vm: fix sanity checks on arm
[minix.git] / sys / ufs / lfs / lfs_vnops.c
blobf30a5d20ce21424eb6f18af325957b9fcd00454f
1 /* $NetBSD: lfs_vnops.c,v 1.238 2011/09/20 14:01:33 chs Exp $ */
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant@hhhh.org>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 * The Regents of the University of California. All rights reserved.
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
59 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.238 2011/09/20 14:01:33 chs Exp $");
65 #ifdef _KERNEL_OPT
66 #include "opt_compat_netbsd.h"
67 #include "opt_uvm_page_trkown.h"
68 #endif
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/namei.h>
73 #include <sys/resourcevar.h>
74 #include <sys/kernel.h>
75 #include <sys/file.h>
76 #include <sys/stat.h>
77 #include <sys/buf.h>
78 #include <sys/proc.h>
79 #include <sys/mount.h>
80 #include <sys/vnode.h>
81 #include <sys/pool.h>
82 #include <sys/signalvar.h>
83 #include <sys/kauth.h>
84 #include <sys/syslog.h>
85 #include <sys/fstrans.h>
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/dir.h>
93 #include <ufs/ufs/ufsmount.h>
94 #include <ufs/ufs/ufs_extern.h>
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_extern.h>
104 extern pid_t lfs_writer_daemon;
105 int lfs_ignore_lazy_sync = 1;
107 /* Global vfs data structures for lfs. */
108 int (**lfs_vnodeop_p)(void *);
109 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
110 { &vop_default_desc, vn_default_error },
111 { &vop_lookup_desc, ufs_lookup }, /* lookup */
112 { &vop_create_desc, lfs_create }, /* create */
113 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
114 { &vop_mknod_desc, lfs_mknod }, /* mknod */
115 { &vop_open_desc, ufs_open }, /* open */
116 { &vop_close_desc, lfs_close }, /* close */
117 { &vop_access_desc, ufs_access }, /* access */
118 { &vop_getattr_desc, lfs_getattr }, /* getattr */
119 { &vop_setattr_desc, lfs_setattr }, /* setattr */
120 { &vop_read_desc, lfs_read }, /* read */
121 { &vop_write_desc, lfs_write }, /* write */
122 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
123 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
124 { &vop_poll_desc, ufs_poll }, /* poll */
125 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
126 { &vop_revoke_desc, ufs_revoke }, /* revoke */
127 { &vop_mmap_desc, lfs_mmap }, /* mmap */
128 { &vop_fsync_desc, lfs_fsync }, /* fsync */
129 { &vop_seek_desc, ufs_seek }, /* seek */
130 { &vop_remove_desc, lfs_remove }, /* remove */
131 { &vop_link_desc, lfs_link }, /* link */
132 { &vop_rename_desc, lfs_rename }, /* rename */
133 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
134 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
135 { &vop_symlink_desc, lfs_symlink }, /* symlink */
136 { &vop_readdir_desc, ufs_readdir }, /* readdir */
137 { &vop_readlink_desc, ufs_readlink }, /* readlink */
138 { &vop_abortop_desc, ufs_abortop }, /* abortop */
139 { &vop_inactive_desc, lfs_inactive }, /* inactive */
140 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
141 { &vop_lock_desc, ufs_lock }, /* lock */
142 { &vop_unlock_desc, ufs_unlock }, /* unlock */
143 { &vop_bmap_desc, ufs_bmap }, /* bmap */
144 { &vop_strategy_desc, lfs_strategy }, /* strategy */
145 { &vop_print_desc, ufs_print }, /* print */
146 { &vop_islocked_desc, ufs_islocked }, /* islocked */
147 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
148 { &vop_advlock_desc, ufs_advlock }, /* advlock */
149 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
150 { &vop_getpages_desc, lfs_getpages }, /* getpages */
151 { &vop_putpages_desc, lfs_putpages }, /* putpages */
152 { NULL, NULL }
154 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
155 { &lfs_vnodeop_p, lfs_vnodeop_entries };
157 int (**lfs_specop_p)(void *);
158 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
159 { &vop_default_desc, vn_default_error },
160 { &vop_lookup_desc, spec_lookup }, /* lookup */
161 { &vop_create_desc, spec_create }, /* create */
162 { &vop_mknod_desc, spec_mknod }, /* mknod */
163 { &vop_open_desc, spec_open }, /* open */
164 { &vop_close_desc, lfsspec_close }, /* close */
165 { &vop_access_desc, ufs_access }, /* access */
166 { &vop_getattr_desc, lfs_getattr }, /* getattr */
167 { &vop_setattr_desc, lfs_setattr }, /* setattr */
168 { &vop_read_desc, ufsspec_read }, /* read */
169 { &vop_write_desc, ufsspec_write }, /* write */
170 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
171 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
172 { &vop_poll_desc, spec_poll }, /* poll */
173 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
174 { &vop_revoke_desc, spec_revoke }, /* revoke */
175 { &vop_mmap_desc, spec_mmap }, /* mmap */
176 { &vop_fsync_desc, spec_fsync }, /* fsync */
177 { &vop_seek_desc, spec_seek }, /* seek */
178 { &vop_remove_desc, spec_remove }, /* remove */
179 { &vop_link_desc, spec_link }, /* link */
180 { &vop_rename_desc, spec_rename }, /* rename */
181 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
182 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
183 { &vop_symlink_desc, spec_symlink }, /* symlink */
184 { &vop_readdir_desc, spec_readdir }, /* readdir */
185 { &vop_readlink_desc, spec_readlink }, /* readlink */
186 { &vop_abortop_desc, spec_abortop }, /* abortop */
187 { &vop_inactive_desc, lfs_inactive }, /* inactive */
188 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
189 { &vop_lock_desc, ufs_lock }, /* lock */
190 { &vop_unlock_desc, ufs_unlock }, /* unlock */
191 { &vop_bmap_desc, spec_bmap }, /* bmap */
192 { &vop_strategy_desc, spec_strategy }, /* strategy */
193 { &vop_print_desc, ufs_print }, /* print */
194 { &vop_islocked_desc, ufs_islocked }, /* islocked */
195 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
196 { &vop_advlock_desc, spec_advlock }, /* advlock */
197 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
198 { &vop_getpages_desc, spec_getpages }, /* getpages */
199 { &vop_putpages_desc, spec_putpages }, /* putpages */
200 { NULL, NULL }
202 const struct vnodeopv_desc lfs_specop_opv_desc =
203 { &lfs_specop_p, lfs_specop_entries };
205 int (**lfs_fifoop_p)(void *);
206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
207 { &vop_default_desc, vn_default_error },
208 { &vop_lookup_desc, vn_fifo_bypass }, /* lookup */
209 { &vop_create_desc, vn_fifo_bypass }, /* create */
210 { &vop_mknod_desc, vn_fifo_bypass }, /* mknod */
211 { &vop_open_desc, vn_fifo_bypass }, /* open */
212 { &vop_close_desc, lfsfifo_close }, /* close */
213 { &vop_access_desc, ufs_access }, /* access */
214 { &vop_getattr_desc, lfs_getattr }, /* getattr */
215 { &vop_setattr_desc, lfs_setattr }, /* setattr */
216 { &vop_read_desc, ufsfifo_read }, /* read */
217 { &vop_write_desc, ufsfifo_write }, /* write */
218 { &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */
219 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
220 { &vop_poll_desc, vn_fifo_bypass }, /* poll */
221 { &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */
222 { &vop_revoke_desc, vn_fifo_bypass }, /* revoke */
223 { &vop_mmap_desc, vn_fifo_bypass }, /* mmap */
224 { &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
225 { &vop_seek_desc, vn_fifo_bypass }, /* seek */
226 { &vop_remove_desc, vn_fifo_bypass }, /* remove */
227 { &vop_link_desc, vn_fifo_bypass }, /* link */
228 { &vop_rename_desc, vn_fifo_bypass }, /* rename */
229 { &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */
230 { &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */
231 { &vop_symlink_desc, vn_fifo_bypass }, /* symlink */
232 { &vop_readdir_desc, vn_fifo_bypass }, /* readdir */
233 { &vop_readlink_desc, vn_fifo_bypass }, /* readlink */
234 { &vop_abortop_desc, vn_fifo_bypass }, /* abortop */
235 { &vop_inactive_desc, lfs_inactive }, /* inactive */
236 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
237 { &vop_lock_desc, ufs_lock }, /* lock */
238 { &vop_unlock_desc, ufs_unlock }, /* unlock */
239 { &vop_bmap_desc, vn_fifo_bypass }, /* bmap */
240 { &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
241 { &vop_print_desc, ufs_print }, /* print */
242 { &vop_islocked_desc, ufs_islocked }, /* islocked */
243 { &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */
244 { &vop_advlock_desc, vn_fifo_bypass }, /* advlock */
245 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
246 { &vop_putpages_desc, vn_fifo_bypass }, /* putpages */
247 { NULL, NULL }
249 const struct vnodeopv_desc lfs_fifoop_opv_desc =
250 { &lfs_fifoop_p, lfs_fifoop_entries };
252 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
254 #define LFS_READWRITE
255 #include <ufs/ufs/ufs_readwrite.c>
256 #undef LFS_READWRITE
259 * Synch an open file.
