vm: fix a null dereference on out-of-memory
[minix.git] / sys / ufs / lfs / lfs_subr.c
blob4da38aae3f9029f6b53d50e478f9b91dc94ba4b5
1 /* $NetBSD: lfs_subr.c,v 1.76 2010/06/25 10:03:52 hannken Exp $ */
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant@hhhh.org>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 * Copyright (c) 1991, 1993
33 * The Regents of the University of California. All rights reserved.
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
59 * @(#)lfs_subr.c 8.4 (Berkeley) 5/8/95
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.76 2010/06/25 10:03:52 hannken Exp $");
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/namei.h>
68 #include <sys/vnode.h>
69 #include <sys/buf.h>
70 #include <sys/mount.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/kauth.h>
75 #include <ufs/ufs/inode.h>
76 #include <ufs/lfs/lfs.h>
77 #include <ufs/lfs/lfs_extern.h>
79 #include <uvm/uvm.h>
81 #ifdef DEBUG
82 const char *lfs_res_names[LFS_NB_COUNT] = {
83 "summary",
84 "superblock",
85 "file block",
86 "cluster",
87 "clean",
88 "blkiov",
90 #endif
92 int lfs_res_qty[LFS_NB_COUNT] = {
93 LFS_N_SUMMARIES,
94 LFS_N_SBLOCKS,
95 LFS_N_IBLOCKS,
96 LFS_N_CLUSTERS,
97 LFS_N_CLEAN,
98 LFS_N_BLKIOV,
101 void
102 lfs_setup_resblks(struct lfs *fs)
104 int i, j;
105 int maxbpp;
107 ASSERT_NO_SEGLOCK(fs);
108 fs->lfs_resblk = (res_t *)malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
109 M_WAITOK);
110 for (i = 0; i < LFS_N_TOTAL; i++) {
111 fs->lfs_resblk[i].inuse = 0;
112 fs->lfs_resblk[i].p = NULL;
114 for (i = 0; i < LFS_RESHASH_WIDTH; i++)
115 LIST_INIT(fs->lfs_reshash + i);
118 * These types of allocations can be larger than a page,
119 * so we can't use the pool subsystem for them.
121 for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
122 fs->lfs_resblk[i].size = fs->lfs_sumsize;
123 for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
124 fs->lfs_resblk[i].size = LFS_SBPAD;
125 for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
126 fs->lfs_resblk[i].size = fs->lfs_bsize;
127 for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
128 fs->lfs_resblk[i].size = MAXPHYS;
129 for (j = 0; j < LFS_N_CLEAN; j++, i++)
130 fs->lfs_resblk[i].size = MAXPHYS;
131 for (j = 0; j < LFS_N_BLKIOV; j++, i++)
132 fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
134 for (i = 0; i < LFS_N_TOTAL; i++) {
135 fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
136 M_SEGMENT, M_WAITOK);
140 * Initialize pools for small types (XXX is BPP small?)
142 pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
143 "lfsclpl", &pool_allocator_nointr, IPL_NONE);
144 pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
145 "lfssegpool", &pool_allocator_nointr, IPL_NONE);
146 maxbpp = ((fs->lfs_sumsize - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
147 maxbpp = MIN(maxbpp, segsize(fs) / fs->lfs_fsize + 2);
148 pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
149 "lfsbpppl", &pool_allocator_nointr, IPL_NONE);
152 void
153 lfs_free_resblks(struct lfs *fs)
155 int i;
157 pool_destroy(&fs->lfs_bpppool);
158 pool_destroy(&fs->lfs_segpool);
159 pool_destroy(&fs->lfs_clpool);
161 mutex_enter(&lfs_lock);
162 for (i = 0; i < LFS_N_TOTAL; i++) {
163 while (fs->lfs_resblk[i].inuse)
164 mtsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
165 &lfs_lock);
166 if (fs->lfs_resblk[i].p != NULL)
167 free(fs->lfs_resblk[i].p, M_SEGMENT);
169 free(fs->lfs_resblk, M_SEGMENT);
170 mutex_exit(&lfs_lock);
173 static unsigned int
174 lfs_mhash(void *vp)
176 return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
180 * Return memory of the given size for the given purpose, or use one of a
181 * number of spare last-resort buffers, if malloc returns NULL.
