Remove building with NOCRYPTO option
[minix.git] / libexec / ld.elf_so / arch / sparc64 / mdreloc.c
blobe47bfc6c9c5d6c52c1aebaaf5951a990cbd33a62
1 /* $NetBSD: mdreloc.c,v 1.57 2014/08/25 20:40:53 joerg Exp $ */
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg and by Charles M. Hannum.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
33 #include <sys/cdefs.h>
34 #ifndef lint
35 __RCSID("$NetBSD: mdreloc.c,v 1.57 2014/08/25 20:40:53 joerg Exp $");
36 #endif /* not lint */
38 #include <errno.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <unistd.h>
44 #include "rtldenv.h"
45 #include "debug.h"
46 #include "rtld.h"
49 * The following table holds for each relocation type:
50 * - the width in bits of the memory location the relocation
51 * applies to (not currently used)
52 * - the number of bits the relocation value must be shifted to the
53 * right (i.e. discard least significant bits) to fit into
54 * the appropriate field in the instruction word.
55 * - flags indicating whether
56 * * the relocation involves a symbol
57 * * the relocation is relative to the current position
58 * * the relocation is for a GOT entry
59 * * the relocation is relative to the load address
62 #define _RF_S 0x80000000 /* Resolve symbol */
63 #define _RF_A 0x40000000 /* Use addend */
64 #define _RF_P 0x20000000 /* Location relative */
65 #define _RF_G 0x10000000 /* GOT offset */
66 #define _RF_B 0x08000000 /* Load address relative */
67 #define _RF_U 0x04000000 /* Unaligned */
68 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
69 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
70 static const int reloc_target_flags[R_TYPE(TLS_TPOFF64)+1] = {
71 0, /* NONE */
72 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
73 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
74 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
75 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
76 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
77 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
80 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
81 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
84 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
85 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
86 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
87 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
88 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
89 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
90 _RF_SZ(32) | _RF_RS(0), /* COPY */
91 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
92 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
93 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
94 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
96 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
97 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
98 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
99 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
100 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
101 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
102 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
103 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
104 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
105 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
107 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
108 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
109 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
110 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
111 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
114 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
115 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
116 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
118 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
119 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
121 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
122 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
125 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
126 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
127 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
128 /* TLS relocs not represented here! */
131 #ifdef RTLD_DEBUG_RELOC
132 static const char *reloc_names[] = {
133 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
134 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
135 "22", "13", "LO10", "GOT10", "GOT13",
136 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
137 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
138 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
139 "10", "11", "64", "OLO10", "HH22",
140 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
141 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
142 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
143 "L44", "REGISTER", "UA64", "UA16",
144 "TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
145 "TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
146 "TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
147 "TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
148 "TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
149 "TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
151 #endif
153 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
154 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
155 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
156 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
157 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
158 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
159 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
160 #define RELOC_TLS(t) (t >= R_TYPE(TLS_GD_HI22))
162 static const long reloc_target_bitmask[] = {
163 #define _BM(x) (~(-(1ULL << (x))))
164 0, /* NONE */
165 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
166 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
167 _BM(30), _BM(22), /* WDISP30, WDISP22 */
168 _BM(22), _BM(22), /* HI22, _22 */
169 _BM(13), _BM(10), /* RELOC_13, _LO10 */
170 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
171 _BM(10), _BM(22), /* _PC10, _PC22 */
172 _BM(30), 0, /* _WPLT30, _COPY */
173 -1, _BM(32), -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
174 _BM(32), _BM(32), /* _UA32, PLT32 */
175 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
176 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
177 _BM(10), _BM(11), -1, /* _10, _11, _64 */
178 _BM(10), _BM(22), /* _OLO10, _HH22 */
179 _BM(10), _BM(22), /* _HM10, _LM22 */
180 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
181 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
182 -1, /* GLOB_JMP */
183 _BM(7), _BM(5), _BM(6), /* _7, _5, _6 */
184 -1, -1, /* DISP64, PLT64 */
185 _BM(22), _BM(13), /* HIX22, LOX10 */
186 _BM(22), _BM(10), _BM(12), /* H44, M44, L44 */
187 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
188 #undef _BM
190 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
193 * Instruction templates:
195 #define BAA 0x30680000 /* ba,a %xcc, 0 */
196 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
197 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
198 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
199 #define OR 0x82106000 /* or %g1, 0, %g1 */
200 #define XOR 0x82186000 /* xor %g1, 0, %g1 */
201 #define MOV71 0x8213e000 /* or %o7, 0, %g1 */
202 #define MOV17 0x9e106000 /* or %g1, 0, %o7 */
203 #define CALL 0x40000000 /* call 0 */
204 #define SLLX 0x83287000 /* sllx %g1, 0, %g1 */
205 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
206 #define ORG5 0x82104005 /* or %g1, %g5, %g1 */
209 /* %hi(v)/%lo(v) with variable shift */
210 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
211 #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff)
213 void _rtld_bind_start_0(long, long);
214 void _rtld_bind_start_1(long, long);
215 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
216 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
219 * Install rtld function call into this PLT slot.
