1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Expr class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
37 using namespace clang
;
39 const CXXRecordDecl
*Expr::getBestDynamicClassType() const {
40 const Expr
*E
= ignoreParenBaseCasts();
42 QualType DerivedType
= E
->getType();
43 if (const PointerType
*PTy
= DerivedType
->getAs
<PointerType
>())
44 DerivedType
= PTy
->getPointeeType();
46 if (DerivedType
->isDependentType())
49 const RecordType
*Ty
= DerivedType
->castAs
<RecordType
>();
50 Decl
*D
= Ty
->getDecl();
51 return cast
<CXXRecordDecl
>(D
);
54 const Expr
*Expr::skipRValueSubobjectAdjustments(
55 SmallVectorImpl
<const Expr
*> &CommaLHSs
,
56 SmallVectorImpl
<SubobjectAdjustment
> &Adjustments
) const {
59 E
= E
->IgnoreParens();
61 if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(E
)) {
62 if ((CE
->getCastKind() == CK_DerivedToBase
||
63 CE
->getCastKind() == CK_UncheckedDerivedToBase
) &&
64 E
->getType()->isRecordType()) {
66 CXXRecordDecl
*Derived
67 = cast
<CXXRecordDecl
>(E
->getType()->getAs
<RecordType
>()->getDecl());
68 Adjustments
.push_back(SubobjectAdjustment(CE
, Derived
));
72 if (CE
->getCastKind() == CK_NoOp
) {
76 } else if (const MemberExpr
*ME
= dyn_cast
<MemberExpr
>(E
)) {
78 assert(ME
->getBase()->getType()->isRecordType());
79 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl())) {
80 if (!Field
->isBitField() && !Field
->getType()->isReferenceType()) {
82 Adjustments
.push_back(SubobjectAdjustment(Field
));
87 } else if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
88 if (BO
->isPtrMemOp()) {
89 assert(BO
->getRHS()->isRValue());
91 const MemberPointerType
*MPT
=
92 BO
->getRHS()->getType()->getAs
<MemberPointerType
>();
93 Adjustments
.push_back(SubobjectAdjustment(MPT
, BO
->getRHS()));
95 } else if (BO
->getOpcode() == BO_Comma
) {
96 CommaLHSs
.push_back(BO
->getLHS());
108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
110 /// but also int expressions which are produced by things like comparisons in
112 bool Expr::isKnownToHaveBooleanValue() const {
113 const Expr
*E
= IgnoreParens();
115 // If this value has _Bool type, it is obvious 0/1.
116 if (E
->getType()->isBooleanType()) return true;
117 // If this is a non-scalar-integer type, we don't care enough to try.
118 if (!E
->getType()->isIntegralOrEnumerationType()) return false;
120 if (const UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(E
)) {
121 switch (UO
->getOpcode()) {
123 return UO
->getSubExpr()->isKnownToHaveBooleanValue();
131 // Only look through implicit casts. If the user writes
132 // '(int) (a && b)' treat it as an arbitrary int.
133 if (const ImplicitCastExpr
*CE
= dyn_cast
<ImplicitCastExpr
>(E
))
134 return CE
->getSubExpr()->isKnownToHaveBooleanValue();
136 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
137 switch (BO
->getOpcode()) {
138 default: return false;
139 case BO_LT
: // Relational operators.
143 case BO_EQ
: // Equality operators.
145 case BO_LAnd
: // AND operator.
146 case BO_LOr
: // Logical OR operator.
149 case BO_And
: // Bitwise AND operator.
150 case BO_Xor
: // Bitwise XOR operator.
151 case BO_Or
: // Bitwise OR operator.
152 // Handle things like (x==2)|(y==12).
153 return BO
->getLHS()->isKnownToHaveBooleanValue() &&
154 BO
->getRHS()->isKnownToHaveBooleanValue();
158 return BO
->getRHS()->isKnownToHaveBooleanValue();
162 if (const ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
))
163 return CO
->getTrueExpr()->isKnownToHaveBooleanValue() &&
164 CO
->getFalseExpr()->isKnownToHaveBooleanValue();
169 // Amusing macro metaprogramming hack: check whether a class provides
170 // a more specific implementation of getExprLoc().
172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
174 /// This implementation is used when a class provides a custom
175 /// implementation of getExprLoc.