183 void *
184 lfs_malloc(struct lfs *fs, size_t size, int type)
186 struct lfs_res_blk *re;
187 void *r;
188 int i, s, start;
189 unsigned int h;
191 ASSERT_MAYBE_SEGLOCK(fs);
192 r = NULL;
194 /* If no mem allocated for this type, it just waits */
195 if (lfs_res_qty[type] == 0) {
196 r = malloc(size, M_SEGMENT, M_WAITOK);
197 return r;
200 /* Otherwise try a quick malloc, and if it works, great */
201 if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
202 return r;
206 * If malloc returned NULL, we are forced to use one of our
207 * reserve blocks. We have on hand at least one summary block,
208 * at least one cluster block, at least one superblock,
209 * and several indirect blocks.
212 mutex_enter(&lfs_lock);
213 /* skip over blocks of other types */
214 for (i = 0, start = 0; i < type; i++)
215 start += lfs_res_qty[i];
216 while (r == NULL) {
217 for (i = 0; i < lfs_res_qty[type]; i++) {
218 if (fs->lfs_resblk[start + i].inuse == 0) {
219 re = fs->lfs_resblk + start + i;
220 re->inuse = 1;
221 r = re->p;
222 KASSERT(re->size >= size);
223 h = lfs_mhash(r);
224 s = splbio();
225 LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
226 splx(s);
227 mutex_exit(&lfs_lock);
228 return r;
231 DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
232 lfs_res_names[type], lfs_res_qty[type]));
233 mtsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
234 &lfs_lock);
235 DLOG((DLOG_MALLOC, "done sleeping on %s\n",
236 lfs_res_names[type]));
238 /* NOTREACHED */
239 mutex_exit(&lfs_lock);
240 return r;
243 void
244 lfs_free(struct lfs *fs, void *p, int type)
246 int s;
247 unsigned int h;
248 res_t *re;
249 #ifdef DEBUG
250 int i;
251 #endif
253 ASSERT_MAYBE_SEGLOCK(fs);
254 h = lfs_mhash(p);
255 mutex_enter(&lfs_lock);
256 s = splbio();
257 LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
258 if (re->p == p) {
259 KASSERT(re->inuse == 1);
260 LIST_REMOVE(re, res);
261 re->inuse = 0;
262 wakeup(&fs->lfs_resblk);
263 splx(s);
264 mutex_exit(&lfs_lock);
265 return;
268 #ifdef DEBUG
269 for (i = 0; i < LFS_N_TOTAL; i++) {
270 if (fs->lfs_resblk[i].p == p)
271 panic("lfs_free: inconsistent reserved block");
273 #endif
274 splx(s);
275 mutex_exit(&lfs_lock);
278 * If we didn't find it, free it.
280 free(p, M_SEGMENT);
284 * lfs_seglock --
285 * Single thread the segment writer.
