1 /* $NetBSD: mdreloc.c,v 1.57 2014/08/25 20:40:53 joerg Exp $ */
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg and by Charles M. Hannum.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
33 #include <sys/cdefs.h>
35 __RCSID("$NetBSD: mdreloc.c,v 1.57 2014/08/25 20:40:53 joerg Exp $");
49 * The following table holds for each relocation type:
50 * - the width in bits of the memory location the relocation
51 * applies to (not currently used)
52 * - the number of bits the relocation value must be shifted to the
53 * right (i.e. discard least significant bits) to fit into
54 * the appropriate field in the instruction word.
55 * - flags indicating whether
56 * * the relocation involves a symbol
57 * * the relocation is relative to the current position
58 * * the relocation is for a GOT entry
59 * * the relocation is relative to the load address
62 #define _RF_S 0x80000000 /* Resolve symbol */
63 #define _RF_A 0x40000000 /* Use addend */
64 #define _RF_P 0x20000000 /* Location relative */
65 #define _RF_G 0x10000000 /* GOT offset */
66 #define _RF_B 0x08000000 /* Load address relative */
67 #define _RF_U 0x04000000 /* Unaligned */
68 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
69 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
70 static const int reloc_target_flags
[R_TYPE(TLS_TPOFF64
)+1] = {
72 _RF_S
|_RF_A
| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
73 _RF_S
|_RF_A
| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
74 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
75 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
76 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
77 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
78 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
79 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
80 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(10), /* HI22 */
81 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 22 */
82 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 13 */
83 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* LO10 */
84 _RF_G
| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
85 _RF_G
| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
86 _RF_G
| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
87 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(0), /* PC10 */
88 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(10), /* PC22 */
89 _RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
90 _RF_SZ(32) | _RF_RS(0), /* COPY */
91 _RF_S
|_RF_A
| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
92 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
93 _RF_A
| _RF_B
| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
94 _RF_S
|_RF_A
| _RF_U
| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
96 _RF_A
| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
97 _RF_A
| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
98 _RF_A
| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
99 _RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
100 _RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
101 _RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
102 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 10 */
103 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 11 */
104 _RF_S
|_RF_A
| _RF_SZ(64) | _RF_RS(0), /* 64 */
105 _RF_S
|_RF_A
|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
106 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(42), /* HH22 */
107 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(32), /* HM10 */
108 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(10), /* LM22 */
109 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
110 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
111 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
112 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
113 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
114 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
115 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 7 */
116 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 5 */
117 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* 6 */
118 _RF_S
|_RF_A
|_RF_P
| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
119 _RF_A
| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
120 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
121 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
122 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(22), /* H44 */
123 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(12), /* M44 */
124 _RF_S
|_RF_A
| _RF_SZ(32) | _RF_RS(0), /* L44 */
125 _RF_S
|_RF_A
| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
126 _RF_S
|_RF_A
| _RF_U
| _RF_SZ(64) | _RF_RS(0), /* UA64 */
127 _RF_S