261 /* ARGSUSED */
263 lfs_fsync(void *v)
265 struct vop_fsync_args /* {
266 struct vnode *a_vp;
267 kauth_cred_t a_cred;
268 int a_flags;
269 off_t offlo;
270 off_t offhi;
271 } */ *ap = v;
272 struct vnode *vp = ap->a_vp;
273 int error, wait;
274 struct inode *ip = VTOI(vp);
275 struct lfs *fs = ip->i_lfs;
277 /* If we're mounted read-only, don't try to sync. */
278 if (fs->lfs_ronly)
279 return 0;
281 /* If a removed vnode is being cleaned, no need to sync here. */
282 if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
283 return 0;
286 * Trickle sync simply adds this vnode to the pager list, as if
287 * the pagedaemon had requested a pageout.
289 if (ap->a_flags & FSYNC_LAZY) {
290 if (lfs_ignore_lazy_sync == 0) {
291 mutex_enter(&lfs_lock);
292 if (!(ip->i_flags & IN_PAGING)) {
293 ip->i_flags |= IN_PAGING;
294 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
295 i_lfs_pchain);
297 wakeup(&lfs_writer_daemon);
298 mutex_exit(&lfs_lock);
300 return 0;
304 * If a vnode is bring cleaned, flush it out before we try to
305 * reuse it. This prevents the cleaner from writing files twice
306 * in the same partial segment, causing an accounting underflow.
308 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
309 lfs_vflush(vp);
312 wait = (ap->a_flags & FSYNC_WAIT);
313 do {
314 mutex_enter(vp->v_interlock);
315 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
316 round_page(ap->a_offhi),
317 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
318 if (error == EAGAIN) {
319 mutex_enter(&lfs_lock);
320 mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
321 hz / 100 + 1, &lfs_lock);
322 mutex_exit(&lfs_lock);
324 } while (error == EAGAIN);
325 if (error)
326 return error;
328 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
329 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
331 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
332 int l = 0;
333 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
334 curlwp->l_cred);
336 if (wait && !VPISEMPTY(vp))
337 LFS_SET_UINO(ip, IN_MODIFIED);
339 return error;
343 * Take IN_ADIROP off, then call ufs_inactive.
346 lfs_inactive(void *v)
348 struct vop_inactive_args /* {
349 struct vnode *a_vp;
350 } */ *ap = v;
352 lfs_unmark_vnode(ap->a_vp);
355 * The Ifile is only ever inactivated on unmount.
356 * Streamline this process by not giving it more dirty blocks.
358 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
359 mutex_enter(&lfs_lock);
360 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
361 mutex_exit(&lfs_lock);
362 VOP_UNLOCK(ap->a_vp);
363 return 0;
366 return ufs_inactive(v);
370 * These macros are used to bracket UFS directory ops, so that we can
371 * identify all the pages touched during directory ops which need to
372 * be ordered and flushed atomically, so that they may be recovered.
374 * Because we have to mark nodes VU_DIROP in order to prevent
375 * the cache from reclaiming them while a dirop is in progress, we must
376 * also manage the number of nodes so marked (otherwise we can run out).
377 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
378 * is decremented during segment write, when VU_DIROP is taken off.
380 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
381 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
382 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
383 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
384 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
385 static int lfs_set_dirop(struct vnode *, struct vnode *);
387 static int
388 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
390 struct lfs *fs;
391 int error;
393 KASSERT(VOP_ISLOCKED(dvp));
394 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
396 fs = VTOI(dvp)->i_lfs;
398 ASSERT_NO_SEGLOCK(fs);
400 * LFS_NRESERVE calculates direct and indirect blocks as well
401 * as an inode block; an overestimate in most cases.
403 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
404 return (error);
406 restart:
407 mutex_enter(&lfs_lock);
408 if (fs->lfs_dirops == 0) {
409 mutex_exit(&lfs_lock);
410 lfs_check(dvp, LFS_UNUSED_LBN, 0);
411 mutex_enter(&lfs_lock);
413 while (fs->lfs_writer) {
414 error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
415 "lfs_sdirop", 0, &lfs_lock);
416 if (error == EINTR) {
417 mutex_exit(&lfs_lock);
418 goto unreserve;
421 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
422 wakeup(&lfs_writer_daemon);
423 mutex_exit(&lfs_lock);
424 preempt();
425 goto restart;
428 if (lfs_dirvcount > LFS_MAX_DIROP) {
429 mutex_exit(&lfs_lock);
430 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
431 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
432 if ((error = mtsleep(&lfs_dirvcount,
433 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
434 &lfs_lock)) != 0) {
435 goto unreserve;
437 goto restart;
440 ++fs->lfs_dirops;
441 fs->lfs_doifile = 1;
442 mutex_exit(&lfs_lock);
444 /* Hold a reference so SET_ENDOP will be happy */
445 vref(dvp);
446 if (vp) {
447 vref(vp);
448 MARK_VNODE(vp);
451 MARK_VNODE(dvp);
452 return 0;
454 unreserve:
455 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
456 return error;
460 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
461 * in getnewvnode(), if we have a stacked filesystem mounted on top
462 * of us.
464 * NB: this means we have to clear the new vnodes on error. Fortunately
465 * SET_ENDOP is there to do that for us.
467 static int
468 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
470 int error;
471 struct lfs *fs;
473 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
474 ASSERT_NO_SEGLOCK(fs);
475 if (fs->lfs_ronly)
476 return EROFS;
477 if (vpp == NULL) {
478 return lfs_set_dirop(dvp, NULL);
480 error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
481 if (error) {
482 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
483 dvp, error));
484 return error;
486 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
487 ungetnewvnode(*vpp);
488 *vpp = NULL;
489 return error;
491 return 0;
494 #define SET_ENDOP_BASE(fs, dvp, str) \
495 do { \
496 mutex_enter(&lfs_lock); \
497 --(fs)->lfs_dirops; \
498 if (!(fs)->lfs_dirops) { \
499 if ((fs)->lfs_nadirop) { \
500 panic("SET_ENDOP: %s: no dirops but " \
501 " nadirop=%d", (str), \
502 (fs)->lfs_nadirop); \
504 wakeup(&(fs)->lfs_writer); \
505 mutex_exit(&lfs_lock); \
506 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
507 } else \
508 mutex_exit(&lfs_lock); \
509 } while(0)
510 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
511 do { \
512 UNMARK_VNODE(dvp); \
513 if (nvpp && *nvpp) \
514 UNMARK_VNODE(*nvpp); \
515 /* Check for error return to stem vnode leakage */ \
516 if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
517 ungetnewvnode(*(nvpp)); \
518 SET_ENDOP_BASE((fs), (dvp), (str)); \
519 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
520 vrele(dvp); \
521 } while(0)
522 #define SET_ENDOP_CREATE_AP(ap, str) \
523 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
524 (ap)->a_vpp, (str))
525 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
526 do { \
527 UNMARK_VNODE(dvp); \
528 if (ovp) \
529 UNMARK_VNODE(ovp); \
530 SET_ENDOP_BASE((fs), (dvp), (str)); \
531 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
532 vrele(dvp); \
533 if (ovp) \
534 vrele(ovp); \
535 } while(0)
537 void
538 lfs_mark_vnode(struct vnode *vp)
540 struct inode *ip = VTOI(vp);
541 struct lfs *fs = ip->i_lfs;
543 mutex_enter(&lfs_lock);
544 if (!(ip->i_flag & IN_ADIROP)) {
545 if (!(vp->v_uflag & VU_DIROP)) {
546 mutex_enter(vp->v_interlock);
547 (void)lfs_vref(vp);
548 ++lfs_dirvcount;
549 ++fs->lfs_dirvcount;
550 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
551 vp->v_uflag |= VU_DIROP;
553 ++fs->lfs_nadirop;
554 ip->i_flag |= IN_ADIROP;
555 } else
556 KASSERT(vp->v_uflag & VU_DIROP);
557 mutex_exit(&lfs_lock);
560 void
561 lfs_unmark_vnode(struct vnode *vp)
563 struct inode *ip = VTOI(vp);
565 if (ip && (ip->i_flag & IN_ADIROP)) {
566 KASSERT(vp->v_uflag & VU_DIROP);
567 mutex_enter(&lfs_lock);
568 --ip->i_lfs->lfs_nadirop;
569 mutex_exit(&lfs_lock);
570 ip->i_flag &= ~IN_ADIROP;
575 lfs_symlink(void *v)
577 struct vop_symlink_args /* {
578 struct vnode *a_dvp;
579 struct vnode **a_vpp;
580 struct componentname *a_cnp;
581 struct vattr *a_vap;
582 char *a_target;
583 } */ *ap = v;
584 int error;
586 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
587 vput(ap->a_dvp);
588 return error;
590 error = ufs_symlink(ap);
591 SET_ENDOP_CREATE_AP(ap, "symlink");
592 return (error);
596 lfs_mknod(void *v)
598 struct vop_mknod_args /* {
599 struct vnode *a_dvp;
600 struct vnode **a_vpp;
601 struct componentname *a_cnp;
602 struct vattr *a_vap;
603 } */ *ap = v;
604 struct vattr *vap = ap->a_vap;
605 struct vnode **vpp = ap->a_vpp;
606 struct inode *ip;
607 int error;
608 struct mount *mp;
609 ino_t ino;
610 struct ufs_lookup_results *ulr;
612 /* XXX should handle this material another way */
613 ulr = &VTOI(ap->a_dvp)->i_crap;
614 UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
616 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
617 vput(ap->a_dvp);
618 return error;
620 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
621 ap->a_dvp, ulr, vpp, ap->a_cnp);
623 /* Either way we're done with the dirop at this point */
624 SET_ENDOP_CREATE_AP(ap, "mknod");
626 if (error)
627 return (error);
629 ip = VTOI(*vpp);
630 mp = (*vpp)->v_mount;
631 ino = ip->i_number;
632 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
633 if (vap->va_rdev != VNOVAL) {
635 * Want to be able to use this to make badblock
636 * inodes, so don't truncate the dev number.
