Remove building with NOCRYPTO option
[minix.git] / sys / external / bsd / compiler_rt / dist / lib / builtins / comparesf2.c
blob442289c1004ef697533f7dd40da247fb8f19dfe0
1 //===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the following soft-fp_t comparison routines:
12 // __eqsf2 __gesf2 __unordsf2
13 // __lesf2 __gtsf2
14 // __ltsf2
15 // __nesf2
17 // The semantics of the routines grouped in each column are identical, so there
18 // is a single implementation for each, and wrappers to provide the other names.
20 // The main routines behave as follows:
22 // __lesf2(a,b) returns -1 if a < b
23 // 0 if a == b
24 // 1 if a > b
25 // 1 if either a or b is NaN
27 // __gesf2(a,b) returns -1 if a < b
28 // 0 if a == b
29 // 1 if a > b
30 // -1 if either a or b is NaN
32 // __unordsf2(a,b) returns 0 if both a and b are numbers
33 // 1 if either a or b is NaN
35 // Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
36 // NaN values.
38 //===----------------------------------------------------------------------===//
40 #define SINGLE_PRECISION
41 #include "fp_lib.h"
43 enum LE_RESULT {
44 LE_LESS = -1,
45 LE_EQUAL = 0,
46 LE_GREATER = 1,
47 LE_UNORDERED = 1
50 COMPILER_RT_ABI enum LE_RESULT
51 __lesf2(fp_t a, fp_t b) {
53 const srep_t aInt = toRep(a);
54 const srep_t bInt = toRep(b);
55 const rep_t aAbs = aInt & absMask;
56 const rep_t bAbs = bInt & absMask;
58 // If either a or b is NaN, they are unordered.
59 if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
61 // If a and b are both zeros, they are equal.
62 if ((aAbs | bAbs) == 0) return LE_EQUAL;
64 // If at least one of a and b is positive, we get the same result comparing
65 // a and b as signed integers as we would with a fp_ting-point compare.
66 if ((aInt & bInt) >= 0) {
67 if (aInt < bInt) return LE_LESS;
68 else if (aInt == bInt) return LE_EQUAL;
69 else return LE_GREATER;
72 // Otherwise, both are negative, so we need to flip the sense of the
73 // comparison to get the correct result. (This assumes a twos- or ones-
74 // complement integer representation; if integers are represented in a
75 // sign-magnitude representation, then this flip is incorrect).
76 else {
77 if (aInt > bInt) return LE_LESS;
78 else if (aInt == bInt) return LE_EQUAL;
79 else return LE_GREATER;
83 enum GE_RESULT {
84 GE_LESS = -1,
85 GE_EQUAL = 0,
86 GE_GREATER = 1,
87 GE_UNORDERED = -1 // Note: different from LE_UNORDERED
90 COMPILER_RT_ABI enum GE_RESULT
91 __gesf2(fp_t a, fp_t b) {
93 const srep_t aInt = toRep(a);
94 const srep_t bInt = toRep(b);
95 const rep_t aAbs = aInt & absMask;
96 const rep_t bAbs = bInt & absMask;
98 if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
99 if ((aAbs | bAbs) == 0) return GE_EQUAL;
100 if ((aInt & bInt) >= 0) {
101 if (aInt < bInt) return GE_LESS;
102 else if (aInt == bInt) return GE_EQUAL;
103 else return GE_GREATER;
104 } else {
105 if (aInt > bInt) return GE_LESS;
106 else if (aInt == bInt) return GE_EQUAL;
107 else return GE_GREATER;
111 ARM_EABI_FNALIAS(fcmpun, unordsf2)
113 COMPILER_RT_ABI int
114 __unordsf2(fp_t a, fp_t b) {
115 const rep_t aAbs = toRep(a) & absMask;
116 const rep_t bAbs = toRep(b) & absMask;
117 return aAbs > infRep || bAbs > infRep;
120 // The following are alternative names for the preceding routines.
122 COMPILER_RT_ABI enum LE_RESULT
123 __eqsf2(fp_t a, fp_t b) {
124 return __lesf2(a, b);
127 COMPILER_RT_ABI enum LE_RESULT
128 __ltsf2(fp_t a, fp_t b) {
129 return __lesf2(a, b);
132 COMPILER_RT_ABI enum LE_RESULT
133 __nesf2(fp_t a, fp_t b) {
134 return __lesf2(a, b);
137 COMPILER_RT_ABI enum GE_RESULT
138 __gtsf2(fp_t a, fp_t b) {
139 return __gesf2(a, b);