vm: fix a null dereference on out-of-memory
[minix.git] / sys / ufs / lfs / lfs_syscalls.c
blob442b81d463db0eb4c6d7379f59360c4cdb5dd027
1 /* $NetBSD: lfs_syscalls.c,v 1.139 2011/06/12 03:36:01 rmind Exp $ */
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant@hhhh.org>.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
32 /*-
33 * Copyright (c) 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
60 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.139 2011/06/12 03:36:01 rmind Exp $");
66 #ifndef LFS
67 # define LFS /* for prototypes in syscallargs.h */
68 #endif
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/proc.h>
73 #include <sys/buf.h>
74 #include <sys/mount.h>
75 #include <sys/vnode.h>
76 #include <sys/kernel.h>
77 #include <sys/kauth.h>
78 #include <sys/syscallargs.h>
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #include <ufs/ufs/ufs_extern.h>
84 #include <ufs/lfs/lfs.h>
85 #include <ufs/lfs/lfs_extern.h>
87 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, void *);
88 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
90 pid_t lfs_cleaner_pid = 0;
93 * sys_lfs_markv:
95 * This will mark inodes and blocks dirty, so they are written into the log.
96 * It will block until all the blocks have been written. The segment create
97 * time passed in the block_info and inode_info structures is used to decide
98 * if the data is valid for each block (in case some process dirtied a block
99 * or inode that is being cleaned between the determination that a block is
100 * live and the lfs_markv call).
102 * 0 on success
103 * -1/errno is return on error.
105 #ifdef USE_64BIT_SYSCALLS
107 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
109 /* {
110 syscallarg(fsid_t *) fsidp;
111 syscallarg(struct block_info *) blkiov;
112 syscallarg(int) blkcnt;
113 } */
114 BLOCK_INFO *blkiov;
115 int blkcnt, error;
116 fsid_t fsid;
117 struct lfs *fs;
118 struct mount *mntp;
120 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
121 NULL)) != 0)
122 return (error);
124 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
125 return (error);
127 if ((mntp = vfs_getvfs(fsidp)) == NULL)
128 return (ENOENT);
129 fs = VFSTOUFS(mntp)->um_lfs;
131 blkcnt = SCARG(uap, blkcnt);
132 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
133 return (EINVAL);
135 KERNEL_LOCK(1, NULL);
136 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
137 if ((error = copyin(SCARG(uap, blkiov), blkiov,
138 blkcnt * sizeof(BLOCK_INFO))) != 0)
139 goto out;
141 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
142 copyout(blkiov, SCARG(uap, blkiov),
143 blkcnt * sizeof(BLOCK_INFO));
144 out:
145 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
146 KERNEL_UNLOCK_ONE(NULL);
147 return error;
149 #else
151 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
153 /* {
154 syscallarg(fsid_t *) fsidp;
155 syscallarg(struct block_info *) blkiov;
156 syscallarg(int) blkcnt;
157 } */
158 BLOCK_INFO *blkiov;
159 BLOCK_INFO_15 *blkiov15;
160 int i, blkcnt, error;
161 fsid_t fsid;
162 struct lfs *fs;
163 struct mount *mntp;
165 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
166 NULL)) != 0)
167 return (error);
169 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
170 return (error);
172 if ((mntp = vfs_getvfs(&fsid)) == NULL)
173 return (ENOENT);
174 fs = VFSTOUFS(mntp)->um_lfs;
176 blkcnt = SCARG(uap, blkcnt);
177 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
178 return (EINVAL);
180 KERNEL_LOCK(1, NULL);
181 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
182 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
183 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
184 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
185 goto out;
187 for (i = 0; i < blkcnt; i++) {
188 blkiov[i].bi_inode = blkiov15[i].bi_inode;
189 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
190 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
191 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