221 #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */
222 #define SETHI_l0 0x21000000
223 #define SETHI_l1 0x23000000
224 #define OR_l0_l0 0xa0142000
225 #define SLLX_l0_32_l0 0xa12c3020
226 #define OR_l0_l1_l0 0xa0140011
227 #define JMPL_l0_o0 0x91c42000
228 #define MOV_g1_o1 0x92100001
230 void _rtld_install_plt(Elf_Word *, Elf_Addr);
231 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
232 const Elf_Rela *, Elf_Addr *);
234 void
235 _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
237 pltgot[0] = SAVE;
238 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
239 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
240 pltgot[3] = OR_l0_l0 | LOVAL(proc, 32);
241 pltgot[4] = SLLX_l0_32_l0;
242 pltgot[5] = OR_l0_l1_l0;
243 pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
244 pltgot[7] = MOV_g1_o1;
247 void
248 _rtld_setup_pltgot(const Obj_Entry *obj)
251 * On sparc64 we got troubles.
253 * Instructions are 4 bytes long.
254 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
255 * array entries.
256 * Each PLT entry jumps to PLT0 to enter the dynamic
257 * linker.
258 * Loading an arbitrary 64-bit pointer takes 6
259 * instructions and 2 registers.
261 * Somehow we need to issue a save to get a new stack
262 * frame, load the address of the dynamic linker, and
263 * jump there, in 8 instructions or less.
265 * Oh, we need to fill out both PLT0 and PLT1.
268 Elf_Word *entry = (Elf_Word *)obj->pltgot;
270 /* Install in entries 0 and 1 */
271 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
272 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
275 * Install the object reference in first slot
276 * of entry 2.
278 obj->pltgot[8] = (Elf_Addr) obj;
282 void
283 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
285 const Elf_Rela *rela = 0, *relalim;
286 Elf_Addr relasz = 0;
287 Elf_Addr *where;
289 for (; dynp->d_tag != DT_NULL; dynp++) {
290 switch (dynp->d_tag) {
291 case DT_RELA:
292 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
293 break;
294 case DT_RELASZ:
295 relasz = dynp->d_un.d_val;
296 break;
299 relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
300 for (; rela < relalim; rela++) {
301 where = (Elf_Addr *)(relocbase + rela->r_offset);
302 *where = (Elf_Addr)(relocbase + rela->r_addend);
307 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
309 const Elf_Rela *rela;
310 const Elf_Sym *def = NULL;
311 const Obj_Entry *defobj = NULL;
313 for (rela = obj->rela; rela < obj->relalim; rela++) {
314 Elf_Addr *where;
315 Elf_Word type;
316 Elf_Addr value = 0, mask;
317 unsigned long symnum;
319 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
320 symnum = ELF_R_SYM(rela->r_info);
322 type = ELF_R_TYPE(rela->r_info);
323 if (type == R_TYPE(NONE))
324 continue;
326 /* OLO10 relocations have extra info */
327 if ((type & 0x00ff) == R_SPARC_OLO10)
328 type = R_SPARC_OLO10;
330 /* We do JMP_SLOTs in _rtld_bind() below */
331 if (type == R_TYPE(JMP_SLOT))
332 continue;
334 /* COPY relocs are also handled elsewhere */
335 if (type == R_TYPE(COPY))
336 continue;
339 * We use the fact that relocation types are an `enum'
340 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
342 if (type > R_TYPE(TLS_TPOFF64)) {
343 dbg(("unknown relocation type %x at %p", type, rela));
344 return -1;
347 value = rela->r_addend;
350 * Handle TLS relocations here, they are different.
