1 //= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a fairly generic conversion from a wider to a narrower
11 // IEEE-754 floating-point type in the default (round to nearest, ties to even)
12 // rounding mode. The constants and types defined following the includes below
13 // parameterize the conversion.
15 // This routine can be trivially adapted to support conversions to
16 // half-precision or from quad-precision. It does not support types that don't
17 // use the usual IEEE-754 interchange formats; specifically, some work would be
18 // needed to adapt it to (for example) the Intel 80-bit format or PowerPC
19 // double-double format.
21 // Note please, however, that this implementation is only intended to support
22 // *narrowing* operations; if you need to convert to a *wider* floating-point
23 // type (e.g. float -> double), then this routine will not do what you want it
26 // It also requires that integer types at least as large as both formats
27 // are available on the target platform; this may pose a problem when trying
28 // to add support for quad on some 32-bit systems, for example.
30 // Finally, the following assumptions are made:
32 // 1. floating-point types and integer types have the same endianness on the
35 // 2. quiet NaNs, if supported, are indicated by the leading bit of the
36 // significand field being set
38 //===----------------------------------------------------------------------===//
42 static inline dst_t __truncXfYf2__(src_t a) {
43 // Various constants whose values follow from the type parameters.
44 // Any reasonable optimizer will fold and propagate all of these.
45 const int srcBits = sizeof(src_t)*CHAR_BIT;
46 const int srcExpBits = srcBits - srcSigBits - 1;
47 const int srcInfExp = (1 << srcExpBits) - 1;
48 const int srcExpBias = srcInfExp >> 1;
50 const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
51 const src_rep_t srcSignificandMask = srcMinNormal - 1;
52 const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
53 const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
54 const src_rep_t srcAbsMask = srcSignMask - 1;
55 const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
56 const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
57 const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
58 const src_rep_t srcNaNCode = srcQNaN - 1;
60 const int dstBits = sizeof(dst_t)*CHAR_BIT;
61 const int dstExpBits = dstBits - dstSigBits - 1;
62 const int dstInfExp = (1 << dstExpBits) - 1;
63 const int dstExpBias = dstInfExp >> 1;
65 const int underflowExponent = srcExpBias + 1 - dstExpBias;
66 const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
67 const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
68 const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
70 const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
71 const dst_rep_t dstNaNCode = dstQNaN - 1;
73 // Break a into a sign and representation of the absolute value
74 const src_rep_t aRep = srcToRep(a);
75 const src_rep_t aAbs = aRep & srcAbsMask;
76 const src_rep_t sign = aRep & srcSignMask;
79 if (aAbs - underflow < aAbs - overflow) {
80 // The exponent of a is within the range of normal numbers in the
81 // destination format. We can convert by simply right-shifting with
82 // rounding and adjusting the exponent.
83 absResult = aAbs >> (srcSigBits - dstSigBits);
84 absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
86 const src_rep_t roundBits = aAbs & roundMask;
88 if (roundBits > halfway)
91 else if (roundBits == halfway)
92 absResult += absResult & 1;
94 else if (aAbs > srcInfinity) {
96 // Conjure the result by beginning with infinity, setting the qNaN
97 // bit and inserting the (truncated) trailing NaN field.
98 absResult = (dst_rep_t)dstInfExp << dstSigBits;
100 absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
102 else if (aAbs > overflow) {
103 // a overflows to infinity.
104 absResult = (dst_rep_t)dstInfExp << dstSigBits;
107 // a underflows on conversion to the destination type or is an exact
108 // zero. The result may be a denormal or zero. Extract the exponent
109 // to get the shift amount for the denormalization.
110 const int aExp = aAbs >> srcSigBits;
111 const int shift = srcExpBias - dstExpBias - aExp + 1;
113 const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
115 // Right shift by the denormalization amount with sticky.
116 if (shift > srcSigBits) {
119 const bool sticky = significand << (srcBits - shift);
120 src_rep_t denormalizedSignificand = significand >> shift | sticky;
121 absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
122 const src_rep_t roundBits = denormalizedSignificand & roundMask;
124 if (roundBits > halfway)
127 else if (roundBits == halfway)
128 absResult += absResult & 1;
132 // Apply the signbit to (dst_t)abs(a).
133 const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
134 return dstFromRep(result);