192 blkiov[i].bi_version = blkiov15[i].bi_version;
193 blkiov[i].bi_bp = blkiov15[i].bi_bp;
194 blkiov[i].bi_size = blkiov15[i].bi_size;
197 if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
198 for (i = 0; i < blkcnt; i++) {
199 blkiov15[i].bi_inode = blkiov[i].bi_inode;
200 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
201 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
202 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
203 blkiov15[i].bi_version = blkiov[i].bi_version;
204 blkiov15[i].bi_bp = blkiov[i].bi_bp;
205 blkiov15[i].bi_size = blkiov[i].bi_size;
207 copyout(blkiov15, SCARG(uap, blkiov),
208 blkcnt * sizeof(BLOCK_INFO_15));
210 out:
211 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
212 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
213 KERNEL_UNLOCK_ONE(NULL);
214 return error;
216 #endif
218 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
221 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
222 int blkcnt)
224 BLOCK_INFO *blkp;
225 IFILE *ifp;
226 struct buf *bp;
227 struct inode *ip = NULL;
228 struct lfs *fs;
229 struct mount *mntp;
230 struct vnode *vp = NULL;
231 ino_t lastino;
232 daddr_t b_daddr, v_daddr;
233 int cnt, error;
234 int do_again = 0;
235 int numrefed = 0;
236 ino_t maxino;
237 size_t obsize;
239 /* number of blocks/inodes that we have already bwrite'ed */
240 int nblkwritten, ninowritten;
242 if ((mntp = vfs_getvfs(fsidp)) == NULL)
243 return (ENOENT);
245 fs = VFSTOUFS(mntp)->um_lfs;
247 if (fs->lfs_ronly)
248 return EROFS;
250 maxino = (fragstoblks(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks) -
251 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
253 cnt = blkcnt;
255 if ((error = vfs_busy(mntp, NULL)) != 0)
256 return (error);
259 * This seglock is just to prevent the fact that we might have to sleep
260 * from allowing the possibility that our blocks might become
261 * invalid.
263 * It is also important to note here that unless we specify SEGM_CKP,
264 * any Ifile blocks that we might be asked to clean will never get
265 * to the disk.
267 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
269 /* Mark blocks/inodes dirty. */
270 error = 0;
272 /* these were inside the initialization for the for loop */
273 v_daddr = LFS_UNUSED_DADDR;
274 lastino = LFS_UNUSED_INUM;
275 nblkwritten = ninowritten = 0;
276 for (blkp = blkiov; cnt--; ++blkp)
278 /* Bounds-check incoming data, avoid panic for failed VGET */
279 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
280 error = EINVAL;
281 goto err3;
284 * Get the IFILE entry (only once) and see if the file still
285 * exists.
287 if (lastino != blkp->bi_inode) {
289 * Finish the old file, if there was one. The presence
290 * of a usable vnode in vp is signaled by a valid v_daddr.
292 if (v_daddr != LFS_UNUSED_DADDR) {
293 lfs_vunref(vp);
294 numrefed--;
298 * Start a new file
300 lastino = blkp->bi_inode;
301 if (blkp->bi_inode == LFS_IFILE_INUM)
302 v_daddr = fs->lfs_idaddr;
303 else {
304 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
305 /* XXX fix for force write */
306 v_daddr = ifp->if_daddr;
307 brelse(bp, 0);
309 if (v_daddr == LFS_UNUSED_DADDR)
310 continue;
312 /* Get the vnode/inode. */
313 error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
314 &vp,
315 (blkp->bi_lbn == LFS_UNUSED_LBN
316 ? blkp->bi_bp
317 : NULL));
319 if (!error) {
320 numrefed++;
322 if (error) {
323 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
324 " failed with %d (ino %d, segment %d)\n",
325 error, blkp->bi_inode,
326 dtosn(fs, blkp->bi_daddr)));
328 * If we got EAGAIN, that means that the
329 * Inode was locked. This is
330 * recoverable: just clean the rest of
331 * this segment, and let the cleaner try
332 * again with another. (When the
333 * cleaner runs again, this segment will
334 * sort high on the list, since it is
335 * now almost entirely empty.) But, we
336 * still set v_daddr = LFS_UNUSED_ADDR
337 * so as not to test this over and over
338 * again.
