Remove building with NOCRYPTO option
[minix.git] / libexec / ld.elf_so / arch / sparc / mdreloc.c
blob9f30e2f61a1ebf0e2c13298dbd51ed09cbc34909
1 /* $NetBSD: mdreloc.c,v 1.48 2014/08/25 20:40:52 joerg Exp $ */
3 /*-
4 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg and by Charles M. Hannum.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #include <sys/cdefs.h>
33 #ifndef lint
34 __RCSID("$NetBSD: mdreloc.c,v 1.48 2014/08/25 20:40:52 joerg Exp $");
35 #endif /* not lint */
37 #include <errno.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 #include <unistd.h>
43 #include "rtldenv.h"
44 #include "debug.h"
45 #include "rtld.h"
48 * The following table holds for each relocation type:
49 * - the width in bits of the memory location the relocation
50 * applies to (not currently used)
51 * - the number of bits the relocation value must be shifted to the
52 * right (i.e. discard least significant bits) to fit into
53 * the appropriate field in the instruction word.
54 * - flags indicating whether
55 * * the relocation involves a symbol
56 * * the relocation is relative to the current position
57 * * the relocation is for a GOT entry
58 * * the relocation is relative to the load address
61 #define _RF_S 0x80000000 /* Resolve symbol */
62 #define _RF_A 0x40000000 /* Use addend */
63 #define _RF_P 0x20000000 /* Location relative */
64 #define _RF_G 0x10000000 /* GOT offset */
65 #define _RF_B 0x08000000 /* Load address relative */
66 #define _RF_U 0x04000000 /* Unaligned */
67 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
68 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
69 static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
70 0, /* NONE */
71 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
72 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
73 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
74 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
75 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
76 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
77 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
79 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
80 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
81 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
83 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
84 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
85 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
86 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
87 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
88 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
89 _RF_SZ(32) | _RF_RS(0), /* COPY */
90 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_DAT */
91 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
92 _RF_A| _RF_B| _RF_SZ(32) | _RF_RS(0), /* RELATIVE */
93 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
95 /* TLS and 64 bit relocs not listed here... */
98 #ifdef RTLD_DEBUG_RELOC
99 static const char *reloc_names[] = {
100 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
101 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
102 "22", "13", "LO10", "GOT10", "GOT13",
103 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
104 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32",
106 /* not used with 32bit userland, besides a few of the TLS ones */
107 "PLT32",
108 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
109 "10", "11", "64", "OLO10", "HH22",
110 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
111 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
112 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
113 "L44", "REGISTER", "UA64", "UA16",
114 "TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
115 "TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
116 "TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
117 "TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
118 "TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
119 "TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
121 #endif
123 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
124 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
125 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
126 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
127 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
128 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
129 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
130 #define RELOC_TLS(t) (t >= R_TYPE(TLS_GD_HI22))
132 static const int reloc_target_bitmask[] = {
133 #define _BM(x) (~(-(1ULL << (x))))
134 0, /* NONE */
135 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
136 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
137 _BM(30), _BM(22), /* WDISP30, WDISP22 */
138 _BM(22), _BM(22), /* HI22, _22 */
139 _BM(13), _BM(10), /* RELOC_13, _LO10 */
140 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
141 _BM(10), _BM(22), /* _PC10, _PC22 */
142 _BM(30), 0, /* _WPLT30, _COPY */
143 -1, -1, -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
144 _BM(32) /* _UA32 */
145 #undef _BM
147 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
149 void _rtld_bind_start(void);
150 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
151 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
152 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
153 const Elf_Rela *, Elf_Addr *);
155 void
156 _rtld_setup_pltgot(const Obj_Entry *obj)
159 * PLTGOT is the PLT on the sparc.
160 * The first entry holds the call the dynamic linker.
161 * We construct a `call' sequence that transfers
162 * to `_rtld_bind_start()'.
163 * The second entry holds the object identification.
164 * Note: each PLT entry is three words long.