352 if (RELOC_TLS(type)) {
353 switch (type) {
354 case R_TYPE(TLS_DTPMOD64):
355 def = _rtld_find_symdef(symnum, obj,
356 &defobj, false);
357 if (def == NULL)
358 return -1;
360 *where = (Elf64_Addr)defobj->tlsindex;
362 rdbg(("TLS_DTPMOD64 %s in %s --> %p",
363 obj->strtab +
364 obj->symtab[symnum].st_name,
365 obj->path, (void *)*where));
367 break;
369 case R_TYPE(TLS_DTPOFF64):
370 def = _rtld_find_symdef(symnum, obj,
371 &defobj, false);
372 if (def == NULL)
373 return -1;
375 *where = (Elf64_Addr)(def->st_value
376 + rela->r_addend);
378 rdbg(("DTPOFF64 %s in %s --> %p",
379 obj->strtab +
380 obj->symtab[symnum].st_name,
381 obj->path, (void *)*where));
383 break;
385 case R_TYPE(TLS_TPOFF64):
386 def = _rtld_find_symdef(symnum, obj,
387 &defobj, false);
388 if (def == NULL)
389 return -1;
391 if (!defobj->tls_done &&
392 _rtld_tls_offset_allocate(obj))
393 return -1;
395 *where = (Elf64_Addr)(def->st_value -
396 defobj->tlsoffset +
397 rela->r_addend);
399 rdbg(("TLS_TPOFF64 %s in %s --> %p",
400 obj->strtab +
401 obj->symtab[symnum].st_name,
402 obj->path, (void *)*where));
404 break;
406 continue;
410 * Handle relative relocs here, as an optimization.
412 if (type == R_TYPE(RELATIVE)) {
413 *where = (Elf_Addr)(obj->relocbase + value);
414 rdbg(("RELATIVE in %s --> %p", obj->path,
415 (void *)*where));
416 continue;
419 if (RELOC_RESOLVE_SYMBOL(type)) {
421 /* Find the symbol */
422 def = _rtld_find_symdef(symnum, obj, &defobj,
423 false);
424 if (def == NULL)
425 return -1;
427 /* Add in the symbol's absolute address */
428 value += (Elf_Addr)(defobj->relocbase + def->st_value);
431 if (type == R_SPARC_OLO10) {
432 value = (value & 0x3ff)
433 + (((Elf64_Xword)rela->r_info<<32)>>40);
436 if (RELOC_PC_RELATIVE(type)) {
437 value -= (Elf_Addr)where;
440 if (RELOC_BASE_RELATIVE(type)) {
442 * Note that even though sparcs use `Elf_rela'
443 * exclusively we still need the implicit memory addend
444 * in relocations referring to GOT entries.
445 * Undoubtedly, someone f*cked this up in the distant
446 * past, and now we're stuck with it in the name of
447 * compatibility for all eternity..
449 * In any case, the implicit and explicit should be
450 * mutually exclusive. We provide a check for that
451 * here.
453 #ifdef DIAGNOSTIC
454 if (value != 0 && *where != 0) {
455 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
456 "addend=0x%lx, base %p\n",
457 obj->path, where, *where,
458 rela->r_addend, obj->relocbase);
460 #endif
461 /* XXXX -- apparently we ignore the preexisting value */
462 value += (Elf_Addr)(obj->relocbase);
465 mask = RELOC_VALUE_BITMASK(type);
466 value >>= RELOC_VALUE_RIGHTSHIFT(type);
467 value &= mask;
469 if (RELOC_UNALIGNED(type)) {
470 /* Handle unaligned relocations. */
471 Elf_Addr tmp = 0;
472 char *ptr = (char *)where;
473 int i, size = RELOC_TARGET_SIZE(type)/8;
475 /* Read it in one byte at a time. */
476 for (i=0; i<size; i++)
477 tmp = (tmp << 8) | ptr[i];
479 tmp &= ~mask;
480 tmp |= value;
482 /* Write it back out. */
483 for (i=0; i<size; i++)
484 ptr[i] = ((tmp >> (8*i)) & 0xff);
485 #ifdef RTLD_DEBUG_RELOC
486 value = (Elf_Addr)tmp;
487 #endif
489 } else if (RELOC_TARGET_SIZE(type) > 32) {
490 *where &= ~mask;
491 *where |= value;
492 #ifdef RTLD_DEBUG_RELOC
493 value = (Elf_Addr)*where;
494 #endif
495 } else {
496 Elf32_Addr *where32 = (Elf32_Addr *)where;
498 *where32 &= ~mask;
499 *where32 |= value;
500 #ifdef RTLD_DEBUG_RELOC
501 value = (Elf_Addr)*where32;
502 #endif
505 #ifdef RTLD_DEBUG_RELOC
506 if (RELOC_RESOLVE_SYMBOL(type)) {
507 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
508 obj->strtab + obj->symtab[symnum].st_name,
509 obj->path, (void *)value, defobj->path));
510 } else {
511 rdbg(("%s in %s --> %p", reloc_names[type],
512 obj->path, (void *)value));
514 #endif
516 return (0);
520 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
522 return (0);
525 caddr_t
526 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
528 const Elf_Rela *rela = obj->pltrela + reloff;
529 Elf_Addr result;
530 int err;
532 result = 0; /* XXX gcc */
534 if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
536 * XXXX
538 * The first four PLT entries are reserved. There is some
539 * disagreement whether they should have associated relocation
540 * entries. Both the SPARC 32-bit and 64-bit ELF
541 * specifications say that they should have relocation entries,
542 * but the 32-bit SPARC binutils do not generate them, and now
543 * the 64-bit SPARC binutils have stopped generating them too.