340 if (error == EAGAIN) {
341 error = 0;
342 do_again++;
344 #ifdef DIAGNOSTIC
345 else if (error != ENOENT)
346 panic("lfs_markv VFS_VGET FAILED");
347 #endif
348 /* lastino = LFS_UNUSED_INUM; */
349 v_daddr = LFS_UNUSED_DADDR;
350 vp = NULL;
351 ip = NULL;
352 continue;
354 ip = VTOI(vp);
355 ninowritten++;
356 } else if (v_daddr == LFS_UNUSED_DADDR) {
358 * This can only happen if the vnode is dead (or
359 * in any case we can't get it...e.g., it is
360 * inlocked). Keep going.
362 continue;
365 /* Past this point we are guaranteed that vp, ip are valid. */
367 /* Can't clean VU_DIROP directories in case of truncation */
368 /* XXX - maybe we should mark removed dirs specially? */
369 if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
370 do_again++;
371 continue;
374 /* If this BLOCK_INFO didn't contain a block, keep going. */
375 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
376 /* XXX need to make sure that the inode gets written in this case */
377 /* XXX but only write the inode if it's the right one */
378 if (blkp->bi_inode != LFS_IFILE_INUM) {
379 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
380 if (ifp->if_daddr == blkp->bi_daddr) {
381 mutex_enter(&lfs_lock);
382 LFS_SET_UINO(ip, IN_CLEANING);
383 mutex_exit(&lfs_lock);
385 brelse(bp, 0);
387 continue;
390 b_daddr = 0;
391 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
392 dbtofsb(fs, b_daddr) != blkp->bi_daddr)
394 if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
395 dtosn(fs, blkp->bi_daddr))
397 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
398 (long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
400 do_again++;
401 continue;
405 * Check block sizes. The blocks being cleaned come from
406 * disk, so they should have the same size as their on-disk
407 * counterparts.
409 if (blkp->bi_lbn >= 0)
410 obsize = blksize(fs, ip, blkp->bi_lbn);
411 else
412 obsize = fs->lfs_bsize;
413 /* Check for fragment size change */
414 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
415 obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
417 if (obsize != blkp->bi_size) {
418 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
419 " size (%ld != %d), try again\n",
420 blkp->bi_inode, (long long)blkp->bi_lbn,
421 (long) obsize, blkp->bi_size));
422 do_again++;
423 continue;
427 * If we get to here, then we are keeping the block. If
428 * it is an indirect block, we want to actually put it
429 * in the buffer cache so that it can be updated in the
430 * finish_meta section. If it's not, we need to
431 * allocate a fake buffer so that writeseg can perform
432 * the copyin and write the buffer.
434 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
435 /* Data Block */
436 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
437 blkp->bi_size, blkp->bi_bp);
438 /* Pretend we used bread() to get it */
439 bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
440 } else {
441 /* Indirect block or ifile */
442 if (blkp->bi_size != fs->lfs_bsize &&
443 ip->i_number != LFS_IFILE_INUM)
444 panic("lfs_markv: partial indirect block?"
445 " size=%d\n", blkp->bi_size);
446 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
447 if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
449 * The block in question was not found
450 * in the cache; i.e., the block that
451 * getblk() returned is empty. So, we
452 * can (and should) copy in the
453 * contents, because we've already
454 * determined that this was the right
455 * version of this block on disk.
457 * And, it can't have changed underneath
458 * us, because we have the segment lock.
460 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
461 if (error)
462 goto err2;
465 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
466 goto err2;
468 nblkwritten++;
470 * XXX should account indirect blocks and ifile pages as well
472 if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
473 > LFS_MARKV_MAX_BLOCKS) {
474 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
475 nblkwritten, ninowritten));
476 lfs_segwrite(mntp, SEGM_CLEAN);
477 nblkwritten = ninowritten = 0;
482 * Finish the old file, if there was one
484 if (v_daddr != LFS_UNUSED_DADDR) {
485 lfs_vunref(vp);
486 numrefed--;
489 #ifdef DIAGNOSTIC
490 if (numrefed != 0)
491 panic("lfs_markv: numrefed=%d", numrefed);
492 #endif
493 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
494 nblkwritten, ninowritten));
497 * The last write has to be SEGM_SYNC, because of calling semantics.
