etc/services - sync with NetBSD-8
[minix.git] / crypto / external / bsd / openssl / dist / ssl / t1_enc.c
blobaacacc3024863ca1972cb074572e86cf13348d64
1 /* ssl/t1_enc.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
58 /* ====================================================================
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
111 /* ====================================================================
112 * Copyright 2005 Nokia. All rights reserved.
114 * The portions of the attached software ("Contribution") is developed by
115 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116 * license.
118 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120 * support (see RFC 4279) to OpenSSL.
122 * No patent licenses or other rights except those expressly stated in
123 * the OpenSSL open source license shall be deemed granted or received
124 * expressly, by implication, estoppel, or otherwise.
126 * No assurances are provided by Nokia that the Contribution does not
127 * infringe the patent or other intellectual property rights of any third
128 * party or that the license provides you with all the necessary rights
129 * to make use of the Contribution.
131 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135 * OTHERWISE.
138 #include <stdio.h>
139 #include "ssl_locl.h"
140 #ifndef OPENSSL_NO_COMP
141 # include <openssl/comp.h>
142 #endif
143 #include <openssl/evp.h>
144 #include <openssl/hmac.h>
145 #include <openssl/md5.h>
146 #include <openssl/rand.h>
147 #ifdef KSSL_DEBUG
148 # include <openssl/des.h>
149 #endif
151 /* seed1 through seed5 are virtually concatenated */
152 static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec,
153 int sec_len,
154 const void *seed1, int seed1_len,
155 const void *seed2, int seed2_len,
156 const void *seed3, int seed3_len,
157 const void *seed4, int seed4_len,
158 const void *seed5, int seed5_len,
159 unsigned char *out, int olen)
161 int chunk;
162 size_t j;
163 EVP_MD_CTX ctx, ctx_tmp;
164 EVP_PKEY *mac_key;
165 unsigned char A1[EVP_MAX_MD_SIZE];
166 size_t A1_len;
167 int ret = 0;
169 chunk = EVP_MD_size(md);
170 OPENSSL_assert(chunk >= 0);
172 EVP_MD_CTX_init(&ctx);
173 EVP_MD_CTX_init(&ctx_tmp);
174 EVP_MD_CTX_set_flags(&ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
175 EVP_MD_CTX_set_flags(&ctx_tmp, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
176 mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len);
177 if (!mac_key)
178 goto err;
179 if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
180 goto err;
181 if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key))
182 goto err;
183 if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
184 goto err;
185 if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
186 goto err;
187 if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
188 goto err;
189 if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
190 goto err;
191 if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
192 goto err;
193 if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
194 goto err;
196 for (;;) {
197 /* Reinit mac contexts */
198 if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
199 goto err;
200 if (!EVP_DigestSignInit(&ctx_tmp, NULL, md, NULL, mac_key))
201 goto err;
202 if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
203 goto err;
204 if (!EVP_DigestSignUpdate(&ctx_tmp, A1, A1_len))
205 goto err;
206 if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
207 goto err;
208 if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
209 goto err;
210 if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
211 goto err;
212 if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
213 goto err;
214 if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
215 goto err;
217 if (olen > chunk) {
218 if (!EVP_DigestSignFinal(&ctx, out, &j))
219 goto err;
220 out += j;
221 olen -= j;
222 /* calc the next A1 value */
223 if (!EVP_DigestSignFinal(&ctx_tmp, A1, &A1_len))
224 goto err;
225 } else { /* last one */
227 if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
228 goto err;
229 memcpy(out, A1, olen);
230 break;
233 ret = 1;
234 err:
235 EVP_PKEY_free(mac_key);
236 EVP_MD_CTX_cleanup(&ctx);
237 EVP_MD_CTX_cleanup(&ctx_tmp);
238 OPENSSL_cleanse(A1, sizeof(A1));
239 return ret;
242 /* seed1 through seed5 are virtually concatenated */
243 static int tls1_PRF(long digest_mask,
244 const void *seed1, int seed1_len,
245 const void *seed2, int seed2_len,
246 const void *seed3, int seed3_len,
247 const void *seed4, int seed4_len,
248 const void *seed5, int seed5_len,
249 const unsigned char *sec, int slen,
250 unsigned char *out1, unsigned char *out2, int olen)
252 int len, i, idx, count;
253 const unsigned char *S1;
254 long m;
255 const EVP_MD *md;
256 int ret = 0;
258 /* Count number of digests and partition sec evenly */
259 count = 0;
260 for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
261 if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask)
262 count++;
264 if (!count) {
265 /* Should never happen */
266 SSLerr(SSL_F_TLS1_PRF, ERR_R_INTERNAL_ERROR);
267 goto err;
269 len = slen / count;
270 if (count == 1)
271 slen = 0;
272 S1 = sec;
273 memset(out1, 0, olen);
274 for (idx = 0; ssl_get_handshake_digest(idx, &m, &md); idx++) {
275 if ((m << TLS1_PRF_DGST_SHIFT) & digest_mask) {
276 if (!md) {
277 SSLerr(SSL_F_TLS1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE);
278 goto err;