545 * So, to provide binary compatibility, we will check the first
546 * entry, if it is reserved it should not be of the type
547 * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries
548 * were not generated and our index is 4 entries too far.
550 rela -= 4;
553 _rtld_shared_enter();
554 err = _rtld_relocate_plt_object(obj, rela, &result);
555 if (err)
556 _rtld_die();
557 _rtld_shared_exit();
559 return (caddr_t)result;
563 _rtld_relocate_plt_objects(const Obj_Entry *obj)
565 const Elf_Rela *rela;
567 rela = obj->pltrela;
570 * Check for first four reserved entries - and skip them.
571 * See above for details.
573 if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
574 rela += 4;
576 for (; rela < obj->pltrelalim; rela++)
577 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
578 return -1;
580 return 0;
584 * New inline function that is called by _rtld_relocate_plt_object and
585 * _rtld_bind
587 static inline int
588 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
589 Elf_Addr *tp)
591 Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
592 const Elf_Sym *def;
593 const Obj_Entry *defobj;
594 Elf_Addr value, offset;
595 unsigned long info = rela->r_info;
597 assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
599 def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
600 if (__predict_false(def == NULL))
601 return -1;
602 if (__predict_false(def == &_rtld_sym_zero))
603 return 0;
605 if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
606 if (tp == NULL)
607 return 0;
608 value = _rtld_resolve_ifunc(defobj, def);
609 } else {
610 value = (Elf_Addr)(defobj->relocbase + def->st_value);
612 rdbg(("bind now/fixup in %s at %p --> new=%p",
613 defobj->strtab + def->st_name, (void*)where, (void *)value));
616 * At the PLT entry pointed at by `where', we now construct a direct
617 * transfer to the now fully resolved function address.
619 * A PLT entry is supposed to start by looking like this:
621 * sethi %hi(. - .PLT0), %g1
622 * ba,a %xcc, .PLT1
623 * nop
624 * nop
625 * nop
626 * nop
627 * nop
628 * nop
630 * When we replace these entries we start from the last instruction
631 * and do it in reverse order so the last thing we do is replace the
632 * branch. That allows us to change this atomically.
634 * We now need to find out how far we need to jump. We have a choice
635 * of several different relocation techniques which are increasingly
636 * expensive.
639 offset = ((Elf_Addr)where) - value;
640 if (rela->r_addend) {
641 Elf_Addr *ptr = (Elf_Addr *)where;
643 * This entry is >= 32768. The relocations points to a
644 * PC-relative pointer to the bind_0 stub at the top of the
645 * PLT section. Update it to point to the target function.
647 ptr[0] += value - (Elf_Addr)obj->pltgot;
649 } else if (offset <= (1L<<20) && (Elf_SOff)offset >= -(1L<<20)) {
651 * We're within 1MB -- we can use a direct branch insn.
653 * We can generate this pattern:
655 * sethi %hi(. - .PLT0), %g1
656 * ba,a %xcc, addr
657 * nop
658 * nop
659 * nop
660 * nop
661 * nop
662 * nop
665 where[1] = BAA | ((offset >> 2) & 0x3fffff);
666 __asm volatile("iflush %0+4" : : "r" (where));
667 } else if (value < (1L<<32)) {
669 * We're within 32-bits of address zero.
671 * The resulting code in the jump slot is:
673 * sethi %hi(. - .PLT0), %g1
674 * sethi %hi(addr), %g1
675 * jmp %g1+%lo(addr)
676 * nop
677 * nop
678 * nop
679 * nop
680 * nop
683 where[2] = JMP | LOVAL(value, 0);
684 where[1] = SETHI | HIVAL(value, 10);
685 __asm volatile("iflush %0+8" : : "r" (where));
686 __asm volatile("iflush %0+4" : : "r" (where));
688 } else if ((Elf_SOff)value <= 0 && (Elf_SOff)value > -(1L<<32)) {
690 * We're within 32-bits of address -1.