498 * It also has to be SEGM_CKP, because otherwise we could write
499 * over the newly cleaned data contained in a checkpoint, and then
500 * we'd be unhappy at recovery time.
502 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
504 lfs_segunlock(fs);
506 vfs_unbusy(mntp, false, NULL);
507 if (error)
508 return (error);
509 else if (do_again)
510 return EAGAIN;
512 return 0;
514 err2:
515 DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
518 * XXX we're here because copyin() failed.
519 * XXX it means that we can't trust the cleanerd. too bad.
520 * XXX how can we recover from this?
523 err3:
524 KERNEL_UNLOCK_ONE(NULL);
526 * XXX should do segwrite here anyway?
529 if (v_daddr != LFS_UNUSED_DADDR) {
530 lfs_vunref(vp);
531 --numrefed;
534 lfs_segunlock(fs);
535 vfs_unbusy(mntp, false, NULL);
536 #ifdef DIAGNOSTIC
537 if (numrefed != 0)
538 panic("lfs_markv: numrefed=%d", numrefed);
539 #endif
541 return (error);
545 * sys_lfs_bmapv:
547 * This will fill in the current disk address for arrays of blocks.
549 * 0 on success
550 * -1/errno is return on error.
552 #ifdef USE_64BIT_SYSCALLS
554 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
556 /* {
557 syscallarg(fsid_t *) fsidp;
558 syscallarg(struct block_info *) blkiov;
559 syscallarg(int) blkcnt;
560 } */
561 BLOCK_INFO *blkiov;
562 int blkcnt, error;
563 fsid_t fsid;
564 struct lfs *fs;
565 struct mount *mntp;
567 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
568 NULL)) != 0)
569 return (error);
571 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
572 return (error);
574 if ((mntp = vfs_getvfs(&fsid)) == NULL)
575 return (ENOENT);
576 fs = VFSTOUFS(mntp)->um_lfs;
578 blkcnt = SCARG(uap, blkcnt);
579 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
580 return (EINVAL);
581 KERNEL_LOCK(1, NULL);
582 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
583 if ((error = copyin(SCARG(uap, blkiov), blkiov,
584 blkcnt * sizeof(BLOCK_INFO))) != 0)
585 goto out;
587 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
588 copyout(blkiov, SCARG(uap, blkiov),
589 blkcnt * sizeof(BLOCK_INFO));
590 out:
591 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
592 KERNEL_UNLOCK_ONE(NULL);
593 return error;
595 #else
597 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
599 /* {
600 syscallarg(fsid_t *) fsidp;
601 syscallarg(struct block_info *) blkiov;
602 syscallarg(int) blkcnt;
603 } */
604 BLOCK_INFO *blkiov;
605 BLOCK_INFO_15 *blkiov15;
606 int i, blkcnt, error;
607 fsid_t fsid;
608 struct lfs *fs;
609 struct mount *mntp;
611 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
612 NULL)) != 0)
613 return (error);
615 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
616 return (error);
618 if ((mntp = vfs_getvfs(&fsid)) == NULL)
619 return (ENOENT);
620 fs = VFSTOUFS(mntp)->um_lfs;
622 blkcnt = SCARG(uap, blkcnt);
623 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
624 return (EINVAL);
625 KERNEL_LOCK(1, NULL);
626 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
627 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
628 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
629 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
630 goto out;
632 for (i = 0; i < blkcnt; i++) {
633 blkiov[i].bi_inode = blkiov15[i].bi_inode;
634 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
635 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
636 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
637 blkiov[i].bi_version = blkiov15[i].bi_version;
