vm: restore stacktrace on SIGSEGV
[minix.git] / commands / find / operator.c
blob5ed5c6414d31c0fb6fef1b69b1b0df48c997cb4d
1 /* $NetBSD: operator.c,v 1.9 2006/10/11 19:51:10 apb Exp $ */
3 /*-
4 * Copyright (c) 1990, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Cimarron D. Taylor of the University of California, Berkeley.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #include <sys/cdefs.h>
36 #include <sys/types.h>
38 #include <err.h>
39 #include <fts.h>
40 #include <stdio.h>
42 #include "find.h"
44 static PLAN *yanknode(PLAN **);
45 static PLAN *yankexpr(PLAN **);
48 * yanknode --
49 * destructively removes the top from the plan
51 static PLAN *
52 yanknode(PLAN **planp) /* pointer to top of plan (modified) */
54 PLAN *node; /* top node removed from the plan */
56 if ((node = (*planp)) == NULL)
57 return (NULL);
58 (*planp) = (*planp)->next;
59 node->next = NULL;
60 return (node);
64 * yankexpr --
65 * Removes one expression from the plan. This is used mainly by
66 * paren_squish. In comments below, an expression is either a
67 * simple node or a N_EXPR node containing a list of simple nodes.
69 static PLAN *
70 yankexpr(PLAN **planp) /* pointer to top of plan (modified) */
72 PLAN *next; /* temp node holding subexpression results */
73 PLAN *node; /* pointer to returned node or expression */
74 PLAN *tail; /* pointer to tail of subplan */
75 PLAN *subplan; /* pointer to head of ( ) expression */
77 /* first pull the top node from the plan */
78 if ((node = yanknode(planp)) == NULL)
79 return (NULL);
82 * If the node is an '(' then we recursively slurp up expressions
83 * until we find its associated ')'. If it's a closing paren we
84 * just return it and unwind our recursion; all other nodes are
85 * complete expressions, so just return them.
87 if (node->type == N_OPENPAREN)
88 for (tail = subplan = NULL;;) {
89 if ((next = yankexpr(planp)) == NULL)
90 err(1, "(: missing closing ')'");
92 * If we find a closing ')' we store the collected
93 * subplan in our '(' node and convert the node to
94 * a N_EXPR. The ')' we found is ignored. Otherwise,
95 * we just continue to add whatever we get to our
96 * subplan.
98 if (next->type == N_CLOSEPAREN) {
99 if (subplan == NULL)
100 errx(1, "(): empty inner expression");
101 node->p_data[0] = subplan;
102 node->type = N_EXPR;
103 node->eval = f_expr;
104 break;
105 } else {
106 if (subplan == NULL)
107 tail = subplan = next;
108 else {
109 tail->next = next;
110 tail = next;
112 tail->next = NULL;
115 return (node);
119 * paren_squish --
120 * replaces "parentheisized" plans in our search plan with "expr" nodes.
122 PLAN *
123 paren_squish(PLAN *plan) /* plan with ( ) nodes */
125 PLAN *expr; /* pointer to next expression */
126 PLAN *tail; /* pointer to tail of result plan */
127 PLAN *result; /* pointer to head of result plan */
129 result = tail = NULL;
132 * the basic idea is to have yankexpr do all our work and just
133 * collect it's results together.
135 while ((expr = yankexpr(&plan)) != NULL) {
137 * if we find an unclaimed ')' it means there is a missing
138 * '(' someplace.
140 if (expr->type == N_CLOSEPAREN)
141 errx(1, "): no beginning '('");
143 /* add the expression to our result plan */
144 if (result == NULL)
145 tail = result = expr;
146 else {
147 tail->next = expr;
148 tail = expr;
150 tail->next = NULL;
152 return (result);
156 * not_squish --
157 * compresses "!" expressions in our search plan.
159 PLAN *
160 not_squish(PLAN *plan) /* plan to process */
162 PLAN *next; /* next node being processed */
163 PLAN *node; /* temporary node used in N_NOT processing */
164 PLAN *tail; /* pointer to tail of result plan */
165 PLAN *result; /* pointer to head of result plan */
167 tail = result = next = NULL;
169 while ((next = yanknode(&plan)) != NULL) {
171 * if we encounter a ( expression ) then look for nots in
172 * the expr subplan.
174 if (next->type == N_EXPR)
175 next->p_data[0] = not_squish(next->p_data[0]);
178 * if we encounter a not, then snag the next node and place
179 * it in the not's subplan. As an optimization we compress
180 * several not's to zero or one not.
182 if (next->type == N_NOT) {
183 int notlevel = 1;
185 node = yanknode(&plan);
186 while (node != NULL && node->type == N_NOT) {
187 ++notlevel;
188 node = yanknode(&plan);
190 if (node == NULL)
191 errx(1, "!: no following expression");
192 if (node->type == N_OR)
193 errx(1, "!: nothing between ! and -o");
194 if (node->type == N_EXPR)
195 node = not_squish(node);
196 if (notlevel % 2 != 1)
197 next = node;
198 else
199 next->p_data[0] = node;
202 /* add the node to our result plan */
203 if (result == NULL)
204 tail = result = next;
205 else {
206 tail->next = next;
207 tail = next;
209 tail->next = NULL;
211 return (result);
215 * or_squish --
216 * compresses -o expressions in our search plan.
218 PLAN *
219 or_squish(PLAN *plan) /* plan with ors to be squished */
221 PLAN *next; /* next node being processed */
222 PLAN *tail; /* pointer to tail of result plan */
223 PLAN *result; /* pointer to head of result plan */
225 tail = result = next = NULL;
227 while ((next = yanknode(&plan)) != NULL) {
229 * if we encounter a ( expression ) then look for or's in
230 * the expr subplan.
232 if (next->type == N_EXPR)
233 next->p_data[0] = or_squish(next->p_data[0]);
235 /* if we encounter a not then look for not's in the subplan */
236 if (next->type == N_NOT)
237 next->p_data[0] = or_squish(next->p_data[0]);
240 * if we encounter an or, then place our collected plan in the
241 * or's first subplan and then recursively collect the
242 * remaining stuff into the second subplan and return the or.
244 if (next->type == N_OR) {
245 if (result == NULL)
246 errx(1, "-o: no expression before -o");
247 next->p_data[0] = result;
248 next->p_data[1] = or_squish(plan);
249 if (next->p_data[1] == NULL)
250 errx(1, "-o: no expression after -o");
251 return (next);
254 /* add the node to our result plan */
255 if (result == NULL)
256 tail = result = next;
257 else {
258 tail->next = next;
259 tail = next;
261 tail->next = NULL;
263 return (result);