288 lfs_seglock(struct lfs *fs, unsigned long flags)
290 struct segment *sp;
292 mutex_enter(&lfs_lock);
293 if (fs->lfs_seglock) {
294 if (fs->lfs_lockpid == curproc->p_pid &&
295 fs->lfs_locklwp == curlwp->l_lid) {
296 ++fs->lfs_seglock;
297 fs->lfs_sp->seg_flags |= flags;
298 mutex_exit(&lfs_lock);
299 return 0;
300 } else if (flags & SEGM_PAGEDAEMON) {
301 mutex_exit(&lfs_lock);
302 return EWOULDBLOCK;
303 } else {
304 while (fs->lfs_seglock) {
305 (void)mtsleep(&fs->lfs_seglock, PRIBIO + 1,
306 "lfs_seglock", 0, &lfs_lock);
311 fs->lfs_seglock = 1;
312 fs->lfs_lockpid = curproc->p_pid;
313 fs->lfs_locklwp = curlwp->l_lid;
314 mutex_exit(&lfs_lock);
315 fs->lfs_cleanind = 0;
317 #ifdef DEBUG
318 LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
319 #endif
320 /* Drain fragment size changes out */
321 rw_enter(&fs->lfs_fraglock, RW_WRITER);
323 sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
324 sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
325 sp->seg_flags = flags;
326 sp->vp = NULL;
327 sp->seg_iocount = 0;
328 (void) lfs_initseg(fs);
331 * Keep a cumulative count of the outstanding I/O operations. If the
332 * disk drive catches up with us it could go to zero before we finish,
333 * so we artificially increment it by one until we've scheduled all of
334 * the writes we intend to do.
336 mutex_enter(&lfs_lock);
337 ++fs->lfs_iocount;
338 mutex_exit(&lfs_lock);
339 return 0;
342 static void lfs_unmark_dirop(struct lfs *);
344 static void
345 lfs_unmark_dirop(struct lfs *fs)
347 struct inode *ip, *nip;
348 struct vnode *vp;
349 int doit;
351 ASSERT_NO_SEGLOCK(fs);
352 mutex_enter(&lfs_lock);
353 doit = !(fs->lfs_flags & LFS_UNDIROP);
354 if (doit)
355 fs->lfs_flags |= LFS_UNDIROP;
356 if (!doit) {
357 mutex_exit(&lfs_lock);
358 return;
361 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
362 nip = TAILQ_NEXT(ip, i_lfs_dchain);
363 vp = ITOV(ip);
364 if ((VTOI(vp)->i_flag & (IN_ADIROP | IN_ALLMOD)) == 0) {
365 --lfs_dirvcount;
366 --fs->lfs_dirvcount;
367 vp->v_uflag &= ~VU_DIROP;
368 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
369 wakeup(&lfs_dirvcount);
370 fs->lfs_unlockvp = vp;
371 mutex_exit(&lfs_lock);
372 vrele(vp);
373 mutex_enter(&lfs_lock);
374 fs->lfs_unlockvp = NULL;
378 fs->lfs_flags &= ~LFS_UNDIROP;
379 wakeup(&fs->lfs_flags);
380 mutex_exit(&lfs_lock);
383 static void
384 lfs_auto_segclean(struct lfs *fs)
386 int i, error, s, waited;
388 ASSERT_SEGLOCK(fs);
390 * Now that we've swapped lfs_activesb, but while we still
391 * hold the segment lock, run through the segment list marking
392 * the empty ones clean.
393 * XXX - do we really need to do them all at once?
395 waited = 0;
396 for (i = 0; i < fs->lfs_nseg; i++) {
397 if ((fs->lfs_suflags[0][i] &
398 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
399 (SEGUSE_DIRTY | SEGUSE_EMPTY) &&
400 (fs->lfs_suflags[1][i] &
401 (SEGUSE_ACTIVE | SEGUSE_DIRTY | SEGUSE_EMPTY)) ==
402 (SEGUSE_DIRTY | SEGUSE_EMPTY)) {
404 /* Make sure the sb is written before we clean */
405 mutex_enter(&lfs_lock);
406 s = splbio();
407 while (waited == 0 && fs->lfs_sbactive)
408 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs asb",
409 0, &lfs_lock);
410 splx(s);
411 mutex_exit(&lfs_lock);
412 waited = 1;
414 if ((error = lfs_do_segclean(fs, i)) != 0) {
415 DLOG((DLOG_CLEAN, "lfs_auto_segclean: lfs_do_segclean returned %d for seg %d\n", error, i));
418 fs->lfs_suflags[1 - fs->lfs_activesb][i] =
419 fs->lfs_suflags[fs->lfs_activesb][i];
424 * lfs_segunlock --
425 * Single thread the segment writer.