692 * The resulting code in the jump slot is:
694 * sethi %hi(. - .PLT0), %g1
695 * sethi %hix(addr), %g1
696 * xor %g1, %lox(addr), %g1
697 * jmp %g1
698 * nop
699 * nop
700 * nop
701 * nop
704 where[3] = JMP;
705 where[2] = XOR | (value & 0x00003ff) | 0x1c00;
706 where[1] = SETHI | HIVAL(~value, 10);
707 __asm volatile("iflush %0+12" : : "r" (where));
708 __asm volatile("iflush %0+8" : : "r" (where));
709 __asm volatile("iflush %0+4" : : "r" (where));
711 } else if (offset <= (1L<<32) && (Elf_SOff)offset >= -((1L<<32) - 4)) {
713 * We're within 32-bits -- we can use a direct call insn
715 * The resulting code in the jump slot is:
717 * sethi %hi(. - .PLT0), %g1
718 * mov %o7, %g1
719 * call (.+offset)
720 * mov %g1, %o7
721 * nop
722 * nop
723 * nop
724 * nop
727 where[3] = MOV17;
728 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
729 where[1] = MOV71;
730 __asm volatile("iflush %0+12" : : "r" (where));
731 __asm volatile("iflush %0+8" : : "r" (where));
732 __asm volatile("iflush %0+4" : : "r" (where));
734 } else if (offset < (1L<<44)) {
736 * We're within 44 bits. We can generate this pattern:
738 * The resulting code in the jump slot is:
740 * sethi %hi(. - .PLT0), %g1
741 * sethi %h44(addr), %g1
742 * or %g1, %m44(addr), %g1
743 * sllx %g1, 12, %g1
744 * jmp %g1+%l44(addr)
745 * nop
746 * nop
747 * nop
750 where[4] = JMP | LOVAL(offset, 0);
751 where[3] = SLLX | 12;
752 where[2] = OR | (((offset) >> 12) & 0x00001fff);
753 where[1] = SETHI | HIVAL(offset, 22);
754 __asm volatile("iflush %0+16" : : "r" (where));
755 __asm volatile("iflush %0+12" : : "r" (where));
756 __asm volatile("iflush %0+8" : : "r" (where));
757 __asm volatile("iflush %0+4" : : "r" (where));
759 } else if ((Elf_SOff)offset < 0 && (Elf_SOff)offset > -(1L<<44)) {
761 * We're within 44 bits. We can generate this pattern:
763 * The resulting code in the jump slot is:
765 * sethi %hi(. - .PLT0), %g1
766 * sethi %h44(-addr), %g1
767 * xor %g1, %m44(-addr), %g1
768 * sllx %g1, 12, %g1
769 * jmp %g1+%l44(addr)
770 * nop
771 * nop
772 * nop
775 where[4] = JMP | LOVAL(offset, 0);
776 where[3] = SLLX | 12;
777 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
778 where[1] = SETHI | HIVAL(~offset, 22);
779 __asm volatile("iflush %0+16" : : "r" (where));
780 __asm volatile("iflush %0+12" : : "r" (where));
781 __asm volatile("iflush %0+8" : : "r" (where));
782 __asm volatile("iflush %0+4" : : "r" (where));
784 } else {
786 * We need to load all 64-bits
788 * The resulting code in the jump slot is:
790 * sethi %hi(. - .PLT0), %g1
791 * sethi %hh(addr), %g1
792 * sethi %lm(addr), %g5
793 * or %g1, %hm(addr), %g1
794 * sllx %g1, 32, %g1
795 * or %g1, %g5, %g1
796 * jmp %g1+%lo(addr)
797 * nop
800 where[6] = JMP | LOVAL(value, 0);
801 where[5] = ORG5;
802 where[4] = SLLX | 32;
803 where[3] = OR | LOVAL(value, 32);
804 where[2] = SETHIG5 | HIVAL(value, 10);
805 where[1] = SETHI | HIVAL(value, 42);
806 __asm volatile("iflush %0+24" : : "r" (where));
807 __asm volatile("iflush %0+20" : : "r" (where));
808 __asm volatile("iflush %0+16" : : "r" (where));
809 __asm volatile("iflush %0+12" : : "r" (where));
810 __asm volatile("iflush %0+8" : : "r" (where));
811 __asm volatile("iflush %0+4" : : "r" (where));
815 if (tp)
816 *tp = value;
818 return 0;