1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file is a configuration header for soft-float routines in compiler-rt.
11 // This file does not provide any part of the compiler-rt interface, but defines
12 // many useful constants and utility routines that are used in the
13 // implementation of the soft-float routines in compiler-rt.
15 // Assumes that float, double and long double correspond to the IEEE-754
16 // binary32, binary64 and binary 128 types, respectively, and that integer
17 // endianness matches floating point endianness on the target platform.
19 //===----------------------------------------------------------------------===//
29 // x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in
31 #if defined(__FreeBSD__) && defined(__i386__)
32 # include <sys/param.h>
33 # if __FreeBSD_version < 903000 // v9.3
34 # define uint64_t unsigned long long
35 # define int64_t long long
37 # define UINT64_C(c) (c ## ULL)
41 #if defined SINGLE_PRECISION
43 typedef uint32_t rep_t
;
44 typedef int32_t srep_t
;
46 #define REP_C UINT32_C
47 #define significandBits 23
49 static inline int rep_clz(rep_t a
) {
50 return __builtin_clz(a
);
53 // 32x32 --> 64 bit multiply
54 static inline void wideMultiply(rep_t a
, rep_t b
, rep_t
*hi
, rep_t
*lo
) {
55 const uint64_t product
= (uint64_t)a
*b
;
59 COMPILER_RT_ABI fp_t
__addsf3(fp_t a
, fp_t b
);
61 #elif defined DOUBLE_PRECISION
63 typedef uint64_t rep_t
;
64 typedef int64_t srep_t
;
66 #define REP_C UINT64_C
67 #define significandBits 52
69 static inline int rep_clz(rep_t a
) {
71 return __builtin_clzl(a
);
73 if (a
& REP_C(0xffffffff00000000))
74 return __builtin_clz(a
>> 32);
76 return 32 + __builtin_clz(a
& REP_C(0xffffffff));
80 #define loWord(a) (a & 0xffffffffU)
81 #define hiWord(a) (a >> 32)
83 // 64x64 -> 128 wide multiply for platforms that don't have such an operation;
84 // many 64-bit platforms have this operation, but they tend to have hardware
85 // floating-point, so we don't bother with a special case for them here.
86 static inline void wideMultiply(rep_t a
, rep_t b
, rep_t
*hi
, rep_t
*lo
) {
87 // Each of the component 32x32 -> 64 products
88 const uint64_t plolo
= loWord(a
) * loWord(b
);
89 const uint64_t plohi
= loWord(a
) * hiWord(b
);
90 const uint64_t philo
= hiWord(a
) * loWord(b
);
91 const uint64_t phihi
= hiWord(a
) * hiWord(b
);
92 // Sum terms that contribute to lo in a way that allows us to get the carry
93 const uint64_t r0
= loWord(plolo
);
94 const uint64_t r1
= hiWord(plolo
) + loWord(plohi
) + loWord(philo
);
95 *lo
= r0
+ (r1
<< 32);
96 // Sum terms contributing to hi with the carry from lo
97 *hi
= hiWord(plohi
) + hiWord(philo
) + hiWord(r1
) + phihi
;
102 COMPILER_RT_ABI fp_t
__adddf3(fp_t a
, fp_t b
);
104 #elif defined QUAD_PRECISION
105 #if __LDBL_MANT_DIG__ == 113
106 #define CRT_LDBL_128BIT
107 typedef __uint128_t rep_t
;
108 typedef __int128_t srep_t
;
109 typedef long double fp_t
;
110 #define REP_C (__uint128_t)
111 // Note: Since there is no explicit way to tell compiler the constant is a
112 // 128-bit integer, we let the constant be casted to 128-bit integer
113 #define significandBits 112
115 static inline int rep_clz(rep_t a
) {
120 struct { uint64_t high
, low
; } s
;
122 struct { uint64_t low
, high
; } s
;
137 return __builtin_clzll(word
) + add
;
140 #define Word_LoMask UINT64_C(0x00000000ffffffff)
141 #define Word_HiMask UINT64_C(0xffffffff00000000)
142 #define Word_FullMask UINT64_C(0xffffffffffffffff)
143 #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
144 #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
145 #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)
146 #define Word_4(a) (uint64_t)(a & Word_LoMask)
148 // 128x128 -> 256 wide multiply for platforms that don't have such an operation;
149 // many 64-bit platforms have this operation, but they tend to have hardware
150 // floating-point, so we don't bother with a special case for them here.
