1 .\" Automatically generated by Pod::Man 2.22 (Pod::Simple 3.07)
4 .\" ========================================================================
5 .de Sp \" Vertical space (when we can't use .PP)
9 .de Vb \" Begin verbatim text
14 .de Ve \" End verbatim text
18 .\" Set up some character translations and predefined strings. \*(-- will
19 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
20 .\" double quote, and \*(R" will give a right double quote. \*(C+ will
21 .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
22 .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
23 .\" nothing in troff, for use with C<>.
25 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
29 . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
30 . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
43 .\" Escape single quotes in literal strings from groff's Unicode transform.
47 .\" If the F register is turned on, we'll generate index entries on stderr for
48 .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
49 .\" entries marked with X<> in POD. Of course, you'll have to process the
50 .\" output yourself in some meaningful fashion.
53 . tm Index:\\$1\t\\n%\t"\\$2"
63 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
64 .\" Fear. Run. Save yourself. No user-serviceable parts.
65 . \" fudge factors for nroff and troff
74 . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
80 . \" simple accents for nroff and troff
90 . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
91 . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
92 . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
93 . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
94 . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
95 . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
97 . \" troff and (daisy-wheel) nroff accents
98 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
99 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
100 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
101 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
102 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
103 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
104 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
105 .ds ae a\h'-(\w'a'u*4/10)'e
106 .ds Ae A\h'-(\w'A'u*4/10)'E
107 . \" corrections for vroff
108 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
109 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
110 . \" for low resolution devices (crt and lpr)
111 .if \n(.H>23 .if \n(.V>19 \
124 .\" ========================================================================
127 .TH des 3 "2009-07-20" "0.9.6j" "libdes"
128 .\" For nroff, turn off justification. Always turn off hyphenation; it makes
129 .\" way too many mistakes in technical documents.
133 des_random_key, des_set_key, des_key_sched, des_set_key_checked,
134 des_set_key_unchecked, des_set_odd_parity, des_is_weak_key,
135 des_ecb_encrypt, des_ecb2_encrypt, des_ecb3_encrypt, des_ncbc_encrypt,
136 des_cfb_encrypt, des_ofb_encrypt, des_pcbc_encrypt, des_cfb64_encrypt,
137 des_ofb64_encrypt, des_xcbc_encrypt, des_ede2_cbc_encrypt,
138 des_ede2_cfb64_encrypt, des_ede2_ofb64_encrypt, des_ede3_cbc_encrypt,
139 des_ede3_cbcm_encrypt, des_ede3_cfb64_encrypt, des_ede3_ofb64_encrypt,
140 des_read_password, des_read_2passwords, des_read_pw_string,
141 des_cbc_cksum, des_quad_cksum, des_string_to_key, des_string_to_2keys,
142 des_fcrypt, des_crypt, des_enc_read, des_enc_write \- DES encryption
144 .IX Header "SYNOPSIS"
146 \& #include <openssl/des.h>
148 \& void des_random_key(des_cblock *ret);
150 \& int des_set_key(const_des_cblock *key, des_key_schedule schedule);
151 \& int des_key_sched(const_des_cblock *key, des_key_schedule schedule);
152 \& int des_set_key_checked(const_des_cblock *key,
153 \& des_key_schedule schedule);
154 \& void des_set_key_unchecked(const_des_cblock *key,
155 \& des_key_schedule schedule);
157 \& void des_set_odd_parity(des_cblock *key);
158 \& int des_is_weak_key(const_des_cblock *key);
160 \& void des_ecb_encrypt(const_des_cblock *input, des_cblock *output,
161 \& des_key_schedule ks, int enc);
162 \& void des_ecb2_encrypt(const_des_cblock *input, des_cblock *output,
163 \& des_key_schedule ks1, des_key_schedule ks2, int enc);