|_RF_A
| _RF_U
| _RF_SZ(16) | _RF_RS(0), /* UA16 */
128 /* TLS relocs not represented here! */
131 #ifdef RTLD_DEBUG_RELOC
132 static const char *reloc_names
[] = {
133 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
134 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
135 "22", "13", "LO10", "GOT10", "GOT13",
136 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
137 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
138 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
139 "10", "11", "64", "OLO10", "HH22",
140 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
141 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
142 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
143 "L44", "REGISTER", "UA64", "UA16",
144 "TLS_GD_HI22", "TLS_GD_LO10", "TLS_GD_ADD", "TLS_GD_CALL",
145 "TLS_LDM_HI22", "TLS_LDM_LO10", "TLS_LDM_ADD", "TLS_LDM_CALL",
146 "TLS_LDO_HIX22", "TLS_LDO_LOX10", "TLS_LDO_ADD", "TLS_IE_HI22",
147 "TLS_IE_LO10", "TLS_IE_LD", "TLS_IE_LDX", "TLS_IE_ADD", "TLS_LE_HIX22",
148 "TLS_LE_LOX10", "TLS_DTPMOD32", "TLS_DTPMOD64", "TLS_DTPOFF32",
149 "TLS_DTPOFF64", "TLS_TPOFF32", "TLS_TPOFF64",
153 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
154 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
155 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
156 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
157 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
158 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
159 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
160 #define RELOC_TLS(t) (t >= R_TYPE(TLS_GD_HI22))
162 static const long reloc_target_bitmask
[] = {
163 #define _BM(x) (~(-(1ULL << (x))))
165 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
166 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
167 _BM(30), _BM(22), /* WDISP30, WDISP22 */
168 _BM(22), _BM(22), /* HI22, _22 */
169 _BM(13), _BM(10), /* RELOC_13, _LO10 */
170 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
171 _BM(10), _BM(22), /* _PC10, _PC22 */
172 _BM(30), 0, /* _WPLT30, _COPY */
173 -1, _BM(32), -1, /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
174 _BM(32), _BM(32), /* _UA32, PLT32 */
175 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
176 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
177 _BM(10), _BM(11), -1, /* _10, _11, _64 */
178 _BM(10), _BM(22), /* _OLO10, _HH22 */
179 _BM(10), _BM(22), /* _HM10, _LM22 */
180 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
181 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
183 _BM(7), _BM(5), _BM(6), /* _7, _5, _6 */
184 -1, -1, /* DISP64, PLT64 */
185 _BM(22), _BM(13), /* HIX22, LOX10 */
186 _BM(22), _BM(10), _BM(12), /* H44, M44, L44 */
187 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
190 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
193 * Instruction templates:
195 #define BAA 0x30680000 /* ba,a %xcc, 0 */
196 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
197 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
198 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
199 #define OR 0x82106000 /* or %g1, 0, %g1 */
200 #define XOR 0x82186000 /* xor %g1, 0, %g1 */
201 #define MOV71 0x8213e000 /* or %o7, 0, %g1 */
202 #define MOV17 0x9e106000 /* or %g1, 0, %o7 */
203 #define CALL 0x40000000 /* call 0 */
204 #define SLLX 0x83287000 /* sllx %g1, 0, %g1 */
205 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
206 #define ORG5 0x82104005 /* or %g1, %g5, %g1 */
209 /* %hi(v)/%lo(v) with variable shift */
210 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
211 #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff)
213 void _rtld_bind_start_0(long, long);
214 void _rtld_bind_start_1(long, long);
215 void _rtld_relocate_nonplt_self(Elf_Dyn
*, Elf_Addr
);
216 caddr_t
_rtld_bind(const Obj_Entry
*, Elf_Word
);
219 * Install rtld function call into this PLT slot.
221 #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */
222 #define SETHI_l0 0x21000000
223 #define SETHI_l1 0x23000000
224 #define OR_l0_l0 0xa0142000
225 #define SLLX_l0_32_l0 0xa12c3020
226 #define OR_l0_l1_l0 0xa0140011
227 #define JMPL_l0_o0 0x91c42000
228 #define MOV_g1_o1 0x92100001
230 void _rtld_install_plt(Elf_Word
*, Elf_Addr
);
231 static inline int _rtld_relocate_plt_object(const Obj_Entry
*,
232 const Elf_Rela
*, Elf_Addr
*);
235 _rtld_install_plt(Elf_Word
*pltgot
, Elf_Addr proc
)
238 pltgot
[1] = SETHI_l0
| HIVAL(proc
, 42);
239 pltgot
[2] = SETHI_l1
| HIVAL(proc
, 10);
240 pltgot
[3] = OR_l0_l0
| LOVAL(proc
, 32);
241 pltgot
[4] = SLLX_l0_32_l0
;
242 pltgot
[5] = OR_l0_l1_l0
;
243 pltgot
[6] = JMPL_l0_o0
| LOVAL(proc
, 0);
244 pltgot
[7] = MOV_g1_o1
;
248 _rtld_setup_pltgot(const Obj_Entry
*obj
)
251 * On sparc64 we got troubles.
253 * Instructions are 4 bytes long.