280 if (!tls1_P_hash(md, S1, len + (slen & 1),
281 seed1, seed1_len, seed2, seed2_len, seed3,
282 seed3_len, seed4, seed4_len, seed5, seed5_len,
283 out2, olen))
284 goto err;
285 S1 += len;
286 for (i = 0; i < olen; i++) {
287 out1[i] ^= out2[i];
291 ret = 1;
292 err:
293 return ret;
296 static int tls1_generate_key_block(SSL *s, unsigned char *km,
297 unsigned char *tmp, int num)
299 int ret;
300 ret = tls1_PRF(ssl_get_algorithm2(s),
301 TLS_MD_KEY_EXPANSION_CONST,
302 TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3->server_random,
303 SSL3_RANDOM_SIZE, s->s3->client_random, SSL3_RANDOM_SIZE,
304 NULL, 0, NULL, 0, s->session->master_key,
305 s->session->master_key_length, km, tmp, num);
306 #ifdef KSSL_DEBUG
307 fprintf(stderr, "tls1_generate_key_block() ==> %d byte master_key =\n\t",
308 s->session->master_key_length);
310 int i;
311 for (i = 0; i < s->session->master_key_length; i++) {
312 fprintf(stderr, "%02X", s->session->master_key[i]);
314 fprintf(stderr, "\n");
316 #endif /* KSSL_DEBUG */
317 return ret;
320 int tls1_change_cipher_state(SSL *s, int which)
322 static const unsigned char empty[] = "";
323 unsigned char *p, *mac_secret;
324 unsigned char *exp_label;
325 unsigned char tmp1[EVP_MAX_KEY_LENGTH];
326 unsigned char tmp2[EVP_MAX_KEY_LENGTH];
327 unsigned char iv1[EVP_MAX_IV_LENGTH * 2];
328 unsigned char iv2[EVP_MAX_IV_LENGTH * 2];
329 unsigned char *ms, *key, *iv;
330 int client_write;
331 EVP_CIPHER_CTX *dd;
332 const EVP_CIPHER *c;
333 #ifndef OPENSSL_NO_COMP
334 const SSL_COMP *comp;
335 #endif
336 const EVP_MD *m;
337 int mac_type;
338 int *mac_secret_size;
339 EVP_MD_CTX *mac_ctx;
340 EVP_PKEY *mac_key;
341 int is_export, n, i, j, k, exp_label_len, cl;
342 int reuse_dd = 0;
344 is_export = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher);
345 c = s->s3->tmp.new_sym_enc;
346 m = s->s3->tmp.new_hash;
347 mac_type = s->s3->tmp.new_mac_pkey_type;
348 #ifndef OPENSSL_NO_COMP
349 comp = s->s3->tmp.new_compression;
350 #endif
352 #ifdef KSSL_DEBUG
353 fprintf(stderr, "tls1_change_cipher_state(which= %d) w/\n", which);
354 fprintf(stderr, "\talg= %ld/%ld, comp= %p\n",
355 s->s3->tmp.new_cipher->algorithm_mkey,
356 s->s3->tmp.new_cipher->algorithm_auth, comp);
357 fprintf(stderr, "\tevp_cipher == %p ==? &d_cbc_ede_cipher3\n", c);
358 fprintf(stderr, "\tevp_cipher: nid, blksz= %d, %d, keylen=%d, ivlen=%d\n",
359 c->nid, c->block_size, c->key_len, c->iv_len);
360 fprintf(stderr, "\tkey_block: len= %d, data= ",
361 s->s3->tmp.key_block_length);
363 int i;
364 for (i = 0; i < s->s3->tmp.key_block_length; i++)
365 fprintf(stderr, "%02x", s->s3->tmp.key_block[i]);
366 fprintf(stderr, "\n");
368 #endif /* KSSL_DEBUG */
370 if (which & SSL3_CC_READ) {
371 if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
372 s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
373 else
374 s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
376 if (s->enc_read_ctx != NULL)
377 reuse_dd = 1;
378 else if ((s->enc_read_ctx =
379 OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
380 goto err;
381 else
383 * make sure it's intialized in case we exit later with an error
385 EVP_CIPHER_CTX_init(s->enc_read_ctx);
386 dd = s->enc_read_ctx;
387 mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
388 #ifndef OPENSSL_NO_COMP
389 if (s->expand != NULL) {
390 COMP_CTX_free(s->expand);
391 s->expand = NULL;
393 if (comp != NULL) {
394 s->expand = COMP_CTX_new(comp->method);
395 if (s->expand == NULL) {
396 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
397 SSL_R_COMPRESSION_LIBRARY_ERROR);
398 goto err2;
400 if (s->s3->rrec.comp == NULL)
401 s->s3->rrec.comp = (unsigned char *)
402 OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
403 if (s->s3->rrec.comp == NULL)
404 goto err;
406 #endif
408 * this is done by dtls1_reset_seq_numbers for DTLS1_VERSION
410 if (s->version != DTLS1_VERSION)
411 memset(&(s->s3->read_sequence[0]), 0, 8);
412 mac_secret = &(s->s3->read_mac_secret[0]);
413 mac_secret_size = &(s->s3->read_mac_secret_size);
414 } else {
415 if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
416 s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
417 else
418 s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
419 if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s))
420 reuse_dd = 1;
421 else if ((s->enc_write_ctx = EVP_CIPHER_CTX_new()) == NULL)
422 goto err;
423 dd = s->enc_write_ctx;
424 if (SSL_IS_DTLS(s)) {
425 mac_ctx = EVP_MD_CTX_create();
426 if (!mac_ctx)
427 goto err;
428 s->write_hash = mac_ctx;
429 } else
430 mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
431 #ifndef OPENSSL_NO_COMP
432 if (s->compress != NULL) {
433 COMP_CTX_free(s->compress);
434 s->compress = NULL;
436 if (comp != NULL) {
437 s->compress = COMP_CTX_new(comp->method);
438 if (s->compress == NULL) {
439 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,
440 SSL_R_COMPRESSION_LIBRARY_ERROR);
441 goto err2;
444 #endif
446 * this is done by dtls1_reset_seq_numbers for DTLS1_VERSION
448 if (s->version != DTLS1_VERSION)
449 memset(&(s->s3->write_sequence[0]), 0, 8);
450 mac_secret = &(s->s3->write_mac_secret[0]);
451 mac_secret_size = &(s->s3->write_mac_secret_size);
454 if (reuse_dd)
455 EVP_CIPHER_CTX_cleanup(dd);
457 p = s->s3->tmp.key_block;
458 i = *mac_secret_size = s->s3->tmp.new_mac_secret_size;
460 cl = EVP_CIPHER_key_length(c);
461 j = is_export ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ?