638 #if 0
639 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
640 UFS_MPNEEDSWAP((*vpp)->v_mount));
641 #else
642 ip->i_ffs1_rdev = vap->va_rdev;
643 #endif
647 * Call fsync to write the vnode so that we don't have to deal with
648 * flushing it when it's marked VU_DIROP|VI_XLOCK.
650 * XXX KS - If we can't flush we also can't call vgone(), so must
651 * return. But, that leaves this vnode in limbo, also not good.
652 * Can this ever happen (barring hardware failure)?
654 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
655 panic("lfs_mknod: couldn't fsync (ino %llu)",
656 (unsigned long long)ino);
657 /* return (error); */
660 * Remove vnode so that it will be reloaded by VFS_VGET and
661 * checked to see if it is an alias of an existing entry in
662 * the inode cache.
664 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
666 VOP_UNLOCK(*vpp);
667 (*vpp)->v_type = VNON;
668 vgone(*vpp);
669 error = VFS_VGET(mp, ino, vpp);
671 if (error != 0) {
672 *vpp = NULL;
673 return (error);
675 return (0);
679 lfs_create(void *v)
681 struct vop_create_args /* {
682 struct vnode *a_dvp;
683 struct vnode **a_vpp;
684 struct componentname *a_cnp;
685 struct vattr *a_vap;
686 } */ *ap = v;
687 int error;
689 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
690 vput(ap->a_dvp);
691 return error;
693 error = ufs_create(ap);
694 SET_ENDOP_CREATE_AP(ap, "create");
695 return (error);
699 lfs_mkdir(void *v)
701 struct vop_mkdir_args /* {
702 struct vnode *a_dvp;
703 struct vnode **a_vpp;
704 struct componentname *a_cnp;
705 struct vattr *a_vap;
706 } */ *ap = v;
707 int error;
709 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
710 vput(ap->a_dvp);
711 return error;
713 error = ufs_mkdir(ap);
714 SET_ENDOP_CREATE_AP(ap, "mkdir");
715 return (error);
719 lfs_remove(void *v)
721 struct vop_remove_args /* {
722 struct vnode *a_dvp;
723 struct vnode *a_vp;
724 struct componentname *a_cnp;
725 } */ *ap = v;
726 struct vnode *dvp, *vp;
727 struct inode *ip;
728 int error;
730 dvp = ap->a_dvp;
731 vp = ap->a_vp;
732 ip = VTOI(vp);
733 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
734 if (dvp == vp)
735 vrele(vp);
736 else
737 vput(vp);
738 vput(dvp);
739 return error;
741 error = ufs_remove(ap);
742 if (ip->i_nlink == 0)
743 lfs_orphan(ip->i_lfs, ip->i_number);
744 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
745 return (error);
749 lfs_rmdir(void *v)
751 struct vop_rmdir_args /* {
752 struct vnodeop_desc *a_desc;
753 struct vnode *a_dvp;
754 struct vnode *a_vp;
755 struct componentname *a_cnp;
756 } */ *ap = v;
757 struct vnode *vp;
758 struct inode *ip;
759 int error;
761 vp = ap->a_vp;
762 ip = VTOI(vp);
763 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
764 if (ap->a_dvp == vp)
765 vrele(ap->a_dvp);
766 else
767 vput(ap->a_dvp);
768 vput(vp);
769 return error;
771 error = ufs_rmdir(ap);
772 if (ip->i_nlink == 0)
773 lfs_orphan(ip->i_lfs, ip->i_number);
774 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
775 return (error);
779 lfs_link(void *v)
781 struct vop_link_args /* {
782 struct vnode *a_dvp;
783 struct vnode *a_vp;
784 struct componentname *a_cnp;
785 } */ *ap = v;
786 int error;
787 struct vnode **vpp = NULL;
789 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
790 vput(ap->a_dvp);
791 return error;
793 error = ufs_link(ap);
794 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
795 return (error);
799 lfs_rename(void *v)
801 struct vop_rename_args /* {
802 struct vnode *a_fdvp;
803 struct vnode *a_fvp;
804 struct componentname *a_fcnp;
805 struct vnode *a_tdvp;
806 struct vnode *a_tvp;
807 struct componentname *a_tcnp;
808 } */ *ap = v;
809 struct vnode *tvp, *fvp, *tdvp, *fdvp;
810 struct componentname *tcnp, *fcnp;
811 int error;
812 struct lfs *fs;
814 fs = VTOI(ap->a_fdvp)->i_lfs;
815 tvp = ap->a_tvp;
816 tdvp = ap->a_tdvp;
817 tcnp = ap->a_tcnp;
818 fvp = ap->a_fvp;
819 fdvp = ap->a_fdvp;
820 fcnp = ap->a_fcnp;
823 * Check for cross-device rename.
824 * If it is, we don't want to set dirops, just error out.
825 * (In particular note that MARK_VNODE(tdvp) will DTWT on
826 * a cross-device rename.)
828 * Copied from ufs_rename.
830 if ((fvp->v_mount != tdvp->v_mount) ||
831 (tvp && (fvp->v_mount != tvp->v_mount))) {
832 error = EXDEV;
833 goto errout;
837 * Check to make sure we're not renaming a vnode onto itself
838 * (deleting a hard link by renaming one name onto another);
839 * if we are we can't recursively call VOP_REMOVE since that
840 * would leave us with an unaccounted-for number of live dirops.
842 * Inline the relevant section of ufs_rename here, *before*
843 * calling SET_DIROP_REMOVE.
845 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
846 (VTOI(tdvp)->i_flags & APPEND))) {
847 error = EPERM;
848 goto errout;
850 if (fvp == tvp) {
851 if (fvp->v_type == VDIR) {
852 error = EINVAL;
853 goto errout;
856 /* Release destination completely. */
857 VOP_ABORTOP(tdvp, tcnp);
858 vput(tdvp);
859 vput(tvp);
861 /* Delete source. */
862 vrele(fvp);
863 fcnp->cn_flags &= ~(MODMASK);
864 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
865 fcnp->cn_nameiop = DELETE;
866 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
867 if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
868 vput(fdvp);
869 return (error);
871 return (VOP_REMOVE(fdvp, fvp, fcnp));
874 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
875 goto errout;
876 MARK_VNODE(fdvp);
877 MARK_VNODE(fvp);
879 error = ufs_rename(ap);
880 UNMARK_VNODE(fdvp);
881 UNMARK_VNODE(fvp);
882 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
883 return (error);
885 errout:
886 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
887 if (tdvp == tvp)
888 vrele(tdvp);
889 else
890 vput(tdvp);
891 if (tvp)
892 vput(tvp);
893 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
894 vrele(fdvp);
895 vrele(fvp);
896 return (error);
899 /* XXX hack to avoid calling ITIMES in getattr */
901 lfs_getattr(void *v)
903 struct vop_getattr_args /* {
904 struct vnode *a_vp;
905 struct vattr *a_vap;
906 kauth_cred_t a_cred;
907 } */ *ap = v;
908 struct vnode *vp = ap->a_vp;
909 struct inode *ip = VTOI(vp);
910 struct vattr *vap = ap->a_vap;
911 struct lfs *fs = ip->i_lfs;
913 * Copy from inode table
915 vap->va_fsid = ip->i_dev;
916 vap->va_fileid = ip->i_number;
917 vap->va_mode = ip->i_mode & ~IFMT;
918 vap->va_nlink = ip->i_nlink;
919 vap->va_uid = ip->i_uid;
920 vap->va_gid = ip->i_gid;
921 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
922 vap->va_size = vp->v_size;
923 vap->va_atime.tv_sec = ip->i_ffs1_atime;
924 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
925 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
926 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
927 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
928 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
929 vap->va_flags = ip->i_flags;
930 vap->va_gen = ip->i_gen;
931 /* this doesn't belong here */
932 if (vp->v_type == VBLK)
933 vap->va_blocksize = BLKDEV_IOSIZE;
934 else if (vp->v_type == VCHR)
935 vap->va_blocksize = MAXBSIZE;
936 else
937 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
938 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
939 vap->va_type = vp->v_type;
940 vap->va_filerev = ip->i_modrev;
941 return (0);
945 * Check to make sure the inode blocks won't choke the buffer
946 * cache, then call ufs_setattr as usual.