164 \& void des_ecb3_encrypt(const_des_cblock *input, des_cblock *output,
165 \& des_key_schedule ks1, des_key_schedule ks2,
166 \& des_key_schedule ks3, int enc);
168 \& void des_ncbc_encrypt(const unsigned char *input, unsigned char *output,
169 \& long length, des_key_schedule schedule, des_cblock *ivec,
171 \& void des_cfb_encrypt(const unsigned char *in, unsigned char *out,
172 \& int numbits, long length, des_key_schedule schedule,
173 \& des_cblock *ivec, int enc);
174 \& void des_ofb_encrypt(const unsigned char *in, unsigned char *out,
175 \& int numbits, long length, des_key_schedule schedule,
176 \& des_cblock *ivec);
177 \& void des_pcbc_encrypt(const unsigned char *input, unsigned char *output,
178 \& long length, des_key_schedule schedule, des_cblock *ivec,
180 \& void des_cfb64_encrypt(const unsigned char *in, unsigned char *out,
181 \& long length, des_key_schedule schedule, des_cblock *ivec,
182 \& int *num, int enc);
183 \& void des_ofb64_encrypt(const unsigned char *in, unsigned char *out,
184 \& long length, des_key_schedule schedule, des_cblock *ivec,
187 \& void des_xcbc_encrypt(const unsigned char *input, unsigned char *output,
188 \& long length, des_key_schedule schedule, des_cblock *ivec,
189 \& const_des_cblock *inw, const_des_cblock *outw, int enc);
191 \& void des_ede2_cbc_encrypt(const unsigned char *input,
192 \& unsigned char *output, long length, des_key_schedule ks1,
193 \& des_key_schedule ks2, des_cblock *ivec, int enc);
194 \& void des_ede2_cfb64_encrypt(const unsigned char *in,
195 \& unsigned char *out, long length, des_key_schedule ks1,
196 \& des_key_schedule ks2, des_cblock *ivec, int *num, int enc);
197 \& void des_ede2_ofb64_encrypt(const unsigned char *in,
198 \& unsigned char *out, long length, des_key_schedule ks1,
199 \& des_key_schedule ks2, des_cblock *ivec, int *num);
201 \& void des_ede3_cbc_encrypt(const unsigned char *input,
202 \& unsigned char *output, long length, des_key_schedule ks1,
203 \& des_key_schedule ks2, des_key_schedule ks3, des_cblock *ivec,
205 \& void des_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
206 \& long length, des_key_schedule ks1, des_key_schedule ks2,
207 \& des_key_schedule ks3, des_cblock *ivec1, des_cblock *ivec2,
209 \& void des_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
210 \& long length, des_key_schedule ks1, des_key_schedule ks2,
211 \& des_key_schedule ks3, des_cblock *ivec, int *num, int enc);
212 \& void des_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
213 \& long length, des_key_schedule ks1,
214 \& des_key_schedule ks2, des_key_schedule ks3,
215 \& des_cblock *ivec, int *num);
217 \& int des_read_password(des_cblock *key, const char *prompt, int verify);
218 \& int des_read_2passwords(des_cblock *key1, des_cblock *key2,
219 \& const char *prompt, int verify);
220 \& int des_read_pw_string(char *buf, int length, const char *prompt,
223 \& DES_LONG des_cbc_cksum(const unsigned char *input, des_cblock *output,
224 \& long length, des_key_schedule schedule,
225 \& const_des_cblock *ivec);
226 \& DES_LONG des_quad_cksum(const unsigned char *input, des_cblock output[],
227 \& long length, int out_count, des_cblock *seed);
228 \& void des_string_to_key(const char *str, des_cblock *key);
229 \& void des_string_to_2keys(const char *str, des_cblock *key1,
230 \& des_cblock *key2);
232 \& char *des_fcrypt(const char *buf, const char *salt, char *ret);
233 \& char *des_crypt(const char *buf, const char *salt);
234 \& char *crypt(const char *buf, const char *salt);
236 \& int des_enc_read(int fd, void *buf, int len, des_key_schedule sched,
238 \& int des_enc_write(int fd, const void *buf, int len,
239 \& des_key_schedule sched, des_cblock *iv);
242 .IX Header "DESCRIPTION"
243 This library contains a fast implementation of the \s-1DES\s0 encryption
246 There are two phases to the use of \s-1DES\s0 encryption. The first is the
247 generation of a \fIdes_key_schedule\fR from a key, the second is the
248 actual encryption. A \s-1DES\s0 key is of type \fIdes_cblock\fR. This type is
249 consists of 8 bytes with odd parity. The least significant bit in
250 each byte is the parity bit. The key schedule is an expanded form of
251 the key; it is used to speed the encryption process.