462 cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl;
463 /* Was j=(exp)?5:EVP_CIPHER_key_length(c); */
464 /* If GCM mode only part of IV comes from PRF */
465 if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
466 k = EVP_GCM_TLS_FIXED_IV_LEN;
467 else
468 k = EVP_CIPHER_iv_length(c);
469 if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
470 (which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
471 ms = &(p[0]);
472 n = i + i;
473 key = &(p[n]);
474 n += j + j;
475 iv = &(p[n]);
476 n += k + k;
477 exp_label = (unsigned char *)TLS_MD_CLIENT_WRITE_KEY_CONST;
478 exp_label_len = TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE;
479 client_write = 1;
480 } else {
481 n = i;
482 ms = &(p[n]);
483 n += i + j;
484 key = &(p[n]);
485 n += j + k;
486 iv = &(p[n]);
487 n += k;
488 exp_label = (unsigned char *)TLS_MD_SERVER_WRITE_KEY_CONST;
489 exp_label_len = TLS_MD_SERVER_WRITE_KEY_CONST_SIZE;
490 client_write = 0;
493 if (n > s->s3->tmp.key_block_length) {
494 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
495 goto err2;
498 memcpy(mac_secret, ms, i);
500 if (!(EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER)) {
501 mac_key = EVP_PKEY_new_mac_key(mac_type, NULL,
502 mac_secret, *mac_secret_size);
503 EVP_DigestSignInit(mac_ctx, NULL, m, NULL, mac_key);
504 EVP_PKEY_free(mac_key);
506 #ifdef TLS_DEBUG
507 printf("which = %04X\nmac key=", which);
509 int z;
510 for (z = 0; z < i; z++)
511 printf("%02X%c", ms[z], ((z + 1) % 16) ? ' ' : '\n');
513 #endif
514 if (is_export) {
516 * In here I set both the read and write key/iv to the same value
517 * since only the correct one will be used :-).
519 if (!tls1_PRF(ssl_get_algorithm2(s),
520 exp_label, exp_label_len,
521 s->s3->client_random, SSL3_RANDOM_SIZE,
522 s->s3->server_random, SSL3_RANDOM_SIZE,
523 NULL, 0, NULL, 0,
524 key, j, tmp1, tmp2, EVP_CIPHER_key_length(c)))
525 goto err2;
526 key = tmp1;
528 if (k > 0) {
529 if (!tls1_PRF(ssl_get_algorithm2(s),
530 TLS_MD_IV_BLOCK_CONST, TLS_MD_IV_BLOCK_CONST_SIZE,
531 s->s3->client_random, SSL3_RANDOM_SIZE,
532 s->s3->server_random, SSL3_RANDOM_SIZE,
533 NULL, 0, NULL, 0, empty, 0, iv1, iv2, k * 2))
534 goto err2;
535 if (client_write)
536 iv = iv1;
537 else
538 iv = &(iv1[k]);
542 s->session->key_arg_length = 0;
543 #ifdef KSSL_DEBUG
545 int i;
546 fprintf(stderr, "EVP_CipherInit_ex(dd,c,key=,iv=,which)\n");
547 fprintf(stderr, "\tkey= ");
548 for (i = 0; i < c->key_len; i++)
549 fprintf(stderr, "%02x", key[i]);
550 fprintf(stderr, "\n");
551 fprintf(stderr, "\t iv= ");
552 for (i = 0; i < c->iv_len; i++)
553 fprintf(stderr, "%02x", iv[i]);
554 fprintf(stderr, "\n");
556 #endif /* KSSL_DEBUG */
558 if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE) {
559 if (!EVP_CipherInit_ex(dd, c, NULL, key, NULL, (which & SSL3_CC_WRITE))
560 || !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_GCM_SET_IV_FIXED, k, iv)) {
561 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
562 goto err2;
564 } else {
565 if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE))) {
566 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
567 goto err2;
570 /* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
571 if ((EVP_CIPHER_flags(c) & EVP_CIPH_FLAG_AEAD_CIPHER) && *mac_secret_size
572 && !EVP_CIPHER_CTX_ctrl(dd, EVP_CTRL_AEAD_SET_MAC_KEY,
573 *mac_secret_size, mac_secret)) {
574 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
575 goto err2;
578 #ifdef TLS_DEBUG
579 printf("which = %04X\nkey=", which);