151 static inline void wideMultiply(rep_t a
, rep_t b
, rep_t
*hi
, rep_t
*lo
) {
153 const uint64_t product11
= Word_1(a
) * Word_1(b
);
154 const uint64_t product12
= Word_1(a
) * Word_2(b
);
155 const uint64_t product13
= Word_1(a
) * Word_3(b
);
156 const uint64_t product14
= Word_1(a
) * Word_4(b
);
157 const uint64_t product21
= Word_2(a
) * Word_1(b
);
158 const uint64_t product22
= Word_2(a
) * Word_2(b
);
159 const uint64_t product23
= Word_2(a
) * Word_3(b
);
160 const uint64_t product24
= Word_2(a
) * Word_4(b
);
161 const uint64_t product31
= Word_3(a
) * Word_1(b
);
162 const uint64_t product32
= Word_3(a
) * Word_2(b
);
163 const uint64_t product33
= Word_3(a
) * Word_3(b
);
164 const uint64_t product34
= Word_3(a
) * Word_4(b
);
165 const uint64_t product41
= Word_4(a
) * Word_1(b
);
166 const uint64_t product42
= Word_4(a
) * Word_2(b
);
167 const uint64_t product43
= Word_4(a
) * Word_3(b
);
168 const uint64_t product44
= Word_4(a
) * Word_4(b
);
170 const __uint128_t sum0
= (__uint128_t
)product44
;
171 const __uint128_t sum1
= (__uint128_t
)product34
+
172 (__uint128_t
)product43
;
173 const __uint128_t sum2
= (__uint128_t
)product24
+
174 (__uint128_t
)product33
+
175 (__uint128_t
)product42
;
176 const __uint128_t sum3
= (__uint128_t
)product14
+
177 (__uint128_t
)product23
+
178 (__uint128_t
)product32
+
179 (__uint128_t
)product41
;
180 const __uint128_t sum4
= (__uint128_t
)product13
+
181 (__uint128_t
)product22
+
182 (__uint128_t
)product31
;
183 const __uint128_t sum5
= (__uint128_t
)product12
+
184 (__uint128_t
)product21
;
185 const __uint128_t sum6
= (__uint128_t
)product11
;
187 const __uint128_t r0
= (sum0
& Word_FullMask
) +
188 ((sum1
& Word_LoMask
) << 32);
189 const __uint128_t r1
= (sum0
>> 64) +
190 ((sum1
>> 32) & Word_FullMask
) +
191 (sum2
& Word_FullMask
) +
192 ((sum3
<< 32) & Word_HiMask
);
194 *lo
= r0
+ (r1
<< 64);
210 #endif // __LDBL_MANT_DIG__ == 113
212 #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
215 #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || defined(CRT_LDBL_128BIT)
216 #define typeWidth (sizeof(rep_t)*CHAR_BIT)
217 #define exponentBits (typeWidth - significandBits - 1)
218 #define maxExponent ((1 << exponentBits) - 1)
219 #define exponentBias (maxExponent >> 1)
221 #define implicitBit (REP_C(1) << significandBits)
222 #define significandMask (implicitBit - 1U)
223 #define signBit (REP_C(1) << (significandBits + exponentBits))
224 #define absMask (signBit - 1U)
225 #define exponentMask (absMask ^ significandMask)
226 #define oneRep ((rep_t)exponentBias << significandBits)
227 #define infRep exponentMask
228 #define quietBit (implicitBit >> 1)
229 #define qnanRep (exponentMask | quietBit)
231 static inline rep_t
toRep(fp_t x
) {
232 const union { fp_t f
; rep_t i
; } rep
= {.f
= x
};
236 static inline fp_t
fromRep(rep_t x
) {
237 const union { fp_t f
; rep_t i
; } rep
= {.i
= x
};
241 static inline int normalize(rep_t
*significand
) {
242 const int shift
= rep_clz(*significand
) - rep_clz(implicitBit
);
243 *significand
<<= shift
;
247 static inline void wideLeftShift(rep_t
*hi
, rep_t
*lo
, int count
) {
248 *hi
= *hi
<< count
| *lo
>> (typeWidth
- count
);
252 static inline void wideRightShiftWithSticky(rep_t
*hi
, rep_t
*lo
, unsigned int count
) {
253 if (count
< typeWidth
) {
254 const bool sticky
= *lo
<< (typeWidth
- count
);
255 *lo
= *hi
<< (typeWidth
- count
) | *lo
>> count
| sticky
;
258 else if (count
< 2*typeWidth
) {
259 const bool sticky
= *hi
<< (2*typeWidth
- count
) | *lo
;
260 *lo
= *hi
>> (count
- typeWidth
) | sticky
;
263 const bool sticky
= *hi
| *lo
;
270 #endif // FP_LIB_HEADER