176 template <class E
, class T
>
177 SourceLocation
getExprLocImpl(const Expr
*expr
,
178 SourceLocation (T::*v
)() const) {
179 return static_cast<const E
*>(expr
)->getExprLoc();
182 /// This implementation is used when a class doesn't provide
183 /// a custom implementation of getExprLoc. Overload resolution
184 /// should pick it over the implementation above because it's
185 /// more specialized according to function template partial ordering.
187 SourceLocation
getExprLocImpl(const Expr
*expr
,
188 SourceLocation (Expr::*v
)() const) {
189 return static_cast<const E
*>(expr
)->getLocStart();
193 SourceLocation
Expr::getExprLoc() const {
194 switch (getStmtClass()) {
195 case Stmt::NoStmtClass
: llvm_unreachable("statement without class");
196 #define ABSTRACT_STMT(type)
197 #define STMT(type, base) \
198 case Stmt::type##Class: break;
199 #define EXPR(type, base) \
200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201 #include "clang/AST/StmtNodes.inc"
203 llvm_unreachable("unknown expression kind");
206 //===----------------------------------------------------------------------===//
207 // Primary Expressions.
208 //===----------------------------------------------------------------------===//
210 /// \brief Compute the type-, value-, and instantiation-dependence of a
211 /// declaration reference
212 /// based on the declaration being referenced.
213 static void computeDeclRefDependence(const ASTContext
&Ctx
, NamedDecl
*D
,
214 QualType T
, bool &TypeDependent
,
215 bool &ValueDependent
,
216 bool &InstantiationDependent
) {
217 TypeDependent
= false;
218 ValueDependent
= false;
219 InstantiationDependent
= false;
221 // (TD) C++ [temp.dep.expr]p3:
222 // An id-expression is type-dependent if it contains:
226 // (VD) C++ [temp.dep.constexpr]p2:
227 // An identifier is value-dependent if it is:
229 // (TD) - an identifier that was declared with dependent type
230 // (VD) - a name declared with a dependent type,
231 if (T
->isDependentType()) {
232 TypeDependent
= true;
233 ValueDependent
= true;
234 InstantiationDependent
= true;
236 } else if (T
->isInstantiationDependentType()) {
237 InstantiationDependent
= true;
240 // (TD) - a conversion-function-id that specifies a dependent type
241 if (D
->getDeclName().getNameKind()
242 == DeclarationName::CXXConversionFunctionName
) {
243 QualType T
= D
->getDeclName().getCXXNameType();
244 if (T
->isDependentType()) {
245 TypeDependent
= true;
246 ValueDependent
= true;
247 InstantiationDependent
= true;
251 if (T
->isInstantiationDependentType())
252 InstantiationDependent
= true;
255 // (VD) - the name of a non-type template parameter,
256 if (isa
<NonTypeTemplateParmDecl
>(D
)) {
257 ValueDependent
= true;
258 InstantiationDependent
= true;
262 // (VD) - a constant with integral or enumeration type and is
263 // initialized with an expression that is value-dependent.
264 // (VD) - a constant with literal type and is initialized with an
265 // expression that is value-dependent [C++11].
266 // (VD) - FIXME: Missing from the standard:
267 // - an entity with reference type and is initialized with an
268 // expression that is value-dependent [C++11]
269 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(D
)) {
270 if ((Ctx
.getLangOpts().CPlusPlus11
?
271 Var
->getType()->isLiteralType(Ctx
) :
272 Var
->getType()->isIntegralOrEnumerationType()) &&
273 (Var
->getType().isConstQualified() ||
274 Var
->getType()->isReferenceType())) {
275 if (const Expr
*Init
= Var
->getAnyInitializer())
276 if (Init
->isValueDependent()) {
277 ValueDependent
= true;
278 InstantiationDependent
= true;
282 // (VD) - FIXME: Missing from the standard:
283 // - a member function or a static data member of the current
285 if (Var
->isStaticDataMember() &&
286 Var
->getDeclContext()->isDependentContext()) {
287 ValueDependent
= true;
288 InstantiationDependent
= true;
289 TypeSourceInfo
*TInfo
= Var
->getFirstDecl()->getTypeSourceInfo();
290 if (TInfo
->getType()->isIncompleteArrayType())
291 TypeDependent
= true;
297 // (VD) - FIXME: Missing from the standard:
298 // - a member function or a static data member of the current
300 if (isa
<CXXMethodDecl
>(D
) && D
->getDeclContext()->isDependentContext()) {
301 ValueDependent
= true;
302 InstantiationDependent
= true;
306 void DeclRefExpr::computeDependence(const ASTContext
&Ctx
) {
307 bool TypeDependent
= false;
308 bool ValueDependent
= false;
309 bool InstantiationDependent
= false;
310 computeDeclRefDependence(Ctx
, getDecl(), getType(), TypeDependent
,
311 ValueDependent
, InstantiationDependent
);
313 ExprBits
.TypeDependent
|= TypeDependent
;
314 ExprBits
.ValueDependent
|= ValueDependent
;
315 ExprBits
.InstantiationDependent
|= InstantiationDependent
;
317 // Is the declaration a parameter pack?