581 int z;
582 for (z = 0; z < EVP_CIPHER_key_length(c); z++)
583 printf("%02X%c", key[z], ((z + 1) % 16) ? ' ' : '\n');
585 printf("\niv=");
587 int z;
588 for (z = 0; z < k; z++)
589 printf("%02X%c", iv[z], ((z + 1) % 16) ? ' ' : '\n');
591 printf("\n");
592 #endif
594 OPENSSL_cleanse(tmp1, sizeof(tmp1));
595 OPENSSL_cleanse(tmp2, sizeof(tmp1));
596 OPENSSL_cleanse(iv1, sizeof(iv1));
597 OPENSSL_cleanse(iv2, sizeof(iv2));
598 return (1);
599 err:
600 SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
601 err2:
602 return (0);
605 int tls1_setup_key_block(SSL *s)
607 unsigned char *p1, *p2 = NULL;
608 const EVP_CIPHER *c;
609 const EVP_MD *hash;
610 int num;
611 SSL_COMP *comp;
612 int mac_type = NID_undef, mac_secret_size = 0;
613 int ret = 0;
615 #ifdef KSSL_DEBUG
616 fprintf(stderr, "tls1_setup_key_block()\n");
617 #endif /* KSSL_DEBUG */
619 if (s->s3->tmp.key_block_length != 0)
620 return (1);
622 if (!ssl_cipher_get_evp
623 (s->session, &c, &hash, &mac_type, &mac_secret_size, &comp)) {
624 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
625 return (0);
628 s->s3->tmp.new_sym_enc = c;
629 s->s3->tmp.new_hash = hash;
630 s->s3->tmp.new_mac_pkey_type = mac_type;
631 s->s3->tmp.new_mac_secret_size = mac_secret_size;
632 num =
633 EVP_CIPHER_key_length(c) + mac_secret_size + EVP_CIPHER_iv_length(c);
634 num *= 2;
636 ssl3_cleanup_key_block(s);
638 if ((p1 = (unsigned char *)OPENSSL_malloc(num)) == NULL) {
639 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
640 goto err;
643 s->s3->tmp.key_block_length = num;
644 s->s3->tmp.key_block = p1;
646 if ((p2 = (unsigned char *)OPENSSL_malloc(num)) == NULL) {
647 SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
648 OPENSSL_free(p1);
649 goto err;
651 #ifdef TLS_DEBUG
652 printf("client random\n");
654 int z;
655 for (z = 0; z < SSL3_RANDOM_SIZE; z++)
656 printf("%02X%c", s->s3->client_random[z],
657 ((z + 1) % 16) ? ' ' : '\n');
659 printf("server random\n");
661 int z;
662 for (z = 0; z < SSL3_RANDOM_SIZE; z++)
663 printf("%02X%c", s->s3->server_random[z],
664 ((z + 1) % 16) ? ' ' : '\n');
666 printf("pre-master\n");
668 int z;
669 for (z = 0; z < s->session->master_key_length; z++)
670 printf("%02X%c", s->session->master_key[z],
671 ((z + 1) % 16) ? ' ' : '\n');
673 #endif
674 if (!tls1_generate_key_block(s, p1, p2, num))
675 goto err;
676 #ifdef TLS_DEBUG
677 printf("\nkey block\n");
679 int z;
680 for (z = 0; z < num; z++)
681 printf("%02X%c", p1[z], ((z + 1) % 16) ? ' ' : '\n');
683 #endif
685 if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)
686 && s->method->version <= TLS1_VERSION) {
688 * enable vulnerability countermeasure for CBC ciphers with known-IV
689 * problem (http://www.openssl.org/~bodo/tls-cbc.txt)
691 s->s3->need_empty_fragments = 1;
693 if (s->session->cipher != NULL) {
694 if (s->session->cipher->algorithm_enc == SSL_eNULL)
695 s->s3->need_empty_fragments = 0;
697 #ifndef OPENSSL_NO_RC4
698 if (s->session->cipher->algorithm_enc == SSL_RC4)
699 s->s3->need_empty_fragments = 0;
700 #endif
704 ret = 1;
705 err:
706 if (p2) {
707 OPENSSL_cleanse(p2, num);
708 OPENSSL_free(p2);
710 return (ret);
714 * tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
716 * Returns:
717 * 0: (in non-constant time) if the record is publically invalid (i.e. too
718 * short etc).
719 * 1: if the record's padding is valid / the encryption was successful.
720 * -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
721 * an internal error occured.