949 lfs_setattr(void *v)
951 struct vop_setattr_args /* {
952 struct vnode *a_vp;
953 struct vattr *a_vap;
954 kauth_cred_t a_cred;
955 } */ *ap = v;
956 struct vnode *vp = ap->a_vp;
958 lfs_check(vp, LFS_UNUSED_LBN, 0);
959 return ufs_setattr(v);
963 * Release the block we hold on lfs_newseg wrapping. Called on file close,
964 * or explicitly from LFCNWRAPGO. Called with the interlock held.
966 static int
967 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
969 if (fs->lfs_stoplwp != curlwp)
970 return EBUSY;
972 fs->lfs_stoplwp = NULL;
973 cv_signal(&fs->lfs_stopcv);
975 KASSERT(fs->lfs_nowrap > 0);
976 if (fs->lfs_nowrap <= 0) {
977 return 0;
980 if (--fs->lfs_nowrap == 0) {
981 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
982 wakeup(&fs->lfs_wrappass);
983 lfs_wakeup_cleaner(fs);
985 if (waitfor) {
986 mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
987 0, &lfs_lock);
990 return 0;
994 * Close called
996 /* ARGSUSED */
998 lfs_close(void *v)
1000 struct vop_close_args /* {
1001 struct vnode *a_vp;
1002 int a_fflag;
1003 kauth_cred_t a_cred;
1004 } */ *ap = v;
1005 struct vnode *vp = ap->a_vp;
1006 struct inode *ip = VTOI(vp);
1007 struct lfs *fs = ip->i_lfs;
1009 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1010 fs->lfs_stoplwp == curlwp) {
1011 mutex_enter(&lfs_lock);
1012 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1013 lfs_wrapgo(fs, ip, 0);
1014 mutex_exit(&lfs_lock);
1017 if (vp == ip->i_lfs->lfs_ivnode &&
1018 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1019 return 0;
1021 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1022 LFS_ITIMES(ip, NULL, NULL, NULL);
1024 return (0);
1028 * Close wrapper for special devices.
1030 * Update the times on the inode then do device close.
1033 lfsspec_close(void *v)
1035 struct vop_close_args /* {
1036 struct vnode *a_vp;
1037 int a_fflag;
1038 kauth_cred_t a_cred;
1039 } */ *ap = v;
1040 struct vnode *vp;
1041 struct inode *ip;
1043 vp = ap->a_vp;
1044 ip = VTOI(vp);
1045 if (vp->v_usecount > 1) {
1046 LFS_ITIMES(ip, NULL, NULL, NULL);
1048 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1052 * Close wrapper for fifo's.
1054 * Update the times on the inode then do device close.
1057 lfsfifo_close(void *v)
1059 struct vop_close_args /* {
1060 struct vnode *a_vp;
1061 int a_fflag;
1062 kauth_cred_ a_cred;
1063 } */ *ap = v;
1064 struct vnode *vp;
1065 struct inode *ip;
1067 vp = ap->a_vp;
1068 ip = VTOI(vp);
1069 if (ap->a_vp->v_usecount > 1) {
1070 LFS_ITIMES(ip, NULL, NULL, NULL);
1072 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1076 * Reclaim an inode so that it can be used for other purposes.
1080 lfs_reclaim(void *v)
1082 struct vop_reclaim_args /* {
1083 struct vnode *a_vp;
1084 } */ *ap = v;
1085 struct vnode *vp = ap->a_vp;
1086 struct inode *ip = VTOI(vp);
1087 struct lfs *fs = ip->i_lfs;
1088 int error;
1091 * The inode must be freed and updated before being removed
1092 * from its hash chain. Other threads trying to gain a hold
1093 * on the inode will be stalled because it is locked (VI_XLOCK).
1095 if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
1096 lfs_vfree(vp, ip->i_number, ip->i_omode);
1098 mutex_enter(&lfs_lock);
1099 LFS_CLR_UINO(ip, IN_ALLMOD);
1100 mutex_exit(&lfs_lock);
1101 if ((error = ufs_reclaim(vp)))
1102 return (error);
1105 * Take us off the paging and/or dirop queues if we were on them.
1106 * We shouldn't be on them.
1108 mutex_enter(&lfs_lock);
1109 if (ip->i_flags & IN_PAGING) {
1110 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1111 fs->lfs_fsmnt);
1112 ip->i_flags &= ~IN_PAGING;
1113 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1115 if (vp->v_uflag & VU_DIROP) {
1116 panic("reclaimed vnode is VU_DIROP");
1117 vp->v_uflag &= ~VU_DIROP;
1118 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1120 mutex_exit(&lfs_lock);
1122 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1123 lfs_deregister_all(vp);
1124 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1125 ip->inode_ext.lfs = NULL;
1126 genfs_node_destroy(vp);
1127 pool_put(&lfs_inode_pool, vp->v_data);
1128 vp->v_data = NULL;
1129 return (0);
1133 * Read a block from a storage device.
1134 * In order to avoid reading blocks that are in the process of being
1135 * written by the cleaner---and hence are not mutexed by the normal
1136 * buffer cache / page cache mechanisms---check for collisions before
1137 * reading.
1139 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1140 * the active cleaner test.
1142 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1145 lfs_strategy(void *v)
1147 struct vop_strategy_args /* {
1148 struct vnode *a_vp;
1149 struct buf *a_bp;
1150 } */ *ap = v;
1151 struct buf *bp;
1152 struct lfs *fs;
1153 struct vnode *vp;
1154 struct inode *ip;
1155 daddr_t tbn;
1156 int i, sn, error, slept;
1158 bp = ap->a_bp;
1159 vp = ap->a_vp;
1160 ip = VTOI(vp);
1161 fs = ip->i_lfs;
1163 /* lfs uses its strategy routine only for read */
1164 KASSERT(bp->b_flags & B_READ);
1166 if (vp->v_type == VBLK || vp->v_type == VCHR)
1167 panic("lfs_strategy: spec");
1168 KASSERT(bp->b_bcount != 0);
1169 if (bp->b_blkno == bp->b_lblkno) {
1170 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1171 NULL);
1172 if (error) {
1173 bp->b_error = error;
1174 bp->b_resid = bp->b_bcount;
1175 biodone(bp);
1176 return (error);
1178 if ((long)bp->b_blkno == -1) /* no valid data */
1179 clrbuf(bp);
1181 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1182 bp->b_resid = bp->b_bcount;
1183 biodone(bp);
1184 return (0);
1187 slept = 1;
1188 mutex_enter(&lfs_lock);
1189 while (slept && fs->lfs_seglock) {
1190 mutex_exit(&lfs_lock);
1192 * Look through list of intervals.
1193 * There will only be intervals to look through
1194 * if the cleaner holds the seglock.
1195 * Since the cleaner is synchronous, we can trust
1196 * the list of intervals to be current.
1198 tbn = dbtofsb(fs, bp->b_blkno);
1199 sn = dtosn(fs, tbn);
1200 slept = 0;
1201 for (i = 0; i < fs->lfs_cleanind; i++) {
1202 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1203 tbn >= fs->lfs_cleanint[i]) {
1204 DLOG((DLOG_CLEAN,
1205 "lfs_strategy: ino %d lbn %" PRId64
1206 " ind %d sn %d fsb %" PRIx32
1207 " given sn %d fsb %" PRIx64 "\n",
1208 ip->i_number, bp->b_lblkno, i,
1209 dtosn(fs, fs->lfs_cleanint[i]),
1210 fs->lfs_cleanint[i], sn, tbn));
1211 DLOG((DLOG_CLEAN,
1212 "lfs_strategy: sleeping on ino %d lbn %"
1213 PRId64 "\n", ip->i_number, bp->b_lblkno));
1214 mutex_enter(&lfs_lock);
1215 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1216 /* Cleaner can't wait for itself */
1217 mtsleep(&fs->lfs_iocount,
1218 (PRIBIO + 1) | PNORELOCK,
1219 "clean2", 0,
1220 &lfs_lock);
1221 slept = 1;
1222 break;
1223 } else if (fs->lfs_seglock) {
1224 mtsleep(&fs->lfs_seglock,
1225 (PRIBIO + 1) | PNORELOCK,
1226 "clean1", 0,
1227 &lfs_lock);
1228 slept = 1;
1229 break;
1231 mutex_exit(&lfs_lock);
1234 mutex_enter(&lfs_lock);
1236 mutex_exit(&lfs_lock);
1238 vp = ip->i_devvp;
1239 VOP_STRATEGY(vp, bp);
1240 return (0);
1243 void
1244 lfs_flush_dirops(struct lfs *fs)
1246 struct inode *ip, *nip;
1247 struct vnode *vp;
1248 extern int lfs_dostats;
1249 struct segment *sp;
1251 ASSERT_MAYBE_SEGLOCK(fs);
1252 KASSERT(fs->lfs_nadirop == 0);
1254 if (fs->lfs_ronly)
1255 return;
1257 mutex_enter(&lfs_lock);
1258 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1259 mutex_exit(&lfs_lock);
1260 return;
1261 } else
1262 mutex_exit(&lfs_lock);
1264 if (lfs_dostats)
1265 ++lfs_stats.flush_invoked;
1268 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1269 * Technically this is a checkpoint (the on-disk state is valid)
1270 * even though we are leaving out all the file data.