254 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
256 * Each PLT entry jumps to PLT0 to enter the dynamic
258 * Loading an arbitrary 64-bit pointer takes 6
259 * instructions and 2 registers.
261 * Somehow we need to issue a save to get a new stack
262 * frame, load the address of the dynamic linker, and
263 * jump there, in 8 instructions or less.
265 * Oh, we need to fill out both PLT0 and PLT1.
268 Elf_Word
*entry
= (Elf_Word
*)obj
->pltgot
;
270 /* Install in entries 0 and 1 */
271 _rtld_install_plt(&entry
[0], (Elf_Addr
) &_rtld_bind_start_0
);
272 _rtld_install_plt(&entry
[8], (Elf_Addr
) &_rtld_bind_start_1
);
275 * Install the object reference in first slot
278 obj
->pltgot
[8] = (Elf_Addr
) obj
;
283 _rtld_relocate_nonplt_self(Elf_Dyn
*dynp
, Elf_Addr relocbase
)
285 const Elf_Rela
*rela
= 0, *relalim
;
289 for (; dynp
->d_tag
!= DT_NULL
; dynp
++) {
290 switch (dynp
->d_tag
) {
292 rela
= (const Elf_Rela
*)(relocbase
+ dynp
->d_un
.d_ptr
);
295 relasz
= dynp
->d_un
.d_val
;
299 relalim
= (const Elf_Rela
*)((const uint8_t *)rela
+ relasz
);
300 for (; rela
< relalim
; rela
++) {
301 where
= (Elf_Addr
*)(relocbase
+ rela
->r_offset
);
302 *where
= (Elf_Addr
)(relocbase
+ rela
->r_addend
);
307 _rtld_relocate_nonplt_objects(Obj_Entry
*obj
)
309 const Elf_Rela
*rela
;
310 const Elf_Sym
*def
= NULL
;
311 const Obj_Entry
*defobj
= NULL
;
313 for (rela
= obj
->rela
; rela
< obj
->relalim
; rela
++) {
316 Elf_Addr value
= 0, mask
;
317 unsigned long symnum
;
319 where
= (Elf_Addr
*) (obj
->relocbase
+ rela
->r_offset
);
320 symnum
= ELF_R_SYM(rela
->r_info
);
322 type
= ELF_R_TYPE(rela
->r_info
);
323 if (type
== R_TYPE(NONE
))
326 /* OLO10 relocations have extra info */
327 if ((type
& 0x00ff) == R_SPARC_OLO10
)
328 type
= R_SPARC_OLO10
;
330 /* We do JMP_SLOTs in _rtld_bind() below */
331 if (type
== R_TYPE(JMP_SLOT
))
334 /* COPY relocs are also handled elsewhere */
335 if (type
== R_TYPE(COPY
))
339 * We use the fact that relocation types are an `enum'
340 * Note: R_SPARC_TLS_TPOFF64 is currently numerically largest.
342 if (type
> R_TYPE(TLS_TPOFF64
)) {
343 dbg(("unknown relocation type %x at %p", type
, rela
));
347 value
= rela
->r_addend
;
350 * Handle TLS relocations here, they are different.
352 if (RELOC_TLS(type
)) {
354 case R_TYPE(TLS_DTPMOD64
):
355 def
= _rtld_find_symdef(symnum
, obj
,
360 *where
= (Elf64_Addr
)defobj
->tlsindex
;
362 rdbg(("TLS_DTPMOD64 %s in %s --> %p",
364 obj
->symtab
[symnum
].st_name
,
365 obj
->path
, (void *)*where
));
369 case R_TYPE(TLS_DTPOFF64
):
370 def
= _rtld_find_symdef(symnum
, obj
,
375 *where
= (Elf64_Addr
)(def
->st_value
378 rdbg(("DTPOFF64 %s in %s --> %p",
380 obj
->symtab
[symnum
].st_name
,
381 obj
->path
, (void *)*where
));
385 case R_TYPE(TLS_TPOFF64
):
386 def
= _rtld_find_symdef(symnum
, obj
,
391 if (!defobj
->tls_done
&&
392 _rtld_tls_offset_allocate(obj
))
395 *where
= (Elf64_Addr
)(def
->st_value
-
399 rdbg(("TLS_TPOFF64 %s in %s --> %p",
401 obj
->symtab
[symnum
].st_name
,
402 obj
->path
, (void *)*where
));
410 * Handle relative relocs here, as an optimization.