318 if (getDecl()->isParameterPack())
319 ExprBits
.ContainsUnexpandedParameterPack
= true;
322 DeclRefExpr::DeclRefExpr(const ASTContext
&Ctx
,
323 NestedNameSpecifierLoc QualifierLoc
,
324 SourceLocation TemplateKWLoc
,
325 ValueDecl
*D
, bool RefersToEnclosingVariableOrCapture
,
326 const DeclarationNameInfo
&NameInfo
,
328 const TemplateArgumentListInfo
*TemplateArgs
,
329 QualType T
, ExprValueKind VK
)
330 : Expr(DeclRefExprClass
, T
, VK
, OK_Ordinary
, false, false, false, false),
331 D(D
), Loc(NameInfo
.getLoc()), DNLoc(NameInfo
.getInfo()) {
332 DeclRefExprBits
.HasQualifier
= QualifierLoc
? 1 : 0;
334 getInternalQualifierLoc() = QualifierLoc
;
335 auto *NNS
= QualifierLoc
.getNestedNameSpecifier();
336 if (NNS
->isInstantiationDependent())
337 ExprBits
.InstantiationDependent
= true;
338 if (NNS
->containsUnexpandedParameterPack())
339 ExprBits
.ContainsUnexpandedParameterPack
= true;
341 DeclRefExprBits
.HasFoundDecl
= FoundD
? 1 : 0;
343 getInternalFoundDecl() = FoundD
;
344 DeclRefExprBits
.HasTemplateKWAndArgsInfo
345 = (TemplateArgs
|| TemplateKWLoc
.isValid()) ? 1 : 0;
346 DeclRefExprBits
.RefersToEnclosingVariableOrCapture
=
347 RefersToEnclosingVariableOrCapture
;
349 bool Dependent
= false;
350 bool InstantiationDependent
= false;
351 bool ContainsUnexpandedParameterPack
= false;
352 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc
, *TemplateArgs
,
354 InstantiationDependent
,
355 ContainsUnexpandedParameterPack
);
356 assert(!Dependent
&& "built a DeclRefExpr with dependent template args");
357 ExprBits
.InstantiationDependent
|= InstantiationDependent
;
358 ExprBits
.ContainsUnexpandedParameterPack
|= ContainsUnexpandedParameterPack
;
359 } else if (TemplateKWLoc
.isValid()) {
360 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc
);
362 DeclRefExprBits
.HadMultipleCandidates
= 0;
364 computeDependence(Ctx
);
367 DeclRefExpr
*DeclRefExpr::Create(const ASTContext
&Context
,
368 NestedNameSpecifierLoc QualifierLoc
,
369 SourceLocation TemplateKWLoc
,
371 bool RefersToEnclosingVariableOrCapture
,
372 SourceLocation NameLoc
,
376 const TemplateArgumentListInfo
*TemplateArgs
) {
377 return Create(Context
, QualifierLoc
, TemplateKWLoc
, D
,
378 RefersToEnclosingVariableOrCapture
,
379 DeclarationNameInfo(D
->getDeclName(), NameLoc
),
380 T
, VK
, FoundD
, TemplateArgs
);
383 DeclRefExpr
*DeclRefExpr::Create(const ASTContext
&Context
,
384 NestedNameSpecifierLoc QualifierLoc
,
385 SourceLocation TemplateKWLoc
,
387 bool RefersToEnclosingVariableOrCapture
,
388 const DeclarationNameInfo
&NameInfo
,
392 const TemplateArgumentListInfo
*TemplateArgs
) {
393 // Filter out cases where the found Decl is the same as the value refenenced.