253 \&\fIdes_random_key()\fR generates a random key. The \s-1PRNG\s0 must be seeded
254 prior to using this function (see \fIrand\fR\|(3); for backward
255 compatibility the function \fIdes_random_seed()\fR is available as well).
256 If the \s-1PRNG\s0 could not generate a secure key, 0 is returned. In
257 earlier versions of the library, \fIdes_random_key()\fR did not generate
260 Before a \s-1DES\s0 key can be used, it must be converted into the
261 architecture dependent \fIdes_key_schedule\fR via the
262 \&\fIdes_set_key_checked()\fR or \fIdes_set_key_unchecked()\fR function.
264 \&\fIdes_set_key_checked()\fR will check that the key passed is of odd parity
265 and is not a week or semi-weak key. If the parity is wrong, then \-1
266 is returned. If the key is a weak key, then \-2 is returned. If an
267 error is returned, the key schedule is not generated.
269 \&\fIdes_set_key()\fR (called \fIdes_key_sched()\fR in the \s-1MIT\s0 library) works like
270 \&\fIdes_set_key_checked()\fR if the \fIdes_check_key\fR flag is non-zero,
271 otherwise like \fIdes_set_key_unchecked()\fR. These functions are available
272 for compatibility; it is recommended to use a function that does not
273 depend on a global variable.
275 \&\fIdes_set_odd_parity()\fR (called \fIdes_fixup_key_parity()\fR in the \s-1MIT\s0
276 library) sets the parity of the passed \fIkey\fR to odd.
278 \&\fIdes_is_weak_key()\fR returns 1 is the passed key is a weak key, 0 if it
279 is ok. The probability that a randomly generated key is weak is
280 1/2^52, so it is not really worth checking for them.
282 The following routines mostly operate on an input and output stream of
285 \&\fIdes_ecb_encrypt()\fR is the basic \s-1DES\s0 encryption routine that encrypts or
286 decrypts a single 8\-byte \fIdes_cblock\fR in \fIelectronic code book\fR
287 (\s-1ECB\s0) mode. It always transforms the input data, pointed to by
288 \&\fIinput\fR, into the output data, pointed to by the \fIoutput\fR argument.
289 If the \fIencrypt\fR argument is non-zero (\s-1DES_ENCRYPT\s0), the \fIinput\fR
290 (cleartext) is encrypted in to the \fIoutput\fR (ciphertext) using the
291 key_schedule specified by the \fIschedule\fR argument, previously set via
292 \&\fIdes_set_key\fR. If \fIencrypt\fR is zero (\s-1DES_DECRYPT\s0), the \fIinput\fR (now
293 ciphertext) is decrypted into the \fIoutput\fR (now cleartext). Input
294 and output may overlap. \fIdes_ecb_encrypt()\fR does not return a value.
296 \&\fIdes_ecb3_encrypt()\fR encrypts/decrypts the \fIinput\fR block by using
297 three-key Triple-DES encryption in \s-1ECB\s0 mode. This involves encrypting
298 the input with \fIks1\fR, decrypting with the key schedule \fIks2\fR, and
299 then encrypting with \fIks3\fR. This routine greatly reduces the chances
300 of brute force breaking of \s-1DES\s0 and has the advantage of if \fIks1\fR,
301 \&\fIks2\fR and \fIks3\fR are the same, it is equivalent to just encryption
302 using \s-1ECB\s0 mode and \fIks1\fR as the key.