427 void
428 lfs_segunlock(struct lfs *fs)
430 struct segment *sp;
431 unsigned long sync, ckp;
432 struct buf *bp;
433 int do_unmark_dirop = 0;
435 sp = fs->lfs_sp;
437 mutex_enter(&lfs_lock);
438 KASSERT(LFS_SEGLOCK_HELD(fs));
439 if (fs->lfs_seglock == 1) {
440 if ((sp->seg_flags & (SEGM_PROT | SEGM_CLEAN)) == 0 &&
441 LFS_STARVED_FOR_SEGS(fs) == 0)
442 do_unmark_dirop = 1;
443 mutex_exit(&lfs_lock);
444 sync = sp->seg_flags & SEGM_SYNC;
445 ckp = sp->seg_flags & SEGM_CKP;
447 /* We should have a segment summary, and nothing else */
448 KASSERT(sp->cbpp == sp->bpp + 1);
450 /* Free allocated segment summary */
451 fs->lfs_offset -= btofsb(fs, fs->lfs_sumsize);
452 bp = *sp->bpp;
453 lfs_freebuf(fs, bp);
455 pool_put(&fs->lfs_bpppool, sp->bpp);
456 sp->bpp = NULL;
459 * If we're not sync, we're done with sp, get rid of it.
460 * Otherwise, we keep a local copy around but free
461 * fs->lfs_sp so another process can use it (we have to
462 * wait but they don't have to wait for us).
464 if (!sync)
465 pool_put(&fs->lfs_segpool, sp);
466 fs->lfs_sp = NULL;
469 * If the I/O count is non-zero, sleep until it reaches zero.
470 * At the moment, the user's process hangs around so we can
471 * sleep.
473 mutex_enter(&lfs_lock);
474 if (--fs->lfs_iocount == 0) {
475 LFS_DEBUG_COUNTLOCKED("lfs_segunlock");
477 if (fs->lfs_iocount <= 1)
478 wakeup(&fs->lfs_iocount);
479 mutex_exit(&lfs_lock);
481 * If we're not checkpointing, we don't have to block
482 * other processes to wait for a synchronous write
483 * to complete.
485 if (!ckp) {
486 #ifdef DEBUG
487 LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
488 #endif
489 mutex_enter(&lfs_lock);
490 --fs->lfs_seglock;
491 fs->lfs_lockpid = 0;
492 fs->lfs_locklwp = 0;
493 mutex_exit(&lfs_lock);
494 wakeup(&fs->lfs_seglock);
497 * We let checkpoints happen asynchronously. That means
498 * that during recovery, we have to roll forward between
499 * the two segments described by the first and second
500 * superblocks to make sure that the checkpoint described
501 * by a superblock completed.
503 mutex_enter(&lfs_lock);
504 while (ckp && sync && fs->lfs_iocount) {
505 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
506 "lfs_iocount", 0, &lfs_lock);
507 DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", fs, fs->lfs_iocount));
509 while (sync && sp->seg_iocount) {
510 (void)mtsleep(&sp->seg_iocount, PRIBIO + 1,
511 "seg_iocount", 0, &lfs_lock);
512 DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
514 mutex_exit(&lfs_lock);
515 if (sync)
516 pool_put(&fs->lfs_segpool, sp);
518 if (ckp) {
519 fs->lfs_nactive = 0;
520 /* If we *know* everything's on disk, write both sbs */
521 /* XXX should wait for this one */
522 if (sync)
523 lfs_writesuper(fs, fs->lfs_sboffs[fs->lfs_activesb]);
524 lfs_writesuper(fs, fs->lfs_sboffs[1 - fs->lfs_activesb]);
525 if (!(fs->lfs_ivnode->v_mount->mnt_iflag & IMNT_UNMOUNT)) {
526 lfs_auto_segclean(fs);
527 /* If sync, we can clean the remainder too */
528 if (sync)
529 lfs_auto_segclean(fs);
531 fs->lfs_activesb = 1 - fs->lfs_activesb;
532 #ifdef DEBUG
533 LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
534 #endif
535 mutex_enter(&lfs_lock);
536 --fs->lfs_seglock;
537 fs->lfs_lockpid = 0;
538 fs->lfs_locklwp = 0;
539 mutex_exit(&lfs_lock);
540 wakeup(&fs->lfs_seglock);
542 /* Reenable fragment size changes */
543 rw_exit(&fs->lfs_fraglock);
544 if (do_unmark_dirop)
545 lfs_unmark_dirop(fs);
546 } else if (fs->lfs_seglock == 0) {
547 mutex_exit(&lfs_lock);
548 panic ("Seglock not held");
549 } else {
550 --fs->lfs_seglock;
551 mutex_exit(&lfs_lock);
556 * Drain dirops and start writer.
