1 //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements single-precision soft-float division
11 // with the IEEE-754 default rounding (to nearest, ties to even).
13 // For simplicity, this implementation currently flushes denormals to zero.
14 // It should be a fairly straightforward exercise to implement gradual
15 // underflow with correct rounding.
17 //===----------------------------------------------------------------------===//
19 #define SINGLE_PRECISION
22 ARM_EABI_FNALIAS(fdiv
, divsf3
)
25 __divsf3(fp_t a
, fp_t b
) {
27 const unsigned int aExponent
= toRep(a
) >> significandBits
& maxExponent
;
28 const unsigned int bExponent
= toRep(b
) >> significandBits
& maxExponent
;
29 const rep_t quotientSign
= (toRep(a
) ^ toRep(b
)) & signBit
;
31 rep_t aSignificand
= toRep(a
) & significandMask
;
32 rep_t bSignificand
= toRep(b
) & significandMask
;
35 // Detect if a or b is zero, denormal, infinity, or NaN.
36 if (aExponent
-1U >= maxExponent
-1U || bExponent
-1U >= maxExponent
-1U) {
38 const rep_t aAbs
= toRep(a
) & absMask
;
39 const rep_t bAbs
= toRep(b
) & absMask
;
41 // NaN / anything = qNaN
42 if (aAbs
> infRep
) return fromRep(toRep(a
) | quietBit
);
43 // anything / NaN = qNaN
44 if (bAbs
> infRep
) return fromRep(toRep(b
) | quietBit
);
47 // infinity / infinity = NaN
48 if (bAbs
== infRep
) return fromRep(qnanRep
);
49 // infinity / anything else = +/- infinity
50 else return fromRep(aAbs
| quotientSign
);
53 // anything else / infinity = +/- 0
54 if (bAbs
== infRep
) return fromRep(quotientSign
);
58 if (!bAbs
) return fromRep(qnanRep
);
59 // zero / anything else = +/- zero
60 else return fromRep(quotientSign
);
62 // anything else / zero = +/- infinity
63 if (!bAbs
) return fromRep(infRep
| quotientSign
);
65 // one or both of a or b is denormal, the other (if applicable) is a
66 // normal number. Renormalize one or both of a and b, and set scale to
67 // include the necessary exponent adjustment.
68 if (aAbs
< implicitBit
) scale
+= normalize(&aSignificand
);
69 if (bAbs
< implicitBit
) scale
-= normalize(&bSignificand
);
72 // Or in the implicit significand bit. (If we fell through from the
73 // denormal path it was already set by normalize( ), but setting it twice
74 // won't hurt anything.)
75 aSignificand
|= implicitBit
;
76 bSignificand
|= implicitBit
;
77 int quotientExponent
= aExponent
- bExponent
+ scale
;
79 // Align the significand of b as a Q31 fixed-point number in the range
80 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
81 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
82 // is accurate to about 3.5 binary digits.
83 uint32_t q31b
= bSignificand
<< 8;
84 uint32_t reciprocal
= UINT32_C(0x7504f333) - q31b
;
86 // Now refine the reciprocal estimate using a Newton-Raphson iteration:
88 // x1 = x0 * (2 - x0 * b)
90 // This doubles the number of correct binary digits in the approximation
91 // with each iteration, so after three iterations, we have about 28 binary
92 // digits of accuracy.
94 correction
= -((uint64_t)reciprocal
* q31b
>> 32);
95 reciprocal
= (uint64_t)reciprocal
* correction
>> 31;
96 correction
= -((uint64_t)reciprocal
* q31b
>> 32);
97 reciprocal
= (uint64_t)reciprocal
* correction
>> 31;
98 correction
= -((uint64_t)reciprocal
* q31b
>> 32);
99 reciprocal
= (uint64_t)reciprocal
* correction
>> 31;
101 // Exhaustive testing shows that the error in reciprocal after three steps
102 // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
103 // expectations. We bump the reciprocal by a tiny value to force the error
104 // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
105 // be specific). This also causes 1/1 to give a sensible approximation
106 // instead of zero (due to overflow).
109 // The numerical reciprocal is accurate to within 2^-28, lies in the
110 // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
111 // than the true reciprocal of b. Multiplying a by this reciprocal thus
112 // gives a numerical q = a/b in Q24 with the following properties:
115 // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
116 // 3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
117 // from the fact that we truncate the product, and the 2^27 term
118 // is the error in the reciprocal of b scaled by the maximum
119 // possible value of a. As a consequence of this error bound,
120 // either q or nextafter(q) is the correctly rounded
121 rep_t quotient
= (uint64_t)reciprocal
*(aSignificand
<< 1) >> 32;
123 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
124 // In either case, we are going to compute a residual of the form
128 // We know from the construction of q that r satisfies:
132 // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
133 // already have the correct result. The exact halfway case cannot occur.
134 // We also take this time to right shift quotient if it falls in the [1,2)
135 // range and adjust the exponent accordingly.
137 if (quotient
< (implicitBit
<< 1)) {
138 residual
= (aSignificand
<< 24) - quotient
* bSignificand
;
142 residual
= (aSignificand
<< 23) - quotient
* bSignificand
;
145 const int writtenExponent
= quotientExponent
+ exponentBias
;
147 if (writtenExponent
>= maxExponent
) {
148 // If we have overflowed the exponent, return infinity.
149 return fromRep(infRep
| quotientSign
);
152 else if (writtenExponent
< 1) {
153 // Flush denormals to zero. In the future, it would be nice to add
154 // code to round them correctly.
155 return fromRep(quotientSign
);
159 const bool round
= (residual
<< 1) > bSignificand
;
160 // Clear the implicit bit
161 rep_t absResult
= quotient
& significandMask
;
162 // Insert the exponent
163 absResult
|= (rep_t
)writtenExponent
<< significandBits
;
166 // Insert the sign and return
167 return fromRep(absResult
| quotientSign
);