304 The macro \fIdes_ecb2_encrypt()\fR is provided to perform two-key Triple-DES
305 encryption by using \fIks1\fR for the final encryption.
307 \&\fIdes_ncbc_encrypt()\fR encrypts/decrypts using the \fIcipher-block-chaining\fR
308 (\s-1CBC\s0) mode of \s-1DES\s0. If the \fIencrypt\fR argument is non-zero, the
309 routine cipher-block-chain encrypts the cleartext data pointed to by
310 the \fIinput\fR argument into the ciphertext pointed to by the \fIoutput\fR
311 argument, using the key schedule provided by the \fIschedule\fR argument,
312 and initialization vector provided by the \fIivec\fR argument. If the
313 \&\fIlength\fR argument is not an integral multiple of eight bytes, the
314 last block is copied to a temporary area and zero filled. The output
315 is always an integral multiple of eight bytes.
317 \&\fIdes_xcbc_encrypt()\fR is \s-1RSA\s0's \s-1DESX\s0 mode of \s-1DES\s0. It uses \fIinw\fR and
318 \&\fIoutw\fR to 'whiten' the encryption. \fIinw\fR and \fIoutw\fR are secret
319 (unlike the iv) and are as such, part of the key. So the key is sort
320 of 24 bytes. This is much better than \s-1CBC\s0 \s-1DES\s0.
322 \&\fIdes_ede3_cbc_encrypt()\fR implements outer triple \s-1CBC\s0 \s-1DES\s0 encryption with
323 three keys. This means that each \s-1DES\s0 operation inside the \s-1CBC\s0 mode is
324 really an \f(CW\*(C`C=E(ks3,D(ks2,E(ks1,M)))\*(C'\fR. This mode is used by \s-1SSL\s0.
326 The \fIdes_ede2_cbc_encrypt()\fR macro implements two-key Triple-DES by
327 reusing \fIks1\fR for the final encryption. \f(CW\*(C`C=E(ks1,D(ks2,E(ks1,M)))\*(C'\fR.
328 This form of Triple-DES is used by the \s-1RSAREF\s0 library.
330 \&\fIdes_pcbc_encrypt()\fR encrypt/decrypts using the propagating cipher block
331 chaining mode used by Kerberos v4. Its parameters are the same as
332 \&\fIdes_ncbc_encrypt()\fR.
334 \&\fIdes_cfb_encrypt()\fR encrypt/decrypts using cipher feedback mode. This
335 method takes an array of characters as input and outputs and array of
336 characters. It does not require any padding to 8 character groups.
337 Note: the \fIivec\fR variable is changed and the new changed value needs to
338 be passed to the next call to this function. Since this function runs
339 a complete \s-1DES\s0 \s-1ECB\s0 encryption per \fInumbits\fR, this function is only
340 suggested for use when sending small numbers of characters.
342 \&\fIdes_cfb64_encrypt()\fR
343 implements \s-1CFB\s0 mode of \s-1DES\s0 with 64bit feedback. Why is this
344 useful you ask? Because this routine will allow you to encrypt an
345 arbitrary number of bytes, no 8 byte padding. Each call to this
346 routine will encrypt the input bytes to output and then update ivec
347 and num. num contains 'how far' we are though ivec. If this does
348 not make much sense, read more about cfb mode of \s-1DES\s0 :\-).
350 \&\fIdes_ede3_cfb64_encrypt()\fR and \fIdes_ede2_cfb64_encrypt()\fR is the same as
351 \&\fIdes_cfb64_encrypt()\fR except that Triple-DES is used.
353 \&\fIdes_ofb_encrypt()\fR encrypts using output feedback mode. This method
354 takes an array of characters as input and outputs and array of
355 characters. It does not require any padding to 8 character groups.
