1 //===-- lib/comparesf2.c - Single-precision comparisons -----------*- C -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the following soft-fp_t comparison routines:
12 // __eqsf2 __gesf2 __unordsf2
17 // The semantics of the routines grouped in each column are identical, so there
18 // is a single implementation for each, and wrappers to provide the other names.
20 // The main routines behave as follows:
22 // __lesf2(a,b) returns -1 if a < b
25 // 1 if either a or b is NaN
27 // __gesf2(a,b) returns -1 if a < b
30 // -1 if either a or b is NaN
32 // __unordsf2(a,b) returns 0 if both a and b are numbers
33 // 1 if either a or b is NaN
35 // Note that __lesf2( ) and __gesf2( ) are identical except in their handling of
38 //===----------------------------------------------------------------------===//
40 #define SINGLE_PRECISION
50 COMPILER_RT_ABI
enum LE_RESULT
51 __lesf2(fp_t a
, fp_t b
) {
53 const srep_t aInt
= toRep(a
);
54 const srep_t bInt
= toRep(b
);
55 const rep_t aAbs
= aInt
& absMask
;
56 const rep_t bAbs
= bInt
& absMask
;
58 // If either a or b is NaN, they are unordered.
59 if (aAbs
> infRep
|| bAbs
> infRep
) return LE_UNORDERED
;
61 // If a and b are both zeros, they are equal.
62 if ((aAbs
| bAbs
) == 0) return LE_EQUAL
;
64 // If at least one of a and b is positive, we get the same result comparing
65 // a and b as signed integers as we would with a fp_ting-point compare.
66 if ((aInt
& bInt
) >= 0) {
67 if (aInt
< bInt
) return LE_LESS
;
68 else if (aInt
== bInt
) return LE_EQUAL
;
69 else return LE_GREATER
;
72 // Otherwise, both are negative, so we need to flip the sense of the
73 // comparison to get the correct result. (This assumes a twos- or ones-
74 // complement integer representation; if integers are represented in a
75 // sign-magnitude representation, then this flip is incorrect).
77 if (aInt
> bInt
) return LE_LESS
;
78 else if (aInt
== bInt
) return LE_EQUAL
;
79 else return LE_GREATER
;
87 GE_UNORDERED
= -1 // Note: different from LE_UNORDERED
90 COMPILER_RT_ABI
enum GE_RESULT
91 __gesf2(fp_t a
, fp_t b
) {
93 const srep_t aInt
= toRep(a
);
94 const srep_t bInt
= toRep(b
);
95 const rep_t aAbs
= aInt
& absMask
;
96 const rep_t bAbs
= bInt
& absMask
;
98 if (aAbs
> infRep
|| bAbs
> infRep
) return GE_UNORDERED
;
99 if ((aAbs
| bAbs
) == 0) return GE_EQUAL
;
100 if ((aInt
& bInt
) >= 0) {
101 if (aInt
< bInt
) return GE_LESS
;
102 else if (aInt
== bInt
) return GE_EQUAL
;
103 else return GE_GREATER
;
105 if (aInt
> bInt
) return GE_LESS
;
106 else if (aInt
== bInt
) return GE_EQUAL
;
107 else return GE_GREATER
;
111 ARM_EABI_FNALIAS(fcmpun
, unordsf2
)
114 __unordsf2(fp_t a
, fp_t b
) {
115 const rep_t aAbs
= toRep(a
) & absMask
;
116 const rep_t bAbs
= toRep(b
) & absMask
;
117 return aAbs
> infRep
|| bAbs
> infRep
;
120 // The following are alternative names for the preceding routines.
122 COMPILER_RT_ABI
enum LE_RESULT
123 __eqsf2(fp_t a
, fp_t b
) {
124 return __lesf2(a
, b
);
127 COMPILER_RT_ABI
enum LE_RESULT
128 __ltsf2(fp_t a
, fp_t b
) {
129 return __lesf2(a
, b
);
132 COMPILER_RT_ABI
enum LE_RESULT
133 __nesf2(fp_t a
, fp_t b
) {
134 return __lesf2(a
, b
);
137 COMPILER_RT_ABI
enum GE_RESULT
138 __gtsf2(fp_t a
, fp_t b
) {
139 return __gesf2(a
, b
);