1272 lfs_imtime(fs);
1273 lfs_seglock(fs, SEGM_CKP);
1274 sp = fs->lfs_sp;
1277 * lfs_writevnodes, optimized to get dirops out of the way.
1278 * Only write dirops, and don't flush files' pages, only
1279 * blocks from the directories.
1281 * We don't need to vref these files because they are
1282 * dirops and so hold an extra reference until the
1283 * segunlock clears them of that status.
1285 * We don't need to check for IN_ADIROP because we know that
1286 * no dirops are active.
1289 mutex_enter(&lfs_lock);
1290 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1291 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1292 mutex_exit(&lfs_lock);
1293 vp = ITOV(ip);
1295 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1298 * All writes to directories come from dirops; all
1299 * writes to files' direct blocks go through the page
1300 * cache, which we're not touching. Reads to files
1301 * and/or directories will not be affected by writing
1302 * directory blocks inodes and file inodes. So we don't
1303 * really need to lock. If we don't lock, though,
1304 * make sure that we don't clear IN_MODIFIED
1305 * unnecessarily.
1307 if (vp->v_iflag & VI_XLOCK) {
1308 mutex_enter(&lfs_lock);
1309 continue;
1311 /* XXX see below
1312 * waslocked = VOP_ISLOCKED(vp);
1314 if (vp->v_type != VREG &&
1315 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1316 lfs_writefile(fs, sp, vp);
1317 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1318 !(ip->i_flag & IN_ALLMOD)) {
1319 mutex_enter(&lfs_lock);
1320 LFS_SET_UINO(ip, IN_MODIFIED);
1321 mutex_exit(&lfs_lock);
1324 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1325 (void) lfs_writeinode(fs, sp, ip);
1326 mutex_enter(&lfs_lock);
1328 * XXX
1329 * LK_EXCLOTHER is dead -- what is intended here?
1330 * if (waslocked == LK_EXCLOTHER)
1331 * LFS_SET_UINO(ip, IN_MODIFIED);
1334 mutex_exit(&lfs_lock);
1335 /* We've written all the dirops there are */
1336 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1337 lfs_finalize_fs_seguse(fs);
1338 (void) lfs_writeseg(fs, sp);
1339 lfs_segunlock(fs);
1343 * Flush all vnodes for which the pagedaemon has requested pageouts.
1344 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1345 * has just run, this would be an error). If we have to skip a vnode
1346 * for any reason, just skip it; if we have to wait for the cleaner,
1347 * abort. The writer daemon will call us again later.
1349 void
1350 lfs_flush_pchain(struct lfs *fs)
1352 struct inode *ip, *nip;
1353 struct vnode *vp;
1354 extern int lfs_dostats;
1355 struct segment *sp;
1356 int error;
1358 ASSERT_NO_SEGLOCK(fs);
1360 if (fs->lfs_ronly)
1361 return;
1363 mutex_enter(&lfs_lock);
1364 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1365 mutex_exit(&lfs_lock);
1366 return;
1367 } else
1368 mutex_exit(&lfs_lock);
1370 /* Get dirops out of the way */
1371 lfs_flush_dirops(fs);
1373 if (lfs_dostats)
1374 ++lfs_stats.flush_invoked;
1377 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1379 lfs_imtime(fs);
1380 lfs_seglock(fs, 0);
1381 sp = fs->lfs_sp;
1384 * lfs_writevnodes, optimized to clear pageout requests.
1385 * Only write non-dirop files that are in the pageout queue.
1386 * We're very conservative about what we write; we want to be
1387 * fast and async.
1389 mutex_enter(&lfs_lock);
1390 top:
1391 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1392 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1393 vp = ITOV(ip);
1395 if (!(ip->i_flags & IN_PAGING))
1396 goto top;
1398 mutex_enter(vp->v_interlock);
1399 if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1400 mutex_exit(vp->v_interlock);
1401 continue;
1403 if (vp->v_type != VREG) {
1404 mutex_exit(vp->v_interlock);
1405 continue;
1407 if (lfs_vref(vp))
1408 continue;
1409 mutex_exit(&lfs_lock);
1411 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
1412 lfs_vunref(vp);
1413 mutex_enter(&lfs_lock);
1414 continue;
1417 error = lfs_writefile(fs, sp, vp);
1418 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1419 !(ip->i_flag & IN_ALLMOD)) {
1420 mutex_enter(&lfs_lock);
1421 LFS_SET_UINO(ip, IN_MODIFIED);
1422 mutex_exit(&lfs_lock);
1424 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1425 (void) lfs_writeinode(fs, sp, ip);
1427 VOP_UNLOCK(vp);
1428 lfs_vunref(vp);
1430 if (error == EAGAIN) {
1431 lfs_writeseg(fs, sp);
1432 mutex_enter(&lfs_lock);
1433 break;
1435 mutex_enter(&lfs_lock);
1437 mutex_exit(&lfs_lock);
1438 (void) lfs_writeseg(fs, sp);
1439 lfs_segunlock(fs);
1443 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1446 lfs_fcntl(void *v)
1448 struct vop_fcntl_args /* {
1449 struct vnode *a_vp;
1450 u_int a_command;
1451 void * a_data;
1452 int a_fflag;
1453 kauth_cred_t a_cred;
1454 } */ *ap = v;
1455 struct timeval tv;
1456 struct timeval *tvp;
1457 BLOCK_INFO *blkiov;
1458 CLEANERINFO *cip;
1459 SEGUSE *sup;
1460 int blkcnt, error, oclean;
1461 size_t fh_size;
1462 struct lfs_fcntl_markv blkvp;
1463 struct lwp *l;
1464 fsid_t *fsidp;
1465 struct lfs *fs;
1466 struct buf *bp;
1467 fhandle_t *fhp;
1468 daddr_t off;
1470 /* Only respect LFS fcntls on fs root or Ifile */
1471 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1472 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1473 return ufs_fcntl(v);
1476 /* Avoid locking a draining lock */
1477 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1478 return ESHUTDOWN;
1481 /* LFS control and monitoring fcntls are available only to root */
1482 l = curlwp;
1483 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1484 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1485 NULL)) != 0)
1486 return (error);
1488 fs = VTOI(ap->a_vp)->i_lfs;
1489 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1491 error = 0;
1492 switch ((int)ap->a_command) {
1493 case LFCNSEGWAITALL_COMPAT_50:
1494 case LFCNSEGWAITALL_COMPAT:
1495 fsidp = NULL;
1496 /* FALLSTHROUGH */
1497 case LFCNSEGWAIT_COMPAT_50:
1498 case LFCNSEGWAIT_COMPAT:
1500 struct timeval50 *tvp50
1501 = (struct timeval50 *)ap->a_data;
1502 timeval50_to_timeval(tvp50, &tv);
1503 tvp = &tv;
1505 goto segwait_common;
1506 case LFCNSEGWAITALL:
1507 fsidp = NULL;
1508 /* FALLSTHROUGH */
1509 case LFCNSEGWAIT:
1510 tvp = (struct timeval *)ap->a_data;
1511 segwait_common:
1512 mutex_enter(&lfs_lock);
1513 ++fs->lfs_sleepers;
1514 mutex_exit(&lfs_lock);
1516 error = lfs_segwait(fsidp, tvp);
1518 mutex_enter(&lfs_lock);
1519 if (--fs->lfs_sleepers == 0)
1520 wakeup(&fs->lfs_sleepers);
1521 mutex_exit(&lfs_lock);
1522 return error;
1524 case LFCNBMAPV:
1525 case LFCNMARKV:
1526 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1528 blkcnt = blkvp.blkcnt;
1529 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1530 return (EINVAL);
1531 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1532 if ((error = copyin(blkvp.blkiov, blkiov,
1533 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1534 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1535 return error;
1538 mutex_enter(&lfs_lock);
1539 ++fs->lfs_sleepers;
1540 mutex_exit(&lfs_lock);
1541 if (ap->a_command == LFCNBMAPV)
1542 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1543 else /* LFCNMARKV */
1544 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1545 if (error == 0)
1546 error = copyout(blkiov, blkvp.blkiov,
1547 blkcnt * sizeof(BLOCK_INFO));
1548 mutex_enter(&lfs_lock);
1549 if (--fs->lfs_sleepers == 0)
1550 wakeup(&fs->lfs_sleepers);
1551 mutex_exit(&lfs_lock);
1552 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1553 return error;
1555 case LFCNRECLAIM:
1557 * Flush dirops and write Ifile, allowing empty segments
1558 * to be immediately reclaimed.