166 #define SAVE 0x9de3bfa0 /* i.e. `save %sp,-96,%sp' */
167 #define CALL 0x40000000
168 #define NOP 0x01000000
169 obj->pltgot[0] = SAVE;
170 obj->pltgot[1] = CALL |
171 ((Elf_Addr) &_rtld_bind_start - (Elf_Addr) &obj->pltgot[1]) >> 2;
172 obj->pltgot[2] = NOP;
173 obj->pltgot[3] = (Elf_Addr) obj;
176 void
177 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
179 const Elf_Rela *rela = 0, *relalim;
180 Elf_Addr relasz = 0;
181 Elf_Addr *where;
183 for (; dynp->d_tag != DT_NULL; dynp++) {
184 switch (dynp->d_tag) {
185 case DT_RELA:
186 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
187 break;
188 case DT_RELASZ:
189 relasz = dynp->d_un.d_val;
190 break;
193 relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
194 for (; rela < relalim; rela++) {
195 where = (Elf_Addr *)(relocbase + rela->r_offset);
196 *where += (Elf_Addr)(relocbase + rela->r_addend);
201 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
203 const Elf_Rela *rela;
205 for (rela = obj->rela; rela < obj->relalim; rela++) {
206 Elf_Addr *where;
207 Elf_Word type, value, mask;
208 const Elf_Sym *def = NULL;
209 const Obj_Entry *defobj = NULL;
210 unsigned long symnum;
212 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
213 symnum = ELF_R_SYM(rela->r_info);
215 type = ELF_R_TYPE(rela->r_info);
216 if (type == R_TYPE(NONE))
217 continue;
219 /* We do JMP_SLOTs in _rtld_bind() below */
220 if (type == R_TYPE(JMP_SLOT))
221 continue;
223 /* COPY relocs are also handled elsewhere */
224 if (type == R_TYPE(COPY))
225 continue;
228 * We use the fact that relocation types are an `enum'
229 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
231 if (type > R_TYPE(TLS_TPOFF64))
232 return (-1);
234 value = rela->r_addend;
237 * Handle TLS relocations here, they are different.
239 if (RELOC_TLS(type)) {
240 switch (type) {
241 case R_TYPE(TLS_DTPMOD32):
242 def = _rtld_find_symdef(symnum, obj,
243 &defobj, false);
244 if (def == NULL)
245 return -1;
247 *where = (Elf_Addr)defobj->tlsindex;
249 rdbg(("TLS_DTPMOD32 %s in %s --> %p",
250 obj->strtab +
251 obj->symtab[symnum].st_name,
252 obj->path, (void *)*where));
254 break;
256 case R_TYPE(TLS_DTPOFF32):
257 def = _rtld_find_symdef(symnum, obj,
258 &defobj, false);
259 if (def == NULL)
260 return -1;
262 *where = (Elf_Addr)(def->st_value
263 + rela->r_addend);
265 rdbg(("TLS_DTPOFF32 %s in %s --> %p",
266 obj->strtab +
267 obj->symtab[symnum].st_name,
268 obj->path, (void *)*where));
270 break;
272 case R_TYPE(TLS_TPOFF32):
273 def = _rtld_find_symdef(symnum, obj,
274 &defobj, false);
275 if (def == NULL)
276 return -1;
278 if (!defobj->tls_done &&
279 _rtld_tls_offset_allocate(obj))
280 return -1;
282 *where = (Elf_Addr)(def->st_value -
283 defobj->tlsoffset +
284 rela->r_addend);
286 rdbg(("TLS_TPOFF32 %s in %s --> %p",
287 obj->strtab +
288 obj->symtab[symnum].st_name,
289 obj->path, (void *)*where));
291 break;
293 continue;
297 * If it is no TLS relocation (handled above), we can not
298 * deal with it if it is beyound R_SPARC_6.
300 if (type > R_TYPE(6))
301 return (-1);
304 * Handle relative relocs here, as an optimization.
306 if (type == R_TYPE(RELATIVE)) {
307 *where += (Elf_Addr)(obj->relocbase + value);
308 rdbg(("RELATIVE in %s --> %p", obj->path,
309 (void *)*where));
310 continue;
313 if (RELOC_RESOLVE_SYMBOL(type)) {
315 /* Find the symbol */
316 def = _rtld_find_symdef(symnum, obj, &defobj, false);
317 if (def == NULL)
318 return (-1);
320 /* Add in the symbol's absolute address */
321 value += (Elf_Word)(defobj->relocbase + def->st_value);
324 if (RELOC_PC_RELATIVE(type)) {
325 value -= (Elf_Word)where;
328 if (RELOC_BASE_RELATIVE(type)) {
330 * Note that even though sparcs use `Elf_rela'
331 * exclusively we still need the implicit memory addend
332 * in relocations referring to GOT entries.
333 * Undoubtedly, someone f*cked this up in the distant
334 * past, and now we're stuck with it in the name of
335 * compatibility for all eternity..