412 if (type
== R_TYPE(RELATIVE
)) {
413 *where
= (Elf_Addr
)(obj
->relocbase
+ value
);
414 rdbg(("RELATIVE in %s --> %p", obj
->path
,
419 if (RELOC_RESOLVE_SYMBOL(type
)) {
421 /* Find the symbol */
422 def
= _rtld_find_symdef(symnum
, obj
, &defobj
,
427 /* Add in the symbol's absolute address */
428 value
+= (Elf_Addr
)(defobj
->relocbase
+ def
->st_value
);
431 if (type
== R_SPARC_OLO10
) {
432 value
= (value
& 0x3ff)
433 + (((Elf64_Xword
)rela
->r_info
<<32)>>40);
436 if (RELOC_PC_RELATIVE(type
)) {
437 value
-= (Elf_Addr
)where
;
440 if (RELOC_BASE_RELATIVE(type
)) {
442 * Note that even though sparcs use `Elf_rela'
443 * exclusively we still need the implicit memory addend
444 * in relocations referring to GOT entries.
445 * Undoubtedly, someone f*cked this up in the distant
446 * past, and now we're stuck with it in the name of
447 * compatibility for all eternity..
449 * In any case, the implicit and explicit should be
450 * mutually exclusive. We provide a check for that
454 if (value
!= 0 && *where
!= 0) {
455 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
456 "addend=0x%lx, base %p\n",
457 obj
->path
, where
, *where
,
458 rela
->r_addend
, obj
->relocbase
);
461 /* XXXX -- apparently we ignore the preexisting value */
462 value
+= (Elf_Addr
)(obj
->relocbase
);
465 mask
= RELOC_VALUE_BITMASK(type
);
466 value
>>= RELOC_VALUE_RIGHTSHIFT(type
);
469 if (RELOC_UNALIGNED(type
)) {
470 /* Handle unaligned relocations. */
472 char *ptr
= (char *)where
;
473 int i
, size
= RELOC_TARGET_SIZE(type
)/8;
475 /* Read it in one byte at a time. */
476 for (i
=0; i
<size
; i
++)
477 tmp
= (tmp
<< 8) | ptr
[i
];
482 /* Write it back out. */
483 for (i
=0; i
<size
; i
++)
484 ptr
[i
] = ((tmp
>> (8*i
)) & 0xff);
485 #ifdef RTLD_DEBUG_RELOC
486 value
= (Elf_Addr
)tmp
;
489 } else if (RELOC_TARGET_SIZE(type
) > 32) {
492 #ifdef RTLD_DEBUG_RELOC
493 value
= (Elf_Addr
)*where
;
496 Elf32_Addr
*where32
= (Elf32_Addr
*)where
;
500 #ifdef RTLD_DEBUG_RELOC
501 value
= (Elf_Addr
)*where32
;
505 #ifdef RTLD_DEBUG_RELOC
506 if (RELOC_RESOLVE_SYMBOL(type
)) {
507 rdbg(("%s %s in %s --> %p in %s", reloc_names
[type
],
508 obj
->strtab
+ obj
->symtab
[symnum
].st_name
,
509 obj
->path
, (void *)value
, defobj
->path
));
511 rdbg(("%s in %s --> %p", reloc_names
[type
],
512 obj
->path
, (void *)value
));
520 _rtld_relocate_plt_lazy(const Obj_Entry
*obj
)
526 _rtld_bind(const Obj_Entry
*obj
, Elf_Word reloff
)
528 const Elf_Rela
*rela
= obj
->pltrela
+ reloff
;
532 result
= 0; /* XXX gcc */
534 if (ELF_R_TYPE(obj
->pltrela
->r_info
) == R_TYPE(JMP_SLOT
)) {
538 * The first four PLT entries are reserved. There is some
539 * disagreement whether they should have associated relocation
540 * entries. Both the SPARC 32-bit and 64-bit ELF
541 * specifications say that they should have relocation entries,
542 * but the 32-bit SPARC binutils do not generate them, and now
543 * the 64-bit SPARC binutils have stopped generating them too.