558 * No simple_locks are held when we enter and none are held when we return.
561 lfs_writer_enter(struct lfs *fs, const char *wmesg)
563 int error = 0;
565 ASSERT_MAYBE_SEGLOCK(fs);
566 mutex_enter(&lfs_lock);
568 /* disallow dirops during flush */
569 fs->lfs_writer++;
571 while (fs->lfs_dirops > 0) {
572 ++fs->lfs_diropwait;
573 error = mtsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
574 &lfs_lock);
575 --fs->lfs_diropwait;
578 if (error)
579 fs->lfs_writer--;
581 mutex_exit(&lfs_lock);
583 return error;
586 void
587 lfs_writer_leave(struct lfs *fs)
589 bool dowakeup;
591 ASSERT_MAYBE_SEGLOCK(fs);
592 mutex_enter(&lfs_lock);
593 dowakeup = !(--fs->lfs_writer);
594 mutex_exit(&lfs_lock);
595 if (dowakeup)
596 wakeup(&fs->lfs_dirops);
600 * Unlock, wait for the cleaner, then relock to where we were before.
601 * To be used only at a fairly high level, to address a paucity of free
602 * segments propagated back from lfs_gop_write().
604 void
605 lfs_segunlock_relock(struct lfs *fs)
607 int n = fs->lfs_seglock;
608 u_int16_t seg_flags;
609 CLEANERINFO *cip;
610 struct buf *bp;
612 if (n == 0)
613 return;
615 /* Write anything we've already gathered to disk */
616 lfs_writeseg(fs, fs->lfs_sp);
618 /* Tell cleaner */
619 LFS_CLEANERINFO(cip, fs, bp);
620 cip->flags |= LFS_CLEANER_MUST_CLEAN;
621 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
623 /* Save segment flags for later */
624 seg_flags = fs->lfs_sp->seg_flags;
626 fs->lfs_sp->seg_flags |= SEGM_PROT; /* Don't unmark dirop nodes */
627 while(fs->lfs_seglock)
628 lfs_segunlock(fs);
630 /* Wait for the cleaner */
631 lfs_wakeup_cleaner(fs);
632 mutex_enter(&lfs_lock);
633 while (LFS_STARVED_FOR_SEGS(fs))
634 mtsleep(&fs->lfs_avail, PRIBIO, "relock", 0,
635 &lfs_lock);
636 mutex_exit(&lfs_lock);
638 /* Put the segment lock back the way it was. */
639 while(n--)
640 lfs_seglock(fs, seg_flags);
642 /* Cleaner can relax now */
643 LFS_CLEANERINFO(cip, fs, bp);
644 cip->flags &= ~LFS_CLEANER_MUST_CLEAN;
645 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
647 return;
651 * Wake up the cleaner, provided that nowrap is not set.
653 void
654 lfs_wakeup_cleaner(struct lfs *fs)
656 if (fs->lfs_nowrap > 0)
657 return;
659 wakeup(&fs->lfs_nextseg);
660 wakeup(&lfs_allclean_wakeup);