723 int tls1_enc(SSL *s, int send)
725 SSL3_RECORD *rec;
726 EVP_CIPHER_CTX *ds;
727 unsigned long l;
728 int bs, i, j, k, pad = 0, ret, mac_size = 0;
729 const EVP_CIPHER *enc;
731 if (send) {
732 if (EVP_MD_CTX_md(s->write_hash)) {
733 int n = EVP_MD_CTX_size(s->write_hash);
734 OPENSSL_assert(n >= 0);
736 ds = s->enc_write_ctx;
737 rec = &(s->s3->wrec);
738 if (s->enc_write_ctx == NULL)
739 enc = NULL;
740 else {
741 int ivlen;
742 enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
743 /* For TLSv1.1 and later explicit IV */
744 if (s->version >= TLS1_1_VERSION
745 && EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
746 ivlen = EVP_CIPHER_iv_length(enc);
747 else
748 ivlen = 0;
749 if (ivlen > 1) {
750 if (rec->data != rec->input)
752 * we can't write into the input stream: Can this ever
753 * happen?? (steve)
755 fprintf(stderr,
756 "%s:%d: rec->data != rec->input\n",
757 __FILE__, __LINE__);
758 else if (RAND_bytes(rec->input, ivlen) <= 0)
759 return -1;
762 } else {
763 if (EVP_MD_CTX_md(s->read_hash)) {
764 int n = EVP_MD_CTX_size(s->read_hash);
765 OPENSSL_assert(n >= 0);
767 ds = s->enc_read_ctx;
768 rec = &(s->s3->rrec);
769 if (s->enc_read_ctx == NULL)
770 enc = NULL;
771 else
772 enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
775 #ifdef KSSL_DEBUG
776 fprintf(stderr, "tls1_enc(%d)\n", send);
777 #endif /* KSSL_DEBUG */
779 if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
780 memmove(rec->data, rec->input, rec->length);
781 rec->input = rec->data;
782 ret = 1;
783 } else {
784 l = rec->length;
785 bs = EVP_CIPHER_block_size(ds->cipher);
787 if (EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
788 unsigned char buf[EVP_AEAD_TLS1_AAD_LEN], *seq;
790 seq = send ? s->s3->write_sequence : s->s3->read_sequence;
792 if (s->version == DTLS1_VERSION || s->version == DTLS1_BAD_VER) {
793 unsigned char dtlsseq[9], *p = dtlsseq;
795 s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p);
796 memcpy(p, &seq[2], 6);
797 memcpy(buf, dtlsseq, 8);
798 } else {
799 memcpy(buf, seq, 8);
800 for (i = 7; i >= 0; i--) { /* increment */
801 ++seq[i];
802 if (seq[i] != 0)
803 break;
807 buf[8] = rec->type;
808 buf[9] = (unsigned char)(s->version >> 8);
809 buf[10] = (unsigned char)(s->version);
810 buf[11] = rec->length >> 8;
811 buf[12] = rec->length & 0xff;
812 pad = EVP_CIPHER_CTX_ctrl(ds, EVP_CTRL_AEAD_TLS1_AAD,
813 EVP_AEAD_TLS1_AAD_LEN, buf);
814 if (pad <= 0)
815 return -1;
816 if (send) {
817 l += pad;
818 rec->length += pad;
820 } else if ((bs != 1) && send) {
821 i = bs - ((int)l % bs);
823 /* Add weird padding of upto 256 bytes */
825 /* we need to add 'i' padding bytes of value j */
826 j = i - 1;
827 if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) {
828 if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG)
829 j++;
831 for (k = (int)l; k < (int)(l + i); k++)
832 rec->input[k] = j;
833 l += i;
834 rec->length += i;
836 #ifdef KSSL_DEBUG
838 unsigned long ui;
839 fprintf(stderr,
840 "EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n",
841 ds, rec->data, rec->input, l);
842 fprintf(stderr,
843 "\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%lu %lu], %d iv_len\n",
844 ds->buf_len, ds->cipher->key_len, DES_KEY_SZ,
845 DES_SCHEDULE_SZ, ds->cipher->iv_len);
846 fprintf(stderr, "\t\tIV: ");
847 for (i = 0; i < ds->cipher->iv_len; i++)
848 fprintf(stderr, "%02X", ds->iv[i]);
849 fprintf(stderr, "\n");
850 fprintf(stderr, "\trec->input=");
851 for (ui = 0; ui < l; ui++)
852 fprintf(stderr, " %02x", rec->input[ui]);
853 fprintf(stderr, "\n");
855 #endif /* KSSL_DEBUG */
857 if (!send) {
858 if (l == 0 || l % bs != 0)
859 return 0;
862 i = EVP_Cipher(ds, rec->data, rec->input, l);
863 if ((EVP_CIPHER_flags(ds->cipher) & EVP_CIPH_FLAG_CUSTOM_CIPHER)
864 ? (i < 0)
865 : (i == 0))
866 return -1; /* AEAD can fail to verify MAC */
867 if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send) {
868 rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN;
869 rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN;
870 rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
872 #ifdef KSSL_DEBUG
874 unsigned long i;
875 fprintf(stderr, "\trec->data=");
876 for (i = 0; i < l; i++)
877 fprintf(stderr, " %02x", rec->data[i]);
878 fprintf(stderr, "\n");
880 #endif /* KSSL_DEBUG */
882 ret = 1;
883 if (EVP_MD_CTX_md(s->read_hash) != NULL)
884 mac_size = EVP_MD_CTX_size(s->read_hash);
885 if ((bs != 1) && !send)
886 ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
887 if (pad && !send)
888 rec->length -= pad;
890 return ret;
893 int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out)
895 unsigned int ret;
896 EVP_MD_CTX ctx, *d = NULL;
897 int i;
899 if (s->s3->handshake_buffer)
900 if (!ssl3_digest_cached_records(s))
901 return 0;
903 if (s->s3->handshake_dgst) {
904 for (i = 0; i < SSL_MAX_DIGEST; i++) {
905 if (s->s3->handshake_dgst[i]
906 && EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) {
907 d = s->s3->handshake_dgst[i];
908 break;
912 if (!d) {
913 SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC, SSL_R_NO_REQUIRED_DIGEST);
914 return 0;
917 EVP_MD_CTX_init(&ctx);
918 EVP_MD_CTX_copy_ex(&ctx, d);
919 EVP_DigestFinal_ex(&ctx, out, &ret);
920 EVP_MD_CTX_cleanup(&ctx);
921 return ((int)ret);
924 int tls1_final_finish_mac(SSL *s,
925 const char *str, int slen, unsigned char *out)
927 unsigned int i;
928 EVP_MD_CTX ctx;
929 unsigned char buf[2 * EVP_MAX_MD_SIZE];
930 unsigned char *q, buf2[12];
931 int idx;
932 long mask;
933 int err = 0;
934 const EVP_MD *md;
936 q = buf;
938 if (s->s3->handshake_buffer)
939 if (!ssl3_digest_cached_records(s))
940 return 0;
942 EVP_MD_CTX_init(&ctx);
944 for (idx = 0; ssl_get_handshake_digest(idx, &mask, &md); idx++) {
945 if (mask & ssl_get_algorithm2(s)) {
946 int hashsize = EVP_MD_size(md);
947 EVP_MD_CTX *hdgst = s->s3->handshake_dgst[idx];
948 if (!hdgst || hashsize < 0
949 || hashsize > (int)(sizeof buf - (size_t)(q - buf))) {
951 * internal error: 'buf' is too small for this cipersuite!
953 err = 1;
954 } else {
955 if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
956 !EVP_DigestFinal_ex(&ctx, q, &i) ||
957 (i != (unsigned int)hashsize))
958 err = 1;
959 q += hashsize;
964 if (!tls1_PRF(ssl_get_algorithm2(s),
965 str, slen, buf, (int)(q - buf), NULL, 0, NULL, 0, NULL, 0,
966 s->session->master_key, s->session->master_key_length,
967 out, buf2, sizeof buf2))
968 err = 1;
969 EVP_MD_CTX_cleanup(&ctx);
971 OPENSSL_cleanse(buf, (int)(q - buf));
972 OPENSSL_cleanse(buf2, sizeof(buf2));
973 if (err)
974 return 0;
975 else
976 return sizeof buf2;
979 int tls1_mac(SSL *ssl, unsigned char *md, int send)
981 SSL3_RECORD *rec;
982 unsigned char *seq;
983 EVP_MD_CTX *hash;
984 size_t md_size, orig_len;
985 int i;
986 EVP_MD_CTX hmac, *mac_ctx;
987 unsigned char header[13];
988 int stream_mac = (send ? (ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM)
989 : (ssl->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM));
990 int t;
992 if (send) {
993 rec = &(ssl->s3->wrec);
994 seq = &(ssl->s3->write_sequence[0]);
995 hash = ssl->write_hash;
996 } else {
997 rec = &(ssl->s3->rrec);
998 seq = &(ssl->s3->read_sequence[0]);
999 hash = ssl->read_hash;
1002 t = EVP_MD_CTX_size(hash);
1003 OPENSSL_assert(t >= 0);
1004 md_size = t;
1006 /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
1007 if (stream_mac) {
1008 mac_ctx = hash;
1009 } else {
1010 if (!EVP_MD_CTX_copy(&hmac, hash))
1011 return -1;
1012 mac_ctx = &hmac;
1015 if (ssl->version == DTLS1_VERSION || ssl->version == DTLS1_BAD_VER) {
1016 unsigned char dtlsseq[8], *p = dtlsseq;
1018 s2n(send ? ssl->d1->w_epoch : ssl->d1->r_epoch, p);
1019 memcpy(p, &seq[2], 6);
1021 memcpy(header, dtlsseq, 8);
1022 } else
1023 memcpy(header, seq, 8);
1026 * kludge: tls1_cbc_remove_padding passes padding length in rec->type
1028 orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
1029 rec->type &= 0xff;
1031 header[8] = rec->type;
1032 header[9] = (unsigned char)(ssl->version >> 8);
1033 header[10] = (unsigned char)(ssl->version);
1034 header[11] = (rec->length) >> 8;
1035 header[12] = (rec->length) & 0xff;
1037 if (!send &&
1038 EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1039 ssl3_cbc_record_digest_supported(mac_ctx)) {
1041 * This is a CBC-encrypted record. We must avoid leaking any
1042 * timing-side channel information about how many blocks of data we
1043 * are hashing because that gives an attacker a timing-oracle.