397 std::size_t Size
= sizeof(DeclRefExpr
);
399 Size
+= sizeof(NestedNameSpecifierLoc
);
401 Size
+= sizeof(NamedDecl
*);
403 Size
+= ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs
->size());
404 else if (TemplateKWLoc
.isValid())
405 Size
+= ASTTemplateKWAndArgsInfo::sizeFor(0);
407 void *Mem
= Context
.Allocate(Size
, llvm::alignOf
<DeclRefExpr
>());
408 return new (Mem
) DeclRefExpr(Context
, QualifierLoc
, TemplateKWLoc
, D
,
409 RefersToEnclosingVariableOrCapture
,
410 NameInfo
, FoundD
, TemplateArgs
, T
, VK
);
413 DeclRefExpr
*DeclRefExpr::CreateEmpty(const ASTContext
&Context
,
416 bool HasTemplateKWAndArgsInfo
,
417 unsigned NumTemplateArgs
) {
418 std::size_t Size
= sizeof(DeclRefExpr
);
420 Size
+= sizeof(NestedNameSpecifierLoc
);
422 Size
+= sizeof(NamedDecl
*);
423 if (HasTemplateKWAndArgsInfo
)
424 Size
+= ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs
);
426 void *Mem
= Context
.Allocate(Size
, llvm::alignOf
<DeclRefExpr
>());
427 return new (Mem
) DeclRefExpr(EmptyShell());
430 SourceLocation
DeclRefExpr::getLocStart() const {
432 return getQualifierLoc().getBeginLoc();
433 return getNameInfo().getLocStart();
435 SourceLocation
DeclRefExpr::getLocEnd() const {
436 if (hasExplicitTemplateArgs())
437 return getRAngleLoc();
438 return getNameInfo().getLocEnd();
441 PredefinedExpr::PredefinedExpr(SourceLocation L
, QualType FNTy
, IdentType IT
,
443 : Expr(PredefinedExprClass
, FNTy
, VK_LValue
, OK_Ordinary
,
444 FNTy
->isDependentType(), FNTy
->isDependentType(),
445 FNTy
->isInstantiationDependentType(),
446 /*ContainsUnexpandedParameterPack=*/false),
447 Loc(L
), Type(IT
), FnName(SL
) {}
449 StringLiteral
*PredefinedExpr::getFunctionName() {
450 return cast_or_null
<StringLiteral
>(FnName
);
453 StringRef
PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT
) {
458 return "__FUNCTION__";
460 return "__FUNCDNAME__";
462 return "L__FUNCTION__";
464 return "__PRETTY_FUNCTION__";
466 return "__FUNCSIG__";
467 case PrettyFunctionNoVirtual
:
470 llvm_unreachable("Unknown ident type for PredefinedExpr");
473 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
474 // expr" policy instead.
475 std::string
PredefinedExpr::ComputeName(IdentType IT
, const Decl
*CurrentDecl
) {
476 ASTContext
&Context
= CurrentDecl
->getASTContext();
478 if (IT
== PredefinedExpr::FuncDName
) {
479 if (const NamedDecl
*ND
= dyn_cast
<NamedDecl
>(CurrentDecl
)) {
480 std::unique_ptr
<MangleContext
> MC
;
481 MC
.reset(Context
.createMangleContext());
483 if (MC
->shouldMangleDeclName(ND
)) {
484 SmallString
<256> Buffer
;
485 llvm::raw_svector_ostream
Out(Buffer
);
486 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(ND
))
487 MC
->mangleCXXCtor(CD
, Ctor_Base
, Out
);
488 else if (const CXXDestructorDecl
*DD
= dyn_cast
<CXXDestructorDecl
>(ND
))
489 MC
->mangleCXXDtor(DD
, Dtor_Base
, Out
);
491 MC
->mangleName(ND
, Out
);
494 if (!Buffer
.empty() && Buffer
.front() == '\01')
495 return Buffer
.substr(1);
498 return ND
->getIdentifier()->getName();
502 if (auto *BD
= dyn_cast
<BlockDecl
>(CurrentDecl
)) {
503 std::unique_ptr
<MangleContext
> MC
;
504 MC
.reset(Context
.createMangleContext());
505 SmallString
<256> Buffer
;
506 llvm::raw_svector_ostream
Out(Buffer
);
507 auto DC
= CurrentDecl
->getDeclContext();
508 if (DC
->isFileContext())
509 MC
->mangleGlobalBlock(BD
, /*ID*/ nullptr, Out
);
510 else if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(DC
))
511 MC
->mangleCtorBlock(CD
, /*CT*/ Ctor_Complete
, BD
, Out
);
512 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(DC
))
513 MC
->mangleDtorBlock(DD
, /*DT*/ Dtor_Complete
, BD
, Out
);
515 MC
->mangleBlock(DC
, BD
, Out
);