638 blkiov[i].bi_bp = blkiov15[i].bi_bp;
639 blkiov[i].bi_size = blkiov15[i].bi_size;
642 if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
643 for (i = 0; i < blkcnt; i++) {
644 blkiov15[i].bi_inode = blkiov[i].bi_inode;
645 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
646 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
647 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
648 blkiov15[i].bi_version = blkiov[i].bi_version;
649 blkiov15[i].bi_bp = blkiov[i].bi_bp;
650 blkiov15[i].bi_size = blkiov[i].bi_size;
652 copyout(blkiov15, SCARG(uap, blkiov),
653 blkcnt * sizeof(BLOCK_INFO_15));
655 out:
656 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
657 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
658 KERNEL_UNLOCK_ONE(NULL);
659 return error;
661 #endif
664 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
666 BLOCK_INFO *blkp;
667 IFILE *ifp;
668 struct buf *bp;
669 struct inode *ip = NULL;
670 struct lfs *fs;
671 struct mount *mntp;
672 struct ufsmount *ump;
673 struct vnode *vp;
674 ino_t lastino;
675 daddr_t v_daddr;
676 int cnt, error;
677 int numrefed = 0;
679 lfs_cleaner_pid = p->p_pid;
681 if ((mntp = vfs_getvfs(fsidp)) == NULL)
682 return (ENOENT);
684 ump = VFSTOUFS(mntp);
685 if ((error = vfs_busy(mntp, NULL)) != 0)
686 return (error);
688 cnt = blkcnt;
690 fs = VFSTOUFS(mntp)->um_lfs;
692 error = 0;
694 /* these were inside the initialization for the for loop */
695 v_daddr = LFS_UNUSED_DADDR;
696 lastino = LFS_UNUSED_INUM;
697 for (blkp = blkiov; cnt--; ++blkp)
700 * Get the IFILE entry (only once) and see if the file still
701 * exists.
703 if (lastino != blkp->bi_inode) {
705 * Finish the old file, if there was one. The presence
706 * of a usable vnode in vp is signaled by a valid
707 * v_daddr.
709 if (v_daddr != LFS_UNUSED_DADDR) {
710 lfs_vunref(vp);
711 numrefed--;
715 * Start a new file
717 lastino = blkp->bi_inode;
718 if (blkp->bi_inode == LFS_IFILE_INUM)
719 v_daddr = fs->lfs_idaddr;
720 else {
721 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
722 v_daddr = ifp->if_daddr;
723 brelse(bp, 0);
725 if (v_daddr == LFS_UNUSED_DADDR) {
726 blkp->bi_daddr = LFS_UNUSED_DADDR;
727 continue;
730 * A regular call to VFS_VGET could deadlock
731 * here. Instead, we try an unlocked access.
733 mutex_enter(&ufs_ihash_lock);
734 vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
735 if (vp != NULL && !(vp->v_iflag & VI_XLOCK)) {
736 ip = VTOI(vp);
737 mutex_enter(vp->v_interlock);
738 mutex_exit(&ufs_ihash_lock);
739 if (lfs_vref(vp)) {
740 v_daddr = LFS_UNUSED_DADDR;
741 continue;
743 numrefed++;
744 } else {
745 mutex_exit(&ufs_ihash_lock);
747 * Don't VFS_VGET if we're being unmounted,
748 * since we hold vfs_busy().
750 if (mntp->mnt_iflag & IMNT_UNMOUNT) {
751 v_daddr = LFS_UNUSED_DADDR;
752 continue;
754 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
755 if (error) {
756 DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
757 "%d failed with %d",
758 blkp->bi_inode,error));
759 v_daddr = LFS_UNUSED_DADDR;
760 continue;
761 } else {
762 KASSERT(VOP_ISLOCKED(vp));
763 VOP_UNLOCK(vp);
764 numrefed++;
767 ip = VTOI(vp);
768 } else if (v_daddr == LFS_UNUSED_DADDR) {
770 * This can only happen if the vnode is dead.
771 * Keep going. Note that we DO NOT set the
772 * bi_addr to anything -- if we failed to get
773 * the vnode, for example, we want to assume
774 * conservatively that all of its blocks *are*
775 * located in the segment in question.
776 * lfs_markv will throw them out if we are
777 * wrong.