1560 lfs_writer_enter(fs, "pndirop");
1561 off = fs->lfs_offset;
1562 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1563 lfs_flush_dirops(fs);
1564 LFS_CLEANERINFO(cip, fs, bp);
1565 oclean = cip->clean;
1566 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1567 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1568 fs->lfs_sp->seg_flags |= SEGM_PROT;
1569 lfs_segunlock(fs);
1570 lfs_writer_leave(fs);
1572 #ifdef DEBUG
1573 LFS_CLEANERINFO(cip, fs, bp);
1574 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1575 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1576 fs->lfs_offset - off, cip->clean - oclean,
1577 fs->lfs_activesb));
1578 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1579 #endif
1581 return 0;
1583 case LFCNIFILEFH_COMPAT:
1584 /* Return the filehandle of the Ifile */
1585 if ((error = kauth_authorize_system(l->l_cred,
1586 KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
1587 return (error);
1588 fhp = (struct fhandle *)ap->a_data;
1589 fhp->fh_fsid = *fsidp;
1590 fh_size = 16; /* former VFS_MAXFIDSIZ */
1591 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1593 case LFCNIFILEFH_COMPAT2:
1594 case LFCNIFILEFH:
1595 /* Return the filehandle of the Ifile */
1596 fhp = (struct fhandle *)ap->a_data;
1597 fhp->fh_fsid = *fsidp;
1598 fh_size = sizeof(struct lfs_fhandle) -
1599 offsetof(fhandle_t, fh_fid);
1600 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1602 case LFCNREWIND:
1603 /* Move lfs_offset to the lowest-numbered segment */
1604 return lfs_rewind(fs, *(int *)ap->a_data);
1606 case LFCNINVAL:
1607 /* Mark a segment SEGUSE_INVAL */
1608 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1609 if (sup->su_nbytes > 0) {
1610 brelse(bp, 0);
1611 lfs_unset_inval_all(fs);
1612 return EBUSY;
1614 sup->su_flags |= SEGUSE_INVAL;
1615 VOP_BWRITE(bp->b_vp, bp);
1616 return 0;
1618 case LFCNRESIZE:
1619 /* Resize the filesystem */
1620 return lfs_resize_fs(fs, *(int *)ap->a_data);
1622 case LFCNWRAPSTOP:
1623 case LFCNWRAPSTOP_COMPAT:
1625 * Hold lfs_newseg at segment 0; if requested, sleep until
1626 * the filesystem wraps around. To support external agents
1627 * (dump, fsck-based regression test) that need to look at
1628 * a snapshot of the filesystem, without necessarily
1629 * requiring that all fs activity stops.
1631 if (fs->lfs_stoplwp == curlwp)
1632 return EALREADY;
1634 mutex_enter(&lfs_lock);
1635 while (fs->lfs_stoplwp != NULL)
1636 cv_wait(&fs->lfs_stopcv, &lfs_lock);
1637 fs->lfs_stoplwp = curlwp;
1638 if (fs->lfs_nowrap == 0)
1639 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1640 ++fs->lfs_nowrap;
1641 if (*(int *)ap->a_data == 1
1642 || ap->a_command == LFCNWRAPSTOP_COMPAT) {
1643 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1644 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1645 "segwrap", 0, &lfs_lock);
1646 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1647 if (error) {
1648 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1651 mutex_exit(&lfs_lock);
1652 return 0;
1654 case LFCNWRAPGO:
1655 case LFCNWRAPGO_COMPAT:
1657 * Having done its work, the agent wakes up the writer.
1658 * If the argument is 1, it sleeps until a new segment
1659 * is selected.
1661 mutex_enter(&lfs_lock);
1662 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1663 ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1664 *((int *)ap->a_data));
1665 mutex_exit(&lfs_lock);
1666 return error;
1668 case LFCNWRAPPASS:
1669 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1670 return EALREADY;
1671 mutex_enter(&lfs_lock);
1672 if (fs->lfs_stoplwp != curlwp) {
1673 mutex_exit(&lfs_lock);
1674 return EALREADY;
1676 if (fs->lfs_nowrap == 0) {
1677 mutex_exit(&lfs_lock);
1678 return EBUSY;
1680 fs->lfs_wrappass = 1;
1681 wakeup(&fs->lfs_wrappass);
1682 /* Wait for the log to wrap, if asked */
1683 if (*(int *)ap->a_data) {
1684 mutex_enter(ap->a_vp->v_interlock);
1685 lfs_vref(ap->a_vp);
1686 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1687 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1688 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1689 "segwrap", 0, &lfs_lock);
1690 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1691 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1692 lfs_vunref(ap->a_vp);
1694 mutex_exit(&lfs_lock);
1695 return error;
1697 case LFCNWRAPSTATUS:
1698 mutex_enter(&lfs_lock);
1699 *(int *)ap->a_data = fs->lfs_wrapstatus;
1700 mutex_exit(&lfs_lock);
1701 return 0;
1703 default:
1704 return ufs_fcntl(v);
1706 return 0;
1710 lfs_getpages(void *v)
1712 struct vop_getpages_args /* {
1713 struct vnode *a_vp;
1714 voff_t a_offset;
1715 struct vm_page **a_m;
1716 int *a_count;
1717 int a_centeridx;
1718 vm_prot_t a_access_type;
1719 int a_advice;
1720 int a_flags;
1721 } */ *ap = v;
1723 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1724 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1725 return EPERM;
1727 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1728 mutex_enter(&lfs_lock);
1729 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1730 mutex_exit(&lfs_lock);
1734 * we're relying on the fact that genfs_getpages() always read in
1735 * entire filesystem blocks.
1737 return genfs_getpages(v);
1741 * Wait for a page to become unbusy, possibly printing diagnostic messages
1742 * as well.
1744 * Called with vp->v_interlock held; return with it held.
1746 static void
1747 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1749 if ((pg->flags & PG_BUSY) == 0)
1750 return; /* Nothing to wait for! */
1752 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1753 static struct vm_page *lastpg;
1755 if (label != NULL && pg != lastpg) {
1756 if (pg->owner_tag) {
1757 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1758 curproc->p_pid, curlwp->l_lid, label,
1759 pg, pg->owner, pg->lowner, pg->owner_tag);
1760 } else {
1761 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1762 curproc->p_pid, curlwp->l_lid, label, pg);
1765 lastpg = pg;
1766 #endif
1768 pg->flags |= PG_WANTED;
1769 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
1770 mutex_enter(vp->v_interlock);
1774 * This routine is called by lfs_putpages() when it can't complete the
1775 * write because a page is busy. This means that either (1) someone,
1776 * possibly the pagedaemon, is looking at this page, and will give it up
1777 * presently; or (2) we ourselves are holding the page busy in the
1778 * process of being written (either gathered or actually on its way to
1779 * disk). We don't need to give up the segment lock, but we might need
1780 * to call lfs_writeseg() to expedite the page's journey to disk.
1782 * Called with vp->v_interlock held; return with it held.
1784 /* #define BUSYWAIT */
1785 static void
1786 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1787 int seglocked, const char *label)
1789 #ifndef BUSYWAIT
1790 struct inode *ip = VTOI(vp);
1791 struct segment *sp = fs->lfs_sp;
1792 int count = 0;
1794 if (pg == NULL)
1795 return;
1797 while (pg->flags & PG_BUSY &&
1798 pg->uobject == &vp->v_uobj) {
1799 mutex_exit(vp->v_interlock);
1800 if (sp->cbpp - sp->bpp > 1) {
1801 /* Write gathered pages */
1802 lfs_updatemeta(sp);
1803 lfs_release_finfo(fs);
1804 (void) lfs_writeseg(fs, sp);
1807 * Reinitialize FIP
1809 KASSERT(sp->vp == vp);
1810 lfs_acquire_finfo(fs, ip->i_number,
1811 ip->i_gen);
1813 ++count;
1814 mutex_enter(vp->v_interlock);
1815 wait_for_page(vp, pg, label);
1817 if (label != NULL && count > 1)
1818 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1819 label, (count > 0 ? "looping, " : ""), count);
1820 #else
1821 preempt(1);
1822 #endif
1826 * Make sure that for all pages in every block in the given range,
1827 * either all are dirty or all are clean. If any of the pages
1828 * we've seen so far are dirty, put the vnode on the paging chain,
1829 * and mark it IN_PAGING.
1831 * If checkfirst != 0, don't check all the pages but return at the
1832 * first dirty page.
1834 static int
1835 check_dirty(struct lfs *fs, struct vnode *vp,
1836 off_t startoffset, off_t endoffset, off_t blkeof,
1837 int flags, int checkfirst, struct vm_page **pgp)
1839 int by_list;
1840 struct vm_page *curpg = NULL; /* XXX: gcc */
1841 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1842 off_t soff = 0; /* XXX: gcc */
1843 voff_t off;
1844 int i;
1845 int nonexistent;
1846 int any_dirty; /* number of dirty pages */
1847 int dirty; /* number of dirty pages in a block */
1848 int tdirty;
1849 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1850 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1852 ASSERT_MAYBE_SEGLOCK(fs);
1853 top:
1854 by_list = (vp->v_uobj.uo_npages <=
1855 ((endoffset - startoffset) >> PAGE_SHIFT) *
1856 UVM_PAGE_TREE_PENALTY);
1857 any_dirty = 0;
1859 if (by_list) {
1860 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1861 } else {
1862 soff = startoffset;
1864 while (by_list || soff < MIN(blkeof, endoffset)) {
1865 if (by_list) {
1867 * Find the first page in a block. Skip
1868 * blocks outside our area of interest or beyond
1869 * the end of file.
1871 KASSERT(curpg == NULL
1872 || (curpg->flags & PG_MARKER) == 0);
1873 if (pages_per_block > 1) {
1874 while (curpg &&
1875 ((curpg->offset & fs->lfs_bmask) ||
1876 curpg->offset >= vp->v_size ||
1877 curpg->offset >= endoffset)) {
1878 curpg = TAILQ_NEXT(curpg, listq.queue);
1879 KASSERT(curpg == NULL ||
1880 (curpg->flags & PG_MARKER) == 0);
1883 if (curpg == NULL)
1884 break;
1885 soff = curpg->offset;
1889 * Mark all pages in extended range busy; find out if any
1890 * of them are dirty.
1892 nonexistent = dirty = 0;
1893 for (i = 0; i == 0 || i < pages_per_block; i++) {
1894 if (by_list && pages_per_block <= 1) {
1895 pgs[i] = pg = curpg;
1896 } else {
1897 off = soff + (i << PAGE_SHIFT);
1898 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1899 if (pg == NULL) {
1900 ++nonexistent;
1901 continue;
1904 KASSERT(pg != NULL);
1907 * If we're holding the segment lock, we can deadlock
1908 * against a process that has our page and is waiting
1909 * for the cleaner, while the cleaner waits for the
1910 * segment lock. Just bail in that case.
1912 if ((pg->flags & PG_BUSY) &&
1913 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1914 if (i > 0)
1915 uvm_page_unbusy(pgs, i);
1916 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1917 if (pgp)
1918 *pgp = pg;
1919 return -1;
1922 while (pg->flags & PG_BUSY) {
1923 wait_for_page(vp, pg, NULL);
1924 if (i > 0)
1925 uvm_page_unbusy(pgs, i);
1926 goto top;
1928 pg->flags |= PG_BUSY;
1929 UVM_PAGE_OWN(pg, "lfs_putpages");
1931 pmap_page_protect(pg, VM_PROT_NONE);
1932 tdirty = (pmap_clear_modify(pg) ||
1933 (pg->flags & PG_CLEAN) == 0);
1934 dirty += tdirty;
1936 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1937 if (by_list) {
1938 curpg = TAILQ_NEXT(curpg, listq.queue);
1939 } else {
1940 soff += fs->lfs_bsize;
1942 continue;
1945 any_dirty += dirty;
1946 KASSERT(nonexistent == 0);
1949 * If any are dirty make all dirty; unbusy them,
1950 * but if we were asked to clean, wire them so that
1951 * the pagedaemon doesn't bother us about them while
1952 * they're on their way to disk.
1954 for (i = 0; i == 0 || i < pages_per_block; i++) {
1955 pg = pgs[i];
1956 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1957 if (dirty) {
1958 pg->flags &= ~PG_CLEAN;
1959 if (flags & PGO_FREE) {
1961 * Wire the page so that
1962 * pdaemon doesn't see it again.
1964 mutex_enter(&uvm_pageqlock);
1965 uvm_pagewire(pg);
1966 mutex_exit(&uvm_pageqlock);
1968 /* Suspended write flag */
1969 pg->flags |= PG_DELWRI;
1972 if (pg->flags & PG_WANTED)
1973 wakeup(pg);
1974 pg->flags &= ~(PG_WANTED|PG_BUSY);
1975 UVM_PAGE_OWN(pg, NULL);
1978 if (checkfirst && any_dirty)
1979 break;
1981 if (by_list) {
1982 curpg = TAILQ_NEXT(curpg, listq.queue);
1983 } else {
1984 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1988 return any_dirty;
1992 * lfs_putpages functions like genfs_putpages except that
1994 * (1) It needs to bounds-check the incoming requests to ensure that
1995 * they are block-aligned; if they are not, expand the range and
1996 * do the right thing in case, e.g., the requested range is clean
1997 * but the expanded range is dirty.
1999 * (2) It needs to explicitly send blocks to be written when it is done.
2000 * If VOP_PUTPAGES is called without the seglock held, we simply take
2001 * the seglock and let lfs_segunlock wait for us.
2002 * XXX There might be a bad situation if we have to flush a vnode while
2003 * XXX lfs_markv is in operation. As of this writing we panic in this
2004 * XXX case.
2006 * Assumptions:
2008 * (1) The caller does not hold any pages in this vnode busy. If it does,
2009 * there is a danger that when we expand the page range and busy the
2010 * pages we will deadlock.
2012 * (2) We are called with vp->v_interlock held; we must return with it
2013 * released.
2015 * (3) We don't absolutely have to free pages right away, provided that
2016 * the request does not have PGO_SYNCIO. When the pagedaemon gives
2017 * us a request with PGO_FREE, we take the pages out of the paging
2018 * queue and wake up the writer, which will handle freeing them for us.
2020 * We ensure that for any filesystem block, all pages for that
2021 * block are either resident or not, even if those pages are higher
2022 * than EOF; that means that we will be getting requests to free
2023 * "unused" pages above EOF all the time, and should ignore them.
2025 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
2026 * into has been set up for us by lfs_writefile. If not, we will
2027 * have to handle allocating and/or freeing an finfo entry.
2029 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
2032 /* How many times to loop before we should start to worry */
2033 #define TOOMANY 4
2036 lfs_putpages(void *v)
2038 int error;
2039 struct vop_putpages_args /* {
2040 struct vnode *a_vp;
2041 voff_t a_offlo;
2042 voff_t a_offhi;
2043 int a_flags;
2044 } */ *ap = v;
2045 struct vnode *vp;
2046 struct inode *ip;
2047 struct lfs *fs;
2048 struct segment *sp;
2049 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2050 off_t off, max_endoffset;
2051 bool seglocked, sync, pagedaemon;
2052 struct vm_page *pg, *busypg;
2053 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2054 #ifdef DEBUG
2055 int debug_n_again, debug_n_dirtyclean;
2056 #endif
2058 vp = ap->a_vp;
2059 ip = VTOI(vp);
2060 fs = ip->i_lfs;
2061 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2062 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2064 /* Putpages does nothing for metadata. */
2065 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2066 mutex_exit(vp->v_interlock);
2067 return 0;
2071 * If there are no pages, don't do anything.
2073 if (vp->v_uobj.uo_npages == 0) {
2074 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2075 (vp->v_iflag & VI_ONWORKLST) &&
2076 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2077 vp->v_iflag &= ~VI_WRMAPDIRTY;
2078 vn_syncer_remove_from_worklist(vp);
2080 mutex_exit(vp->v_interlock);
2082 /* Remove us from paging queue, if we were on it */
2083 mutex_enter(&lfs_lock);
2084 if (ip->i_flags & IN_PAGING) {
2085 ip->i_flags &= ~IN_PAGING;
2086 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2088 mutex_exit(&lfs_lock);
2089 return 0;
2092 blkeof = blkroundup(fs, ip->i_size);
2095 * Ignore requests to free pages past EOF but in the same block
2096 * as EOF, unless the request is synchronous. (If the request is
2097 * sync, it comes from lfs_truncate.)
2098 * XXXUBC Make these pages look "active" so the pagedaemon won't
2099 * XXXUBC bother us with them again.
2101 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2102 origoffset = ap->a_offlo;
2103 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2104 pg = uvm_pagelookup(&vp->v_uobj, off);
2105 KASSERT(pg != NULL);
2106 while (pg->flags & PG_BUSY) {
2107 pg->flags |= PG_WANTED;
2108 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
2109 "lfsput2", 0);
2110 mutex_enter(vp->v_interlock);
2112 mutex_enter(&uvm_pageqlock);
2113 uvm_pageactivate(pg);
2114 mutex_exit(&uvm_pageqlock);
2116 ap->a_offlo = blkeof;
2117 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2118 mutex_exit(vp->v_interlock);
2119 return 0;
2124 * Extend page range to start and end at block boundaries.
2125 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2127 origoffset = ap->a_offlo;
2128 origendoffset = ap->a_offhi;
2129 startoffset = origoffset & ~(fs->lfs_bmask);
2130 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2131 << fs->lfs_bshift;
2133 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2134 endoffset = max_endoffset;
2135 origendoffset = endoffset;
2136 } else {
2137 origendoffset = round_page(ap->a_offhi);
2138 endoffset = round_page(blkroundup(fs, origendoffset));
2141 KASSERT(startoffset > 0 || endoffset >= startoffset);
2142 if (startoffset == endoffset) {
2143 /* Nothing to do, why were we called? */
2144 mutex_exit(vp->v_interlock);
2145 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2146 PRId64 "\n", startoffset));
2147 return 0;
2150 ap->a_offlo = startoffset;
2151 ap->a_offhi = endoffset;
2154 * If not cleaning, just send the pages through genfs_putpages
2155 * to be returned to the pool.
2157 if (!(ap->a_flags & PGO_CLEANIT))
2158 return genfs_putpages(v);
2160 /* Set PGO_BUSYFAIL to avoid deadlocks */
2161 ap->a_flags |= PGO_BUSYFAIL;
2164 * Likewise, if we are asked to clean but the pages are not
2165 * dirty, we can just free them using genfs_putpages.