518 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CurrentDecl
)) {
519 if (IT
!= PrettyFunction
&& IT
!= PrettyFunctionNoVirtual
&& IT
!= FuncSig
)
520 return FD
->getNameAsString();
522 SmallString
<256> Name
;
523 llvm::raw_svector_ostream
Out(Name
);
525 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
526 if (MD
->isVirtual() && IT
!= PrettyFunctionNoVirtual
)
532 PrintingPolicy
Policy(Context
.getLangOpts());
534 llvm::raw_string_ostream
POut(Proto
);
536 const FunctionDecl
*Decl
= FD
;
537 if (const FunctionDecl
* Pattern
= FD
->getTemplateInstantiationPattern())
539 const FunctionType
*AFT
= Decl
->getType()->getAs
<FunctionType
>();
540 const FunctionProtoType
*FT
= nullptr;
541 if (FD
->hasWrittenPrototype())
542 FT
= dyn_cast
<FunctionProtoType
>(AFT
);
545 switch (FT
->getCallConv()) {
546 case CC_C
: POut
<< "__cdecl "; break;
547 case CC_X86StdCall
: POut
<< "__stdcall "; break;
548 case CC_X86FastCall
: POut
<< "__fastcall "; break;
549 case CC_X86ThisCall
: POut
<< "__thiscall "; break;
550 case CC_X86VectorCall
: POut
<< "__vectorcall "; break;
551 // Only bother printing the conventions that MSVC knows about.
556 FD
->printQualifiedName(POut
, Policy
);
560 for (unsigned i
= 0, e
= Decl
->getNumParams(); i
!= e
; ++i
) {
562 POut
<< Decl
->getParamDecl(i
)->getType().stream(Policy
);
565 if (FT
->isVariadic()) {
566 if (FD
->getNumParams()) POut
<< ", ";
572 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
573 const FunctionType
*FT
= MD
->getType()->castAs
<FunctionType
>();
576 if (FT
->isVolatile())
578 RefQualifierKind Ref
= MD
->getRefQualifier();
579 if (Ref
== RQ_LValue
)
581 else if (Ref
== RQ_RValue
)
585 typedef SmallVector
<const ClassTemplateSpecializationDecl
*, 8> SpecsTy
;
587 const DeclContext
*Ctx
= FD
->getDeclContext();
588 while (Ctx
&& isa
<NamedDecl
>(Ctx
)) {
589 const ClassTemplateSpecializationDecl
*Spec
590 = dyn_cast
<ClassTemplateSpecializationDecl
>(Ctx
);
591 if (Spec
&& !Spec
->isExplicitSpecialization())
592 Specs
.push_back(Spec
);
593 Ctx
= Ctx
->getParent();
596 std::string TemplateParams
;
597 llvm::raw_string_ostream
TOut(TemplateParams
);
598 for (SpecsTy::reverse_iterator I
= Specs
.rbegin(), E
= Specs
.rend();
600 const TemplateParameterList
*Params
601 = (*I
)->getSpecializedTemplate()->getTemplateParameters();
602 const TemplateArgumentList
&Args
= (*I
)->getTemplateArgs();
603 assert(Params
->size() == Args
.size());
604 for (unsigned i
= 0, numParams
= Params
->size(); i
!= numParams
; ++i
) {
605 StringRef Param
= Params
->getParam(i
)->getName();
606 if (Param
.empty()) continue;
607 TOut
<< Param
<< " = ";
608 Args
.get(i
).print(Policy
, TOut
);
613 FunctionTemplateSpecializationInfo
*FSI
614 = FD
->getTemplateSpecializationInfo();
615 if (FSI
&& !FSI
->isExplicitSpecialization()) {
616 const TemplateParameterList
* Params
617 = FSI
->getTemplate()->getTemplateParameters();
618 const TemplateArgumentList
* Args
= FSI
->TemplateArguments
;
619 assert(Params
->size() == Args
->size());
620 for (unsigned i
= 0, e
= Params
->size(); i
!= e
; ++i
) {
621 StringRef Param
= Params
->getParam(i
)->getName();
622 if (Param
.empty()) continue;
623 TOut
<< Param
<< " = ";
624 Args
->get(i
).print(Policy
, TOut
);
630 if (!TemplateParams
.empty()) {
631 // remove the trailing comma and space
632 TemplateParams
.resize(TemplateParams
.size() - 2);
633 POut
<< " [" << TemplateParams
<< "]";
638 // Print "auto" for all deduced return types. This includes C++1y return
639 // type deduction and lambdas. For trailing return types resolve the
640 // decltype expression. Otherwise print the real type when this is
641 // not a constructor or destructor.