356 Note: the \fIivec\fR variable is changed and the new changed value needs to
357 be passed to the next call to this function. Since this function runs
358 a complete \s-1DES\s0 \s-1ECB\s0 encryption per numbits, this function is only
359 suggested for use when sending small numbers of characters.
361 \&\fIdes_ofb64_encrypt()\fR is the same as \fIdes_cfb64_encrypt()\fR using Output
364 \&\fIdes_ede3_ofb64_encrypt()\fR and \fIdes_ede2_ofb64_encrypt()\fR is the same as
365 \&\fIdes_ofb64_encrypt()\fR, using Triple-DES.
367 The following functions are included in the \s-1DES\s0 library for
368 compatibility with the \s-1MIT\s0 Kerberos library. \fIdes_read_pw_string()\fR
369 is also available under the name \fIEVP_read_pw_string()\fR.
371 \&\fIdes_read_pw_string()\fR writes the string specified by \fIprompt\fR to
372 standard output, turns echo off and reads in input string from the
373 terminal. The string is returned in \fIbuf\fR, which must have space for
374 at least \fIlength\fR bytes. If \fIverify\fR is set, the user is asked for
375 the password twice and unless the two copies match, an error is
376 returned. A return code of \-1 indicates a system error, 1 failure due
377 to use interaction, and 0 is success.
379 \&\fIdes_read_password()\fR does the same and converts the password to a \s-1DES\s0
380 key by calling \fIdes_string_to_key()\fR; \fIdes_read_2password()\fR operates in
381 the same way as \fIdes_read_password()\fR except that it generates two keys
382 by using the \fIdes_string_to_2key()\fR function. \fIdes_string_to_key()\fR is
383 available for backward compatibility with the \s-1MIT\s0 library. New
384 applications should use a cryptographic hash function. The same
385 applies for \fIdes_string_to_2key()\fR.
387 \&\fIdes_cbc_cksum()\fR produces an 8 byte checksum based on the input stream
388 (via \s-1CBC\s0 encryption). The last 4 bytes of the checksum are returned
389 and the complete 8 bytes are placed in \fIoutput\fR. This function is
390 used by Kerberos v4. Other applications should use
391 \&\fIEVP_DigestInit\fR\|(3) etc. instead.
393 \&\fIdes_quad_cksum()\fR is a Kerberos v4 function. It returns a 4 byte
394 checksum from the input bytes. The algorithm can be iterated over the
395 input, depending on \fIout_count\fR, 1, 2, 3 or 4 times. If \fIoutput\fR is
396 non-NULL, the 8 bytes generated by each pass are written into
399 The following are DES-based transformations:
401 \&\fIdes_fcrypt()\fR is a fast version of the Unix \fIcrypt\fR\|(3) function. This
402 version takes only a small amount of space relative to other fast
403 \&\fIcrypt()\fR implementations. This is different to the normal crypt in
404 that the third parameter is the buffer that the return value is
405 written into. It needs to be at least 14 bytes long. This function
406 is thread safe, unlike the normal crypt.
408 \&\fIdes_crypt()\fR is a faster replacement for the normal system \fIcrypt()\fR.
409 This function calls \fIdes_fcrypt()\fR with a static array passed as the
410 third parameter. This emulates the normal non-thread safe semantics
413 \&\fIdes_enc_write()\fR writes \fIlen\fR bytes to file descriptor \fIfd\fR from
414 buffer \fIbuf\fR. The data is encrypted via \fIpcbc_encrypt\fR (default)
415 using \fIsched\fR for the key and \fIiv\fR as a starting vector. The actual
416 data send down \fIfd\fR consists of 4 bytes (in network byte order)
417 containing the length of the following encrypted data. The encrypted
418 data then follows, padded with random data out to a multiple of 8
421 \&\fIdes_enc_read()\fR is used to read \fIlen\fR bytes from file descriptor
422 \&\fIfd\fR into buffer \fIbuf\fR. The data being read from \fIfd\fR is assumed to
423 have come from \fIdes_enc_write()\fR and is decrypted using \fIsched\fR for
424 the key schedule and \fIiv\fR for the initial vector.