2167 #ifdef DEBUG
2168 debug_n_dirtyclean = 0;
2169 #endif
2170 do {
2171 int r;
2173 /* Count the number of dirty pages */
2174 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2175 ap->a_flags, 1, NULL);
2176 if (r < 0) {
2177 /* Pages are busy with another process */
2178 mutex_exit(vp->v_interlock);
2179 return EDEADLK;
2181 if (r > 0) /* Some pages are dirty */
2182 break;
2185 * Sometimes pages are dirtied between the time that
2186 * we check and the time we try to clean them.
2187 * Instruct lfs_gop_write to return EDEADLK in this case
2188 * so we can write them properly.
2190 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2191 r = genfs_do_putpages(vp, startoffset, endoffset,
2192 ap->a_flags & ~PGO_SYNCIO, &busypg);
2193 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2194 if (r != EDEADLK)
2195 return r;
2197 /* One of the pages was busy. Start over. */
2198 mutex_enter(vp->v_interlock);
2199 wait_for_page(vp, busypg, "dirtyclean");
2200 #ifdef DEBUG
2201 ++debug_n_dirtyclean;
2202 #endif
2203 } while(1);
2205 #ifdef DEBUG
2206 if (debug_n_dirtyclean > TOOMANY)
2207 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2208 debug_n_dirtyclean);
2209 #endif
2212 * Dirty and asked to clean.
2214 * Pagedaemon can't actually write LFS pages; wake up
2215 * the writer to take care of that. The writer will
2216 * notice the pager inode queue and act on that.
2218 * XXX We must drop the vp->interlock before taking the lfs_lock or we
2219 * get a nasty deadlock with lfs_flush_pchain().
2221 if (pagedaemon) {
2222 mutex_exit(vp->v_interlock);
2223 mutex_enter(&lfs_lock);
2224 if (!(ip->i_flags & IN_PAGING)) {
2225 ip->i_flags |= IN_PAGING;
2226 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2228 wakeup(&lfs_writer_daemon);
2229 mutex_exit(&lfs_lock);
2230 preempt();
2231 return EWOULDBLOCK;
2235 * If this is a file created in a recent dirop, we can't flush its
2236 * inode until the dirop is complete. Drain dirops, then flush the
2237 * filesystem (taking care of any other pending dirops while we're
2238 * at it).
2240 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2241 (vp->v_uflag & VU_DIROP)) {
2242 int locked;
2244 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2245 /* XXX VOP_ISLOCKED() may not be used for lock decisions. */
2246 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2247 mutex_exit(vp->v_interlock);
2248 lfs_writer_enter(fs, "ppdirop");
2249 if (locked)
2250 VOP_UNLOCK(vp); /* XXX why? */
2252 mutex_enter(&lfs_lock);
2253 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2254 mutex_exit(&lfs_lock);
2256 if (locked)
2257 VOP_LOCK(vp, LK_EXCLUSIVE);
2258 mutex_enter(vp->v_interlock);
2259 lfs_writer_leave(fs);
2261 /* XXX the flush should have taken care of this one too! */
2265 * This is it. We are going to write some pages. From here on
2266 * down it's all just mechanics.
2268 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2270 ap->a_flags &= ~PGO_SYNCIO;
2273 * If we've already got the seglock, flush the node and return.
2274 * The FIP has already been set up for us by lfs_writefile,
2275 * and FIP cleanup and lfs_updatemeta will also be done there,
2276 * unless genfs_putpages returns EDEADLK; then we must flush
2277 * what we have, and correct FIP and segment header accounting.
2279 get_seglock:
2281 * If we are not called with the segment locked, lock it.
2282 * Account for a new FIP in the segment header, and set sp->vp.
2283 * (This should duplicate the setup at the top of lfs_writefile().)
2285 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2286 if (!seglocked) {
2287 mutex_exit(vp->v_interlock);
2288 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2289 if (error != 0)
2290 return error;
2291 mutex_enter(vp->v_interlock);
2292 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2294 sp = fs->lfs_sp;
2295 KASSERT(sp->vp == NULL);
2296 sp->vp = vp;
2299 * Ensure that the partial segment is marked SS_DIROP if this
2300 * vnode is a DIROP.
2302 if (!seglocked && vp->v_uflag & VU_DIROP)
2303 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2306 * Loop over genfs_putpages until all pages are gathered.
2307 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2308 * Whenever we lose the interlock we have to rerun check_dirty, as
2309 * well, since more pages might have been dirtied in our absence.
2311 #ifdef DEBUG
2312 debug_n_again = 0;
2313 #endif
2314 do {
2315 busypg = NULL;
2316 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2317 ap->a_flags, 0, &busypg) < 0) {
2318 mutex_exit(vp->v_interlock);
2320 mutex_enter(vp->v_interlock);
2321 write_and_wait(fs, vp, busypg, seglocked, NULL);
2322 if (!seglocked) {
2323 mutex_exit(vp->v_interlock);
2324 lfs_release_finfo(fs);
2325 lfs_segunlock(fs);
2326 mutex_enter(vp->v_interlock);
2328 sp->vp = NULL;
2329 goto get_seglock;
2332 busypg = NULL;
2333 error = genfs_do_putpages(vp, startoffset, endoffset,
2334 ap->a_flags, &busypg);
2336 if (error == EDEADLK || error == EAGAIN) {
2337 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2338 " %d ino %d off %x (seg %d)\n", error,
2339 ip->i_number, fs->lfs_offset,
2340 dtosn(fs, fs->lfs_offset)));
2342 mutex_enter(vp->v_interlock);
2343 write_and_wait(fs, vp, busypg, seglocked, "again");
2345 #ifdef DEBUG
2346 ++debug_n_again;
2347 #endif
2348 } while (error == EDEADLK);
2349 #ifdef DEBUG
2350 if (debug_n_again > TOOMANY)
2351 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2352 #endif
2354 KASSERT(sp != NULL && sp->vp == vp);
2355 if (!seglocked) {
2356 sp->vp = NULL;
2358 /* Write indirect blocks as well */
2359 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2360 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2361 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2363 KASSERT(sp->vp == NULL);
2364 sp->vp = vp;
2368 * Blocks are now gathered into a segment waiting to be written.
2369 * All that's left to do is update metadata, and write them.
2371 lfs_updatemeta(sp);
2372 KASSERT(sp->vp == vp);
2373 sp->vp = NULL;
2376 * If we were called from lfs_writefile, we don't need to clean up
2377 * the FIP or unlock the segment lock. We're done.
2379 if (seglocked)
2380 return error;
2382 /* Clean up FIP and send it to disk. */
2383 lfs_release_finfo(fs);
2384 lfs_writeseg(fs, fs->lfs_sp);
2387 * Remove us from paging queue if we wrote all our pages.
2389 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2390 mutex_enter(&lfs_lock);
2391 if (ip->i_flags & IN_PAGING) {
2392 ip->i_flags &= ~IN_PAGING;
2393 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2395 mutex_exit(&lfs_lock);
2399 * XXX - with the malloc/copy writeseg, the pages are freed by now
2400 * even if we don't wait (e.g. if we hold a nested lock). This
2401 * will not be true if we stop using malloc/copy.
2403 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2404 lfs_segunlock(fs);
2407 * Wait for v_numoutput to drop to zero. The seglock should
2408 * take care of this, but there is a slight possibility that
2409 * aiodoned might not have got around to our buffers yet.
2411 if (sync) {
2412 mutex_enter(vp->v_interlock);
2413 while (vp->v_numoutput > 0) {
2414 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2415 " num %d\n", ip->i_number, vp->v_numoutput));
2416 cv_wait(&vp->v_cv, vp->v_interlock);
2418 mutex_exit(vp->v_interlock);
2420 return error;
2424 * Return the last logical file offset that should be written for this file
2425 * if we're doing a write that ends at "size". If writing, we need to know
2426 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2427 * to know about entire blocks.
2429 void
2430 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2432 struct inode *ip = VTOI(vp);
2433 struct lfs *fs = ip->i_lfs;
2434 daddr_t olbn, nlbn;
2436 olbn = lblkno(fs, ip->i_size);
2437 nlbn = lblkno(fs, size);
2438 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2439 *eobp = fragroundup(fs, size);
2440 } else {
2441 *eobp = blkroundup(fs, size);
2445 #ifdef DEBUG
2446 void lfs_dump_vop(void *);
2448 void
2449 lfs_dump_vop(void *v)
2451 struct vop_putpages_args /* {
2452 struct vnode *a_vp;
2453 voff_t a_offlo;
2454 voff_t a_offhi;
2455 int a_flags;
2456 } */ *ap = v;
2458 #ifdef DDB
2459 vfs_vnode_print(ap->a_vp, 0, printf);
2460 #endif
2461 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2463 #endif
2466 lfs_mmap(void *v)
2468 struct vop_mmap_args /* {
2469 const struct vnodeop_desc *a_desc;
2470 struct vnode *a_vp;
2471 vm_prot_t a_prot;
2472 kauth_cred_t a_cred;
2473 } */ *ap = v;
2475 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2476 return EOPNOTSUPP;
2477 return ufs_mmap(v);