y(n,NaN), Y(n, x < 0) is NaN */
269 if (x
<= 0 || (_IEEE
&& x
!= x
))
270 if (_IEEE
&& x
< 0) return zero
/zero
;
271 else if (x
< 0) return (infnan(EDOM
));
272 else if (_IEEE
) return -one
/zero
;
273 else return(infnan(-ERANGE
));
274 else if (!finite(x
)) return(0);
278 sign
= 1 - ((n
&1)<<2);
280 if (n
== 0) return(y0(x
));
281 if (n
== 1) return(sign
*y1(x
));
283 if(x
>= 8.148143905337944345e+090) { /* x > 2**302 */
285 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
286 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
287 * Let s=sin(x), c=cos(x),
288 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
290 * n sin(xn)*sqt2 cos(xn)*sqt2
291 * ----------------------------------
298 case 0: temp
= sin(x
)-cos(x
); break;
299 case 1: temp
= -sin(x
)-cos(x
); break;
300 case 2: temp
= -sin(x
)+cos(x
); break;
301 case 3: temp
= sin(x
)+cos(x
); break;
303 b
= invsqrtpi
*temp
/sqrt(x
);
309 /* quit if b is -inf */
310 for (i
= 1; i
< n
&& !finite(b
); i
++){
312 b
= ((double)(i
+i
)/x
)*b
- a
;
316 if (!_IEEE
&& !finite(b
))
317 return (infnan(-sign
* ERANGE
));
318 return ((sign
> 0) ? b
: -b
);