642 if (isa
<CXXMethodDecl
>(FD
) &&
643 cast
<CXXMethodDecl
>(FD
)->getParent()->isLambda())
644 Proto
= "auto " + Proto
;
645 else if (FT
&& FT
->getReturnType()->getAs
<DecltypeType
>())
647 ->getAs
<DecltypeType
>()
648 ->getUnderlyingType()
649 .getAsStringInternal(Proto
, Policy
);
650 else if (!isa
<CXXConstructorDecl
>(FD
) && !isa
<CXXDestructorDecl
>(FD
))
651 AFT
->getReturnType().getAsStringInternal(Proto
, Policy
);
656 return Name
.str().str();
658 if (const CapturedDecl
*CD
= dyn_cast
<CapturedDecl
>(CurrentDecl
)) {
659 for (const DeclContext
*DC
= CD
->getParent(); DC
; DC
= DC
->getParent())
660 // Skip to its enclosing function or method, but not its enclosing
662 if (DC
->isFunctionOrMethod() && (DC
->getDeclKind() != Decl::Captured
)) {
663 const Decl
*D
= Decl::castFromDeclContext(DC
);
664 return ComputeName(IT
, D
);
666 llvm_unreachable("CapturedDecl not inside a function or method");
668 if (const ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(CurrentDecl
)) {
669 SmallString
<256> Name
;
670 llvm::raw_svector_ostream
Out(Name
);
671 Out
<< (MD
->isInstanceMethod() ? '-' : '+');
674 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
675 // a null check to avoid a crash.
676 if (const ObjCInterfaceDecl
*ID
= MD
->getClassInterface())
679 if (const ObjCCategoryImplDecl
*CID
=
680 dyn_cast
<ObjCCategoryImplDecl
>(MD
->getDeclContext()))
681 Out
<< '(' << *CID
<< ')';
684 MD
->getSelector().print(Out
);
688 return Name
.str().str();
690 if (isa
<TranslationUnitDecl
>(CurrentDecl
) && IT
== PrettyFunction
) {
691 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
697 void APNumericStorage::setIntValue(const ASTContext
&C
,
698 const llvm::APInt
&Val
) {
702 BitWidth
= Val
.getBitWidth();
703 unsigned NumWords
= Val
.getNumWords();
704 const uint64_t* Words
= Val
.getRawData();
706 pVal
= new (C
) uint64_t[NumWords
];
707 std::copy(Words
, Words
+ NumWords
, pVal
);
708 } else if (NumWords
== 1)
714 IntegerLiteral::IntegerLiteral(const ASTContext
&C
, const llvm::APInt
&V
,
715 QualType type
, SourceLocation l
)
716 : Expr(IntegerLiteralClass
, type
, VK_RValue
, OK_Ordinary
, false, false,
719 assert(type
->isIntegerType() && "Illegal type in IntegerLiteral");
720 assert(V
.getBitWidth() == C
.getIntWidth(type
) &&
721 "Integer type is not the correct size for constant.");
726 IntegerLiteral::Create(const ASTContext
&C
, const llvm::APInt
&V
,
727 QualType type
, SourceLocation l
) {
728 return new (C
) IntegerLiteral(C
, V
, type
, l
);
732 IntegerLiteral::Create(const ASTContext
&C
, EmptyShell Empty
) {
733 return new (C
) IntegerLiteral(Empty
);
736 FloatingLiteral::FloatingLiteral(const ASTContext
&C
, const llvm::APFloat
&V
,
737 bool isexact
, QualType Type
, SourceLocation L
)
738 : Expr(FloatingLiteralClass
, Type
, VK_RValue
, OK_Ordinary
, false, false,
739 false, false), Loc(L
) {
740 setSemantics(V
.getSemantics());
741 FloatingLiteralBits
.IsExact
= isexact
;
745 FloatingLiteral::FloatingLiteral(const ASTContext
&C
, EmptyShell Empty
)
746 : Expr(FloatingLiteralClass
, Empty
) {
747 setRawSemantics(IEEEhalf
);
748 FloatingLiteralBits
.IsExact
= false;
752 FloatingLiteral::Create(const ASTContext
&C
, const llvm::APFloat
&V
,
753 bool isexact
, QualType Type
, SourceLocation L
) {
754 return new (C
) FloatingLiteral(C
, V
, isexact
, Type
, L
);
758 FloatