Remove building with NOCRYPTO option
[minix.git] / sys / arch / arm / include / arm32 / pte.h
bloba0c3de40159fc1e55fe3a33e0039e3d205070598
1 /* $NetBSD: pte.h,v 1.19 2014/10/29 10:59:48 skrll Exp $ */
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
38 #ifndef _ARM_PTE_H_
39 #define _ARM_PTE_H_
42 * The ARM MMU architecture was introduced with ARM v3 (previous ARM
43 * architecture versions used an optional off-CPU memory controller
44 * to perform address translation).
46 * The ARM MMU consists of a TLB and translation table walking logic.
47 * There is typically one TLB per memory interface (or, put another
48 * way, one TLB per software-visible cache).
50 * The ARM MMU is capable of mapping memory in the following chunks:
52 * 16M SuperSections (L1 table, ARMv6+)
54 * 1M Sections (L1 table)
56 * 64K Large Pages (L2 table)
58 * 4K Small Pages (L2 table)
60 * 1K Tiny Pages (L2 table)
62 * There are two types of L2 tables: Coarse Tables and Fine Tables (not
63 * available on ARMv6+). Coarse Tables can map Large and Small Pages.
64 * Fine Tables can map Tiny Pages.
66 * Coarse Tables can define 4 Subpages within Large and Small pages.
67 * Subpages define different permissions for each Subpage within
68 * a Page. ARMv6 format Coarse Tables have no subpages.
70 * Coarse Tables are 1K in length. Fine tables are 4K in length.
72 * The Translation Table Base register holds the pointer to the
73 * L1 Table. The L1 Table is a 16K contiguous chunk of memory
74 * aligned to a 16K boundary. Each entry in the L1 Table maps
75 * 1M of virtual address space, either via a Section mapping or
76 * via an L2 Table.
78 * ARMv6+ has a second TTBR register which can be used if any of the
79 * upper address bits are non-zero (think kernel). For NetBSD, this
80 * would be 1 upper bit splitting user/kernel in a 2GB/2GB split.
81 * This would also reduce the size of the L1 Table to 8K.
83 * In addition, the Fast Context Switching Extension (FCSE) is available
84 * on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating
85 * TLB/cache flushes on context switch by use of a smaller address space
86 * and a "process ID" that modifies the virtual address before being
87 * presented to the translation logic.
90 #ifndef _LOCORE
91 typedef uint32_t pd_entry_t; /* L1 table entry */
92 typedef uint32_t pt_entry_t; /* L2 table entry */
93 #endif /* _LOCORE */
95 #define L1_SS_SIZE 0x01000000 /* 16M */
96 #define L1_SS_OFFSET (L1_SS_SIZE - 1)
97 #define L1_SS_FRAME (~L1_SS_OFFSET)
98 #define L1_SS_SHIFT 24
100 #define L1_S_SIZE 0x00100000 /* 1M */
101 #define L1_S_OFFSET (L1_S_SIZE - 1)
102 #define L1_S_FRAME (~L1_S_OFFSET)
103 #define L1_S_SHIFT 20
105 #define L2_L_SIZE 0x00010000 /* 64K */
106 #define L2_L_OFFSET (L2_L_SIZE - 1)
107 #define L2_L_FRAME (~L2_L_OFFSET)
108 #define L2_L_SHIFT 16
110 #define L2_S_SEGSIZE (PAGE_SIZE * L2_S_SIZE / 4)
111 #define L2_S_SIZE 0x00001000 /* 4K */
112 #define L2_S_OFFSET (L2_S_SIZE - 1)
113 #define L2_S_FRAME (~L2_S_OFFSET)
114 #define L2_S_SHIFT 12
116 #define L2_T_SIZE 0x00000400 /* 1K */
117 #define L2_T_OFFSET (L2_T_SIZE - 1)
118 #define L2_T_FRAME (~L2_T_OFFSET)
119 #define L2_T_SHIFT 10
122 * The NetBSD VM implementation only works on whole pages (4K),
123 * whereas the ARM MMU's Coarse tables are sized in terms of 1K
124 * (16K L1 table, 1K L2 table).
126 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
127 * table.
129 #define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */
130 #define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */
132 #define L1_TABLE_SIZE 0x4000 /* 16K */
133 #define L2_TABLE_SIZE 0x1000 /* 4K */
135 * The new pmap deals with the 1KB coarse L2 tables by
136 * allocating them from a pool. Until every port has been converted,
137 * keep the old L2_TABLE_SIZE define lying around. Converted ports
138 * should use L2_TABLE_SIZE_REAL until then.
140 #define L1_TABLE_SIZE_REAL 0x4000 /* 16K */
141 #define L2_TABLE_SIZE_REAL 0x400 /* 1K */
144 * ARM L1 Descriptors
147 #define L1_TYPE_INV 0x00 /* Invalid (fault) */
148 #define L1_TYPE_C 0x01 /* Coarse L2 */
149 #define L1_TYPE_S 0x02 /* Section */
150 #define L1_TYPE_F 0x03 /* Fine L2 */
151 #define L1_TYPE_MASK 0x03 /* mask of type bits */
153 /* L1 Section Descriptor */
154 #define L1_S_B 0x00000004 /* bufferable Section */
155 #define L1_S_C 0x00000008 /* cacheable Section */
156 #define L1_S_IMP 0x00000010 /* implementation defined */
157 #define L1_S_DOM(x) ((x) << 5) /* domain */
158 #define L1_S_DOM_MASK L1_S_DOM(0xf)
159 #define L1_S_AP(x) ((x) << 10) /* access permissions */
160 #define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */
162 #define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */
163 #define L1_S_XS_TEX(x) ((x) << 12) /* Type Extension */
164 #define L1_S_V6_TEX(x) L1_S_XS_TEX(x)
165 #define L1_S_V6_P 0x00000200 /* ECC enable for this section */
166 #define L1_S_V6_SUPER 0x00040000 /* ARMv6 SuperSection (16MB) bit */
167 #define L1_S_V6_XN L1_S_IMP /* ARMv6 eXecute Never */
168 #define L1_S_V6_APX 0x00008000 /* ARMv6 AP eXtension */
169 #define L1_S_V6_S 0x00010000 /* ARMv6 Shared */
170 #define L1_S_V6_nG 0x00020000 /* ARMv6 not-Global */
171 #define L1_S_V6_SS 0x00040000 /* ARMv6 SuperSection */
172 #define L1_S_V6_NS 0x00080000 /* ARMv6 Not Secure */
174 /* L1 Coarse Descriptor */
175 #define L1_C_IMP0 0x00000004 /* implementation defined */
176 #define L1_C_IMP1 0x00000008 /* implementation defined */
177 #define L1_C_IMP2 0x00000010 /* implementation defined */
178 #define L1_C_DOM(x) ((x) << 5) /* domain */
179 #define L1_C_DOM_MASK L1_C_DOM(0xf)
180 #define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */
182 #define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */
183 #define L1_C_V6_P 0x00000200 /* ECC enable for this section */
185 /* L1 Fine Descriptor */
186 #define L1_F_IMP0 0x00000004 /* implementation defined */
187 #define L1_F_IMP1 0x00000008 /* implementation defined */
188 #define L1_F_IMP2 0x00000010 /* implementation defined */
189 #define L1_F_DOM(x) ((x) << 5) /* domain */
190 #define L1_F_DOM_MASK L1_F_DOM(0xf)
191 #define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */
193 #define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */
196 * ARM L2 Descriptors
199 #define L2_TYPE_INV 0x00 /* Invalid (fault) */
200 #define L2_TYPE_L 0x01 /* Large Page */
201 #define L2_TYPE_S 0x02 /* Small Page */
202 #define L2_TYPE_T 0x03 /* Tiny Page (not armv7) */
203 #define L2_TYPE_MASK 0x03 /* mask of type bits */
206 * This L2 Descriptor type is available on XScale processors
207 * when using a Coarse L1 Descriptor. The Extended Small
208 * Descriptor has the same format as the XScale Tiny Descriptor,
209 * but describes a 4K page, rather than a 1K page.
210 * For V6 MMU, this is used when XP bit is cleared.
212 #define L2_TYPE_XS 0x03 /* XScale/ARMv6 Extended Small Page */
214 #define L2_B 0x00000004 /* Bufferable page */
215 #define L2_C 0x00000008 /* Cacheable page */
216 #define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */
217 #define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */
218 #define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */
219 #define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */
220 #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
222 #define L2_XS_L_TEX(x) ((x) << 12) /* Type Extension */
223 #define L2_XS_T_TEX(x) ((x) << 6) /* Type Extension */
224 #define L2_XS_XN 0x00000001 /* ARMv6 eXecute Never (when XP=1) */
225 #define L2_XS_APX 0x00000200 /* ARMv6 AP eXtension */
226 #define L2_XS_S 0x00000400 /* ARMv6 Shared */
227 #define L2_XS_nG 0x00000800 /* ARMv6 Not-Global */
228 #define L2_V6_L_TEX L2_XS_L_TEX
229 #define L2_V6_XS_TEX L2_XS_T_TEX
230 #define L2_XS_L_XN 0x00008000 /* ARMv6 eXecute Never */
234 * Access Permissions for L1 and L2 Descriptors.
236 #define AP_W 0x01 /* writable */
237 #define AP_U 0x02 /* user */
240 * Access Permissions for L1 and L2 of ARMv6 with XP=1 and ARMv7
242 #define AP_R 0x01 /* readable */
243 #define AP_RO 0x20 /* read-only (L2_XS_APX >> 4) */
246 * Short-hand for common AP_* constants.
248 * Note: These values assume the S (System) bit is set and
249 * the R (ROM) bit is clear in CP15 register 1.
251 #define AP_KR 0x00 /* kernel read */
252 #define AP_KRW 0x01 /* kernel read/write */
253 #define AP_KRWUR 0x02 /* kernel read/write user read */
254 #define AP_KRWURW 0x03 /* kernel read/write user read/write */
257 * Note: These values assume the S (System) and the R (ROM) bits are clear and
258 * the XP (eXtended page table) bit is set in CP15 register 1. ARMv6 only.
260 #define APX_KR(APX) (APX|0x01) /* kernel read */
261 #define APX_KRUR(APX) (APX|0x02) /* kernel read user read */
262 #define APX_KRW(APX) ( 0x01) /* kernel read/write */
263 #define APX_KRWUR(APX) ( 0x02) /* kernel read/write user read */
264 #define APX_KRWURW(APX) ( 0x03) /* kernel read/write user read/write */
267 * Note: These values are for the simplified access permissions model
268 * of ARMv7. Assumes that AFE is clear in CP15 register 1.
269 * Also used for ARMv6 with XP bit set.
271 #define AP7_KR 0x21 /* kernel read */
272 #define AP7_KRUR 0x23 /* kernel read user read */
273 #define AP7_KRW 0x01 /* kernel read/write */
274 #define AP7_KRWURW 0x03 /* kernel read/write user read/write */
277 * Domain Types for the Domain Access Control Register.
279 #define DOMAIN_FAULT 0x00 /* no access */
280 #define DOMAIN_CLIENT 0x01 /* client */
281 #define DOMAIN_RESERVED 0x02 /* reserved */
282 #define DOMAIN_MANAGER 0x03 /* manager */
285 * Type Extension bits for XScale processors.
287 * Behavior of C and B when X == 0:
289 * C B Cacheable Bufferable Write Policy Line Allocate Policy
290 * 0 0 N N - -
291 * 0 1 N Y - -
292 * 1 0 Y Y Write-through Read Allocate
293 * 1 1 Y Y Write-back Read Allocate
295 * Behavior of C and B when X == 1:
296 * C B Cacheable Bufferable Write Policy Line Allocate Policy
297 * 0 0 - - - - DO NOT USE
298 * 0 1 N Y - -
299 * 1 0 Mini-Data - - -
300 * 1 1 Y Y Write-back R/W Allocate
302 #define TEX_XSCALE_X 0x01 /* X modifies C and B */
305 * Type Extension bits for ARM V6 and V7 MMU
307 * TEX C B Shared
308 * 000 0 0 Strong order yes
309 * 000 0 1 Shared device yes
310 * 000 1 0 Outer and Inner write through, no write alloc S-bit
311 * 000 1 1 Outer and Inner write back, no write alloc S-bit
312 * 001 0 0 Outer and Inner non-cacheable S-bit
313 * 001 0 1 reserved
314 * 001 1 0 reserved
315 * 001 1 1 Outer and Inner write back, write alloc S-bit
316 * 010 0 0 Non-shared device no
317 * 010 0 1 reserved
318 * 010 1 X reserved
319 * 011 X X reserved
320 * 1BB A A BB for inner, AA for outer S-bit
322 * BB inner cache
323 * 0 0 Non-cacheable
324 * 0 1 Write back, write alloc
325 * 1 0 Write through, no write alloc
326 * 1 1 Write back, no write alloc
328 * AA outer cache
329 * 0 0 Non-cacheable
330 * 0 1 Write back, write alloc
331 * 1 0 Write through, no write alloc
332 * 1 1 Write back, no write alloc
335 #define TEX_ARMV6_TEX 0x07 /* 3 bits in TEX */
337 #endif /* _ARM_PTE_H_ */