545 * So, to provide binary compatibility, we will check the first
546 * entry, if it is reserved it should not be of the type
547 * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries
548 * were not generated and our index is 4 entries too far.
553 _rtld_shared_enter();
554 err
= _rtld_relocate_plt_object(obj
, rela
, &result
);
559 return (caddr_t
)result
;
563 _rtld_relocate_plt_objects(const Obj_Entry
*obj
)
565 const Elf_Rela
*rela
;
570 * Check for first four reserved entries - and skip them.
571 * See above for details.
573 if (ELF_R_TYPE(obj
->pltrela
->r_info
) != R_TYPE(JMP_SLOT
))
576 for (; rela
< obj
->pltrelalim
; rela
++)
577 if (_rtld_relocate_plt_object(obj
, rela
, NULL
) < 0)
584 * New inline function that is called by _rtld_relocate_plt_object and
588 _rtld_relocate_plt_object(const Obj_Entry
*obj
, const Elf_Rela
*rela
,
591 Elf_Word
*where
= (Elf_Word
*)(obj
->relocbase
+ rela
->r_offset
);
593 const Obj_Entry
*defobj
;
594 Elf_Addr value
, offset
;
595 unsigned long info
= rela
->r_info
;
597 assert(ELF_R_TYPE(info
) == R_TYPE(JMP_SLOT
));
599 def
= _rtld_find_plt_symdef(ELF_R_SYM(info
), obj
, &defobj
, tp
!= NULL
);
600 if (__predict_false(def
== NULL
))
602 if (__predict_false(def
== &_rtld_sym_zero
))
605 if (ELF_ST_TYPE(def
->st_info
) == STT_GNU_IFUNC
) {
608 value
= _rtld_resolve_ifunc(defobj
, def
);
610 value
= (Elf_Addr
)(defobj
->relocbase
+ def
->st_value
);
612 rdbg(("bind now/fixup in %s at %p --> new=%p",
613 defobj
->strtab
+ def
->st_name
, (void*)where
, (void *)value
));
616 * At the PLT entry pointed at by `where', we now construct a direct
617 * transfer to the now fully resolved function address.
619 * A PLT entry is supposed to start by looking like this:
621 * sethi %hi(. - .PLT0), %g1
630 * When we replace these entries we start from the last instruction
631 * and do it in reverse order so the last thing we do is replace the
632 * branch. That allows us to change this atomically.
634 * We now need to find out how far we need to jump. We have a choice
635 * of several different relocation techniques which are increasingly
639 offset
= ((Elf_Addr
)where
) - value
;
640 if (rela
->r_addend
) {
641 Elf_Addr
*ptr
= (Elf_Addr
*)where
;
643 * This entry is >= 32768. The relocations points to a
644 * PC-relative pointer to the bind_0 stub at the top of the
645 * PLT section. Update it to point to the target function.
647 ptr
[0] += value
- (Elf_Addr
)obj
->pltgot
;
649 } else if (offset
<= (1L<<20) && (Elf_SOff
)offset
>= -(1L<<20)) {
651 * We're within 1MB -- we can use a direct branch insn.
653 * We can generate this pattern:
655 * sethi %hi(. - .PLT0), %g1
665 where
[1] = BAA
| ((offset
>> 2) & 0x3fffff);
666 __asm
volatile("iflush %0+4" : : "r" (where
));
667 } else if (value
< (1L<<32)) {
669 * We're within 32-bits of address zero.
671 * The resulting code in the jump slot is:
673 * sethi %hi(. - .PLT0), %g1
674 * sethi %hi(addr), %g1
683 where
[2] = JMP
| LOVAL(value
, 0);
684 where
[1] = SETHI
| HIVAL(value
, 10);
685 __asm
volatile("iflush %0+8" : : "r" (where
));
686 __asm
volatile("iflush %0+4" : : "r" (where
));
688 } else if ((Elf_SOff
)value
<= 0 && (Elf_SOff
)value
> -(1L<<32)) {
690 * We're within 32-bits of address -1.