1045 /* Final param == not SSLv3 */
1046 ssl3_cbc_digest_record(mac_ctx,
1047 md, &md_size,
1048 header, rec->input,
1049 rec->length + md_size, orig_len,
1050 ssl->s3->read_mac_secret,
1051 ssl->s3->read_mac_secret_size, 0);
1052 } else {
1053 EVP_DigestSignUpdate(mac_ctx, header, sizeof(header));
1054 EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length);
1055 t = EVP_DigestSignFinal(mac_ctx, md, &md_size);
1056 OPENSSL_assert(t > 0);
1057 #ifdef OPENSSL_FIPS
1058 if (!send && FIPS_mode())
1059 tls_fips_digest_extra(ssl->enc_read_ctx,
1060 mac_ctx, rec->input, rec->length, orig_len);
1061 #endif
1064 if (!stream_mac)
1065 EVP_MD_CTX_cleanup(&hmac);
1066 #ifdef TLS_DEBUG
1067 fprintf(stderr, "seq=");
1069 int z;
1070 for (z = 0; z < 8; z++)
1071 fprintf(stderr, "%02X ", seq[z]);
1072 fprintf(stderr, "\n");
1074 fprintf(stderr, "rec=");
1076 unsigned int z;
1077 for (z = 0; z < rec->length; z++)
1078 fprintf(stderr, "%02X ", rec->data[z]);
1079 fprintf(stderr, "\n");
1081 #endif
1083 if (ssl->version != DTLS1_VERSION && ssl->version != DTLS1_BAD_VER) {
1084 for (i = 7; i >= 0; i--) {
1085 ++seq[i];
1086 if (seq[i] != 0)
1087 break;
1090 #ifdef TLS_DEBUG
1092 unsigned int z;
1093 for (z = 0; z < md_size; z++)
1094 fprintf(stderr, "%02X ", md[z]);
1095 fprintf(stderr, "\n");
1097 #endif
1098 return (md_size);
1101 int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
1102 int len)
1104 unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];
1105 const void *co = NULL, *so = NULL;
1106 int col = 0, sol = 0;
1108 #ifdef KSSL_DEBUG
1109 fprintf(stderr, "tls1_generate_master_secret(%p,%p, %p, %d)\n", s, out, p,
1110 len);
1111 #endif /* KSSL_DEBUG */
1113 #ifdef TLSEXT_TYPE_opaque_prf_input
1114 if (s->s3->client_opaque_prf_input != NULL
1115 && s->s3->server_opaque_prf_input != NULL
1116 && s->s3->client_opaque_prf_input_len > 0
1117 && s->s3->client_opaque_prf_input_len ==
1118 s->s3->server_opaque_prf_input_len) {
1119 co = s->s3->client_opaque_prf_input;
1120 col = s->s3->server_opaque_prf_input_len;
1121 so = s->s3->server_opaque_prf_input;
1123 * must be same as col (see
1124 * draft-resc-00.txts-opaque-prf-input-00.txt, section 3.1)
1126 sol = s->s3->client_opaque_prf_input_len;
1128 #endif
1130 tls1_PRF(ssl_get_algorithm2(s),
1131 TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE,
1132 s->s3->client_random, SSL3_RANDOM_SIZE,
1133 co, col,
1134 s->s3->server_random, SSL3_RANDOM_SIZE,
1135 so, sol, p, len, s->session->master_key, buff, sizeof buff);
1136 OPENSSL_cleanse(buff, sizeof buff);
1137 #ifdef SSL_DEBUG
1138 fprintf(stderr, "Premaster Secret:\n");
1139 BIO_dump_fp(stderr, (char *)p, len);
1140 fprintf(stderr, "Client Random:\n");
1141 BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);
1142 fprintf(stderr, "Server Random:\n");
1143 BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);
1144 fprintf(stderr, "Master Secret:\n");
1145 BIO_dump_fp(stderr, (char *)s->session->master_key,
1146 SSL3_MASTER_SECRET_SIZE);
1147 #endif
1149 #ifdef KSSL_DEBUG
1150 fprintf(stderr, "tls1_generate_master_secret() complete\n");
1151 #endif /* KSSL_DEBUG */
1152 return (SSL3_MASTER_SECRET_SIZE);
1155 int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
1156 const char *label, size_t llen,
1157 const unsigned char *context,
1158 size_t contextlen, int use_context)
1160 unsigned char *buff;
1161 unsigned char *val = NULL;
1162 size_t vallen, currentvalpos;
1163 int rv;
1165 #ifdef KSSL_DEBUG
1166 fprintf(stderr, "tls1_export_keying_material(%p,%p,%lu,%s,%lu,%p,%lu)\n",
1167 s, out, olen, label, llen, context, contextlen);
1168 #endif /* KSSL_DEBUG */
1170 buff = OPENSSL_malloc(olen);
1171 if (buff == NULL)
1172 goto err2;
1175 * construct PRF arguments we construct the PRF argument ourself rather
1176 * than passing separate values into the TLS PRF to ensure that the
1177 * concatenation of values does not create a prohibited label.