779 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
780 continue;
783 /* Past this point we are guaranteed that vp, ip are valid. */
785 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
787 * We just want the inode address, which is
788 * conveniently in v_daddr.
790 blkp->bi_daddr = v_daddr;
791 } else {
792 daddr_t bi_daddr;
794 /* XXX ondisk32 */
795 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
796 &bi_daddr, NULL);
797 if (error)
799 blkp->bi_daddr = LFS_UNUSED_DADDR;
800 continue;
802 blkp->bi_daddr = dbtofsb(fs, bi_daddr);
803 /* Fill in the block size, too */
804 if (blkp->bi_lbn >= 0)
805 blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
806 else
807 blkp->bi_size = fs->lfs_bsize;
812 * Finish the old file, if there was one. The presence
813 * of a usable vnode in vp is signaled by a valid v_daddr.
815 if (v_daddr != LFS_UNUSED_DADDR) {
816 lfs_vunref(vp);
817 numrefed--;
820 #ifdef DIAGNOSTIC
821 if (numrefed != 0)
822 panic("lfs_bmapv: numrefed=%d", numrefed);
823 #endif
825 vfs_unbusy(mntp, false, NULL);
827 return 0;
831 * sys_lfs_segclean:
833 * Mark the segment clean.
835 * 0 on success
836 * -1/errno is return on error.
839 sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
841 /* {
842 syscallarg(fsid_t *) fsidp;
843 syscallarg(u_long) segment;
844 } */
845 struct lfs *fs;
846 struct mount *mntp;
847 fsid_t fsid;
848 int error;
849 unsigned long segnum;
851 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
852 NULL)) != 0)
853 return (error);
855 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
856 return (error);
857 if ((mntp = vfs_getvfs(&fsid)) == NULL)
858 return (ENOENT);
860 fs = VFSTOUFS(mntp)->um_lfs;
861 segnum = SCARG(uap, segment);
863 if ((error = vfs_busy(mntp, NULL)) != 0)
864 return (error);
866 KERNEL_LOCK(1, NULL);
867 lfs_seglock(fs, SEGM_PROT);
868 error = lfs_do_segclean(fs, segnum);
869 lfs_segunlock(fs);
870 KERNEL_UNLOCK_ONE(NULL);
871 vfs_unbusy(mntp, false, NULL);
872 return error;
876 * Actually mark the segment clean.
877 * Must be called with the segment lock held.
880 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
882 extern int lfs_dostats;
883 struct buf *bp;
884 CLEANERINFO *cip;
885 SEGUSE *sup;
887 if (dtosn(fs, fs->lfs_curseg) == segnum) {
888 return (EBUSY);
891 LFS_SEGENTRY(sup, fs, segnum, bp);
892 if (sup->su_nbytes) {
893 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
894 " %d live bytes\n", segnum, sup->su_nbytes));
895 brelse(bp, 0);
896 return (EBUSY);
898 if (sup->su_flags & SEGUSE_ACTIVE) {
899 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
900 " segment is active\n", segnum));
901 brelse(bp, 0);
902 return (EBUSY);
904 if (!(sup->su_flags & SEGUSE_DIRTY)) {
905 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
906 " segment is already clean\n", segnum));
907 brelse(bp, 0);
908 return (EALREADY);
911 fs->lfs_avail += segtod(fs, 1);
912 if (sup->su_flags & SEGUSE_SUPERBLOCK)
913 fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
914 if (fs->lfs_version > 1 && segnum == 0 &&
915 fs->lfs_start < btofsb(fs, LFS_LABELPAD))
916 fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
917 mutex_enter(&lfs_lock);
918 fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
919 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
920 fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
921 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
922 if (fs->lfs_dmeta < 0)
923 fs->lfs_dmeta = 0;
924 mutex_exit(&lfs_lock);
925 sup->su_flags &= ~SEGUSE_DIRTY;
926 LFS_WRITESEGENTRY(sup, fs, segnum, bp);
928 LFS_CLEANERINFO(cip, fs, bp);
929 ++cip->clean;
930 --cip->dirty;
931 fs->lfs_nclean = cip->clean;
932 cip->bfree = fs->lfs_bfree;
933 mutex_enter(&lfs_lock);
934 cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
935 wakeup(&fs->lfs_avail);
936 mutex_exit(&lfs_lock);
937 (void) LFS_BWRITE_LOG(bp);
939 if (lfs_dostats)
940 ++lfs_stats.segs_reclaimed;
942 return (0);
946 * This will block until a segment in file system fsid is written. A timeout
947 * in milliseconds may be specified which will awake the cleaner automatically.
948 * An fsid of -1 means any file system, and a timeout of 0 means forever.
951 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
953 struct mount *mntp;
954 void *addr;
955 u_long timeout;
956 int error;
958 KERNEL_LOCK(1, NULL);
959 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
960 addr = &lfs_allclean_wakeup;
961 else
962 addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
964 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
965 * XXX IS THAT WHAT IS INTENDED?
967 timeout = tvtohz(tv);
968 error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
969 KERNEL_UNLOCK_ONE(NULL);
970 return (error == ERESTART ? EINTR : 0);
974 * sys_lfs_segwait:
976 * System call wrapper around lfs_segwait().
978 * 0 on success
979 * 1 on timeout
980 * -1/errno is return on error.
983 sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap,
984 register_t *retval)
986 /* {
987 syscallarg(fsid_t *) fsidp;
988 syscallarg(struct timeval *) tv;
989 } */
990 struct timeval atv;
991 fsid_t fsid;
992 int error;
994 /* XXX need we be su to segwait? */
995 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
996 NULL)) != 0)
997 return (error);
998 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
999 return (error);
1001 if (SCARG(uap, tv)) {
1002 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
1003 if (error)
1004 return (error);
1005 if (itimerfix(&atv))
1006 return (EINVAL);
1007 } else /* NULL or invalid */
1008 atv.tv_sec = atv.tv_usec = 0;
1009 return lfs_segwait(&fsid, &atv);
1013 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
1014 * daddr from the ifile, so don't look it up again. If the cleaner is
1015 * processing IINFO structures, it may have the ondisk inode already, so
1016 * don't go retrieving it again.
1018 * we lfs_vref, and it is the caller's responsibility to lfs_vunref
1019 * when finished.
1023 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
1025 struct vnode *vp;
1027 mutex_enter(&ufs_ihash_lock);
1028 if ((vp = ufs_ihashlookup(dev, ino)) != NULL) {
1029 mutex_enter(vp->v_interlock);
1030 mutex_exit(&ufs_ihash_lock);
1031 if (vp->v_iflag & VI_XLOCK) {
1032 DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VI_XLOCK\n",
1033 ino));
1034 lfs_stats.clean_vnlocked++;
1035 mutex_exit(vp->v_interlock);
1036 return EAGAIN;
1038 if (lfs_vref(vp)) {
1039 DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
1040 " for ino %d\n", ino));
1041 lfs_stats.clean_inlocked++;
1042 return EAGAIN;
1044 } else {
1045 mutex_exit(&ufs_ihash_lock);
1047 *vpp = vp;
1049 return (0);
1053 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp,
1054 struct ufs1_dinode *dinp)
1056 struct inode *ip;
1057 struct ufs1_dinode *dip;
1058 struct vnode *vp;
1059 struct ufsmount *ump;
1060 dev_t dev;
1061 int error, retries;
1062 struct buf *bp;
1063 struct lfs *fs;
1065 ump = VFSTOUFS(mp);
1066 dev = ump->um_dev;
1067 fs = ump->um_lfs;
1070 * Wait until the filesystem is fully mounted before allowing vget
1071 * to complete. This prevents possible problems with roll-forward.
1073 mutex_enter(&lfs_lock);
1074 while (fs->lfs_flags & LFS_NOTYET) {
1075 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
1076 &lfs_lock);
1078 mutex_exit(&lfs_lock);
1081 * This is playing fast and loose. Someone may have the inode
1082 * locked, in which case they are going to be distinctly unhappy
1083 * if we trash something.