692 * The resulting code in the jump slot is:
694 * sethi %hi(. - .PLT0), %g1
695 * sethi %hix(addr), %g1
696 * xor %g1, %lox(addr), %g1
705 where
[2] = XOR
| (value
& 0x00003ff) | 0x1c00;
706 where
[1] = SETHI
| HIVAL(~value
, 10);
707 __asm
volatile("iflush %0+12" : : "r" (where
));
708 __asm
volatile("iflush %0+8" : : "r" (where
));
709 __asm
volatile("iflush %0+4" : : "r" (where
));
711 } else if (offset
<= (1L<<32) && (Elf_SOff
)offset
>= -((1L<<32) - 4)) {
713 * We're within 32-bits -- we can use a direct call insn
715 * The resulting code in the jump slot is:
717 * sethi %hi(. - .PLT0), %g1
728 where
[2] = CALL
| ((offset
>> 4) & 0x3fffffff);
730 __asm
volatile("iflush %0+12" : : "r" (where
));
731 __asm
volatile("iflush %0+8" : : "r" (where
));
732 __asm
volatile("iflush %0+4" : : "r" (where
));
734 } else if (offset
< (1L<<44)) {
736 * We're within 44 bits. We can generate this pattern:
738 * The resulting code in the jump slot is:
740 * sethi %hi(. - .PLT0), %g1
741 * sethi %h44(addr), %g1
742 * or %g1, %m44(addr), %g1
750 where
[4] = JMP
| LOVAL(offset
, 0);
751 where
[3] = SLLX
| 12;
752 where
[2] = OR
| (((offset
) >> 12) & 0x00001fff);
753 where
[1] = SETHI
| HIVAL(offset
, 22);
754 __asm
volatile("iflush %0+16" : : "r" (where
));
755 __asm
volatile("iflush %0+12" : : "r" (where
));
756 __asm
volatile("iflush %0+8" : : "r" (where
));
757 __asm
volatile("iflush %0+4" : : "r" (where
));
759 } else if ((Elf_SOff
)offset
< 0 && (Elf_SOff
)offset
> -(1L<<44)) {
761 * We're within 44 bits. We can generate this pattern:
763 * The resulting code in the jump slot is:
765 * sethi %hi(. - .PLT0), %g1
766 * sethi %h44(-addr), %g1
767 * xor %g1, %m44(-addr), %g1
775 where
[4] = JMP
| LOVAL(offset
, 0);
776 where
[3] = SLLX
| 12;
777 where
[2] = XOR
| (((~offset
) >> 12) & 0x00001fff);
778 where
[1] = SETHI
| HIVAL(~offset
, 22);
779 __asm
volatile("iflush %0+16" : : "r" (where
));
780 __asm
volatile("iflush %0+12" : : "r" (where
));
781 __asm
volatile("iflush %0+8" : : "r" (where
));
782 __asm
volatile("iflush %0+4" : : "r" (where
));
786 * We need to load all 64-bits
788 * The resulting code in the jump slot is:
790 * sethi %hi(. - .PLT0), %g1
791 * sethi %hh(addr), %g1
792 * sethi %lm(addr), %g5
793 * or %g1, %hm(addr), %g1
800 where
[6] = JMP
| LOVAL(value
, 0);
802 where
[4] = SLLX
| 32;
803 where
[3] = OR
| LOVAL(value
, 32);
804 where
[2] = SETHIG5
| HIVAL(value
, 10);
805 where
[1] = SETHI
| HIVAL(value
, 42);
806 __asm
volatile("iflush %0+24" : : "r" (where
));
807 __asm
volatile("iflush %0+20" : : "r" (where
));
808 __asm
volatile("iflush %0+16" : : "r" (where
));
809 __asm
volatile("iflush %0+12" : : "r" (where
));
810 __asm
volatile("iflush %0+8" : : "r" (where
));
811 __asm
volatile("iflush %0+4" : : "r" (where
));