426 \&\fBWarning:\fR The data format used by \fIdes_enc_write()\fR and \fIdes_enc_read()\fR
427 has a cryptographic weakness: When asked to write more than \s-1MAXWRITE\s0
428 bytes, \fIdes_enc_write()\fR will split the data into several chunks that
429 are all encrypted using the same \s-1IV\s0. So don't use these functions
430 unless you are sure you know what you do (in which case you might not
431 want to use them anyway). They cannot handle non-blocking sockets.
432 \&\fIdes_enc_read()\fR uses an internal state and thus cannot be used on
435 \&\fIdes_rw_mode\fR is used to specify the encryption mode to use with
436 \&\fIdes_enc_read()\fR and \fIdes_end_write()\fR. If set to \fI\s-1DES_PCBC_MODE\s0\fR (the
437 default), des_pcbc_encrypt is used. If set to \fI\s-1DES_CBC_MODE\s0\fR
438 des_cbc_encrypt is used.
441 Single-key \s-1DES\s0 is insecure due to its short key size. \s-1ECB\s0 mode is
442 not suitable for most applications; see \fIdes_modes\fR\|(7).
444 The \fIevp\fR\|(3) library provides higher-level encryption functions.
447 \&\fIdes_3cbc_encrypt()\fR is flawed and must not be used in applications.
449 \&\fIdes_cbc_encrypt()\fR does not modify \fBivec\fR; use \fIdes_ncbc_encrypt()\fR
452 \&\fIdes_cfb_encrypt()\fR and \fIdes_ofb_encrypt()\fR operates on input of 8 bits.
453 What this means is that if you set numbits to 12, and length to 2, the
454 first 12 bits will come from the 1st input byte and the low half of
455 the second input byte. The second 12 bits will have the low 8 bits
456 taken from the 3rd input byte and the top 4 bits taken from the 4th
457 input byte. The same holds for output. This function has been
458 implemented this way because most people will be using a multiple of 8
459 and because once you get into pulling bytes input bytes apart things
462 \&\fIdes_read_pw_string()\fR is the most machine/OS dependent function and
463 normally generates the most problems when porting this code.
465 .IX Header "CONFORMING TO"
468 The \fBdes\fR library was written to be source code compatible with
469 the \s-1MIT\s0 Kerberos library.
471 .IX Header "SEE ALSO"
472 \&\fIcrypt\fR\|(3), \fIdes_modes\fR\|(7), \fIevp\fR\|(3), \fIrand\fR\|(3)
475 \&\fIdes_cbc_cksum()\fR, \fIdes_cbc_encrypt()\fR, \fIdes_ecb_encrypt()\fR,
476 \&\fIdes_is_weak_key()\fR, \fIdes_key_sched()\fR, \fIdes_pcbc_encrypt()\fR,
477 \&\fIdes_quad_cksum()\fR, \fIdes_random_key()\fR, \fIdes_read_password()\fR and
478 \&\fIdes_string_to_key()\fR are available in the \s-1MIT\s0 Kerberos library;
479 \&\fIdes_check_key_parity()\fR, \fIdes_fixup_key_parity()\fR and \fIdes_is_weak_key()\fR
480 are available in newer versions of that library.
482 \&\fIdes_set_key_checked()\fR and \fIdes_set_key_unchecked()\fR were added in
485 \&\fIdes_generate_random_block()\fR, \fIdes_init_random_number_generator()\fR,
486 \&\fIdes_new_random_key()\fR, \fIdes_set_random_generator_seed()\fR and
487 \&\fIdes_set_sequence_number()\fR and \fIdes_rand_data()\fR are used in newer
488 versions of Kerberos but are not implemented here.
490 \&\fIdes_random_key()\fR generated cryptographically weak random data in
491 SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
492 \&\s-1MIT\s0 library.
495 Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
496 (http://www.openssl.org).