1086 error = lfs_fasthashget(dev, ino, vpp);
1087 if (error != 0 || *vpp != NULL)
1088 return (error);
1091 * getnewvnode(9) will call vfs_busy, which will block if the
1092 * filesystem is being unmounted; but umount(9) is waiting for
1093 * us because we're already holding the fs busy.
1094 * XXXMP
1096 if (mp->mnt_iflag & IMNT_UNMOUNT) {
1097 *vpp = NULL;
1098 return EDEADLK;
1100 error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, NULL, &vp);
1101 if (error) {
1102 *vpp = NULL;
1103 return (error);
1106 mutex_enter(&ufs_hashlock);
1107 error = lfs_fasthashget(dev, ino, vpp);
1108 if (error != 0 || *vpp != NULL) {
1109 mutex_exit(&ufs_hashlock);
1110 ungetnewvnode(vp);
1111 return (error);
1114 /* Allocate new vnode/inode. */
1115 lfs_vcreate(mp, ino, vp);
1118 * Put it onto its hash chain and lock it so that other requests for
1119 * this inode will block if they arrive while we are sleeping waiting
1120 * for old data structures to be purged or for the contents of the
1121 * disk portion of this inode to be read.
1123 ip = VTOI(vp);
1124 ufs_ihashins(ip);
1125 mutex_exit(&ufs_hashlock);
1128 * XXX
1129 * This may not need to be here, logically it should go down with
1130 * the i_devvp initialization.
1131 * Ask Kirk.
1133 ip->i_lfs = fs;
1135 /* Read in the disk contents for the inode, copy into the inode. */
1136 if (dinp) {
1137 error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
1138 if (error) {
1139 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
1140 " for ino %d\n", ino));
1141 ufs_ihashrem(ip);
1143 /* Unlock and discard unneeded inode. */
1144 VOP_UNLOCK(vp);
1145 lfs_vunref(vp);
1146 *vpp = NULL;
1147 return (error);
1149 if (ip->i_number != ino)
1150 panic("lfs_fastvget: I was fed the wrong inode!");
1151 } else {
1152 retries = 0;
1153 again:
1154 error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
1155 NOCRED, 0, &bp);
1156 if (error) {
1157 DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
1158 error));
1160 * The inode does not contain anything useful, so it
1161 * would be misleading to leave it on its hash chain.
1162 * Iput() will return it to the free list.
1164 ufs_ihashrem(ip);
1166 /* Unlock and discard unneeded inode. */
1167 VOP_UNLOCK(vp);
1168 lfs_vunref(vp);
1169 brelse(bp, 0);
1170 *vpp = NULL;
1171 return (error);
1173 dip = lfs_ifind(ump->um_lfs, ino, bp);
1174 if (dip == NULL) {
1175 /* Assume write has not completed yet; try again */
1176 brelse(bp, BC_INVAL);
1177 ++retries;
1178 if (retries > LFS_IFIND_RETRIES)
1179 panic("lfs_fastvget: dinode not found");
1180 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
1181 " retrying...\n"));
1182 goto again;
1184 *ip->i_din.ffs1_din = *dip;
1185 brelse(bp, 0);
1187 lfs_vinit(mp, &vp);
1189 *vpp = vp;
1191 KASSERT(VOP_ISLOCKED(vp));
1192 VOP_UNLOCK(vp);
1194 return (0);
1198 * Make up a "fake" cleaner buffer, copy the data from userland into it.
1200 struct buf *
1201 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, void *uaddr)
1203 struct buf *bp;
1204 int error;
1206 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
1208 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
1209 error = copyin(uaddr, bp->b_data, size);
1210 if (error) {
1211 lfs_freebuf(fs, bp);
1212 return NULL;
1214 KDASSERT(bp->b_iodone == lfs_callback);
1216 #if 0
1217 mutex_enter(&lfs_lock);
1218 ++fs->lfs_iocount;
1219 mutex_exit(&lfs_lock);
1220 #endif
1221 bp->b_bufsize = size;
1222 bp->b_bcount = size;
1223 return (bp);