337 * In any case, the implicit and explicit should be
338 * mutually exclusive. We provide a check for that
339 * here.
341 #define DIAGNOSTIC
342 #ifdef DIAGNOSTIC
343 if (value != 0 && *where != 0) {
344 xprintf("BASE_REL(%s): where=%p, *where 0x%x, "
345 "addend=0x%x, base %p\n",
346 obj->path, where, *where,
347 rela->r_addend, obj->relocbase);
349 #endif
350 value += (Elf_Word)(obj->relocbase + *where);
353 mask = RELOC_VALUE_BITMASK(type);
354 value >>= RELOC_VALUE_RIGHTSHIFT(type);
355 value &= mask;
357 if (RELOC_UNALIGNED(type)) {
358 /* Handle unaligned relocations. */
359 Elf_Addr tmp = 0;
360 char *ptr = (char *)where;
361 int i, size = RELOC_TARGET_SIZE(type)/8;
363 /* Read it in one byte at a time. */
364 for (i=0; i<size; i++)
365 tmp = (tmp << 8) | ptr[i];
367 tmp &= ~mask;
368 tmp |= value;
370 /* Write it back out. */
371 for (i=0; i<size; i++)
372 ptr[i] = ((tmp >> (8*i)) & 0xff);
373 #ifdef RTLD_DEBUG_RELOC
374 value = (Elf_Word)tmp;
375 #endif
377 } else {
378 *where &= ~mask;
379 *where |= value;
380 #ifdef RTLD_DEBUG_RELOC
381 value = (Elf_Word)*where;
382 #endif
384 #ifdef RTLD_DEBUG_RELOC
385 if (RELOC_RESOLVE_SYMBOL(type)) {
386 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
387 obj->strtab + obj->symtab[symnum].st_name,
388 obj->path, (void *)value, defobj->path));
389 } else {
390 rdbg(("%s in %s --> %p", reloc_names[type],
391 obj->path, (void *)value));
393 #endif
395 return (0);
399 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
401 return (0);
404 caddr_t
405 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
407 const Elf_Rela *rela = (const Elf_Rela *)((const uint8_t *)obj->pltrela + reloff);
408 Elf_Addr value;
409 int err;
411 value = 0; /* XXX gcc */
413 _rtld_shared_enter();
414 err = _rtld_relocate_plt_object(obj, rela, &value);
415 if (err)
416 _rtld_die();
417 _rtld_shared_exit();
419 return (caddr_t)value;
423 _rtld_relocate_plt_objects(const Obj_Entry *obj)
425 const Elf_Rela *rela = obj->pltrela;
427 for (; rela < obj->pltrelalim; rela++)
428 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
429 return -1;
431 return 0;
434 static inline int
435 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela, Elf_Addr *tp)
437 const Elf_Sym *def;
438 const Obj_Entry *defobj;
439 Elf_Word *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
440 Elf_Addr value;
441 unsigned long info = rela->r_info;
443 assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
445 def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
446 if (__predict_false(def == NULL))
447 return -1;
448 if (__predict_false(def == &_rtld_sym_zero))
449 return 0;
451 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
452 if (tp == NULL)
453 return 0;
454 value = _rtld_resolve_ifunc(defobj, def);
455 } else {
456 value = (Elf_Addr)(defobj->relocbase + def->st_value);
458 rdbg(("bind now/fixup in %s --> new=%p",
459 defobj->strtab + def->st_name, (void *)value));
462 * At the PLT entry pointed at by `where', we now construct
463 * a direct transfer to the now fully resolved function
464 * address. The resulting code in the jump slot is:
466 * sethi %hi(roffset), %g1
467 * sethi %hi(addr), %g1
468 * jmp %g1+%lo(addr)
470 * We write the third instruction first, since that leaves the
471 * previous `b,a' at the second word in place. Hence the whole
472 * PLT slot can be atomically change to the new sequence by
473 * writing the `sethi' instruction at word 2.
475 #define SETHI 0x03000000
476 #define JMP 0x81c06000
477 #define NOP 0x01000000
478 where[2] = JMP | (value & 0x000003ff);
479 where[1] = SETHI | ((value >> 10) & 0x003fffff);
480 __asm volatile("iflush %0+8" : : "r" (where));
481 __asm volatile("iflush %0+4" : : "r" (where));
483 if (tp)
484 *tp = value;
486 return 0;