1179 vallen = llen + SSL3_RANDOM_SIZE * 2;
1180 if (use_context) {
1181 vallen += 2 + contextlen;
1184 val = OPENSSL_malloc(vallen);
1185 if (val == NULL)
1186 goto err2;
1187 currentvalpos = 0;
1188 memcpy(val + currentvalpos, (unsigned char *)label, llen);
1189 currentvalpos += llen;
1190 memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
1191 currentvalpos += SSL3_RANDOM_SIZE;
1192 memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
1193 currentvalpos += SSL3_RANDOM_SIZE;
1195 if (use_context) {
1196 val[currentvalpos] = (contextlen >> 8) & 0xff;
1197 currentvalpos++;
1198 val[currentvalpos] = contextlen & 0xff;
1199 currentvalpos++;
1200 if ((contextlen > 0) || (context != NULL)) {
1201 memcpy(val + currentvalpos, context, contextlen);
1206 * disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited
1207 * label len) = 15, so size of val > max(prohibited label len) = 15 and
1208 * the comparisons won't have buffer overflow
1210 if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
1211 TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
1212 goto err1;
1213 if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
1214 TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
1215 goto err1;
1216 if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
1217 TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
1218 goto err1;
1219 if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
1220 TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
1221 goto err1;
1223 rv = tls1_PRF(ssl_get_algorithm2(s),
1224 val, vallen,
1225 NULL, 0,
1226 NULL, 0,
1227 NULL, 0,
1228 NULL, 0,
1229 s->session->master_key, s->session->master_key_length,
1230 out, buff, olen);
1231 OPENSSL_cleanse(val, vallen);
1232 OPENSSL_cleanse(buff, olen);
1234 #ifdef KSSL_DEBUG
1235 fprintf(stderr, "tls1_export_keying_material() complete\n");
1236 #endif /* KSSL_DEBUG */
1237 goto ret;
1238 err1:
1239 SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL,
1240 SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
1241 rv = 0;
1242 goto ret;
1243 err2:
1244 SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE);
1245 rv = 0;
1246 ret:
1247 if (buff != NULL)
1248 OPENSSL_free(buff);
1249 if (val != NULL)
1250 OPENSSL_free(val);
1251 return (rv);
1254 int tls1_alert_code(int code)
1256 switch (code) {
1257 case SSL_AD_CLOSE_NOTIFY:
1258 return (SSL3_AD_CLOSE_NOTIFY);
1259 case SSL_AD_UNEXPECTED_MESSAGE:
1260 return (SSL3_AD_UNEXPECTED_MESSAGE);
1261 case SSL_AD_BAD_RECORD_MAC:
1262 return (SSL3_AD_BAD_RECORD_MAC);
1263 case SSL_AD_DECRYPTION_FAILED:
1264 return (TLS1_AD_DECRYPTION_FAILED);
1265 case SSL_AD_RECORD_OVERFLOW:
1266 return (TLS1_AD_RECORD_OVERFLOW);
1267 case SSL_AD_DECOMPRESSION_FAILURE:
1268 return (SSL3_AD_DECOMPRESSION_FAILURE);
1269 case SSL_AD_HANDSHAKE_FAILURE:
1270 return (SSL3_AD_HANDSHAKE_FAILURE);
1271 case SSL_AD_NO_CERTIFICATE:
1272 return (-1);
1273 case SSL_AD_BAD_CERTIFICATE:
1274 return (SSL3_AD_BAD_CERTIFICATE);
1275 case SSL_AD_UNSUPPORTED_CERTIFICATE:
1276 return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
1277 case SSL_AD_CERTIFICATE_REVOKED:
1278 return (SSL3_AD_CERTIFICATE_REVOKED);
1279 case SSL_AD_CERTIFICATE_EXPIRED:
1280 return (SSL3_AD_CERTIFICATE_EXPIRED);
1281 case SSL_AD_CERTIFICATE_UNKNOWN:
1282 return (SSL3_AD_CERTIFICATE_UNKNOWN);
1283 case SSL_AD_ILLEGAL_PARAMETER:
1284 return (SSL3_AD_ILLEGAL_PARAMETER);
1285 case SSL_AD_UNKNOWN_CA:
1286 return (TLS1_AD_UNKNOWN_CA);
1287 case SSL_AD_ACCESS_DENIED:
1288 return (TLS1_AD_ACCESS_DENIED);
1289 case SSL_AD_DECODE_ERROR:
1290 return (TLS1_AD_DECODE_ERROR);
1291 case SSL_AD_DECRYPT_ERROR:
1292 return (TLS1_AD_DECRYPT_ERROR);
1293 case SSL_AD_EXPORT_RESTRICTION:
1294 return (TLS1_AD_EXPORT_RESTRICTION);
1295 case SSL_AD_PROTOCOL_VERSION:
1296 return (TLS1_AD_PROTOCOL_VERSION);
1297 case SSL_AD_INSUFFICIENT_SECURITY:
1298 return (TLS1_AD_INSUFFICIENT_SECURITY);
1299 case SSL_AD_INTERNAL_ERROR:
1300 return (TLS1_AD_INTERNAL_ERROR);
1301 case SSL_AD_USER_CANCELLED:
1302 return (TLS1_AD_USER_CANCELLED);
1303 case SSL_AD_NO_RENEGOTIATION:
1304 return (TLS1_AD_NO_RENEGOTIATION);
1305 case SSL_AD_UNSUPPORTED_EXTENSION:
1306 return (TLS1_AD_UNSUPPORTED_EXTENSION);
1307 case SSL_AD_CERTIFICATE_UNOBTAINABLE:
1308 return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
1309 case SSL_AD_UNRECOGNIZED_NAME:
1310 return (TLS1_AD_UNRECOGNIZED_NAME);
1311 case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
1312 return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
1313 case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
1314 return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
1315 case SSL_AD_UNKNOWN_PSK_IDENTITY:
1316 return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
1317 case SSL_AD_INAPPROPRIATE_FALLBACK:
1318 return (TLS1_AD_INAPPROPRIATE_FALLBACK);
1319 #if 0
1320 /* not appropriate for TLS, not used for DTLS */
1321 case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE:
1322 return (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
1323 #endif
1324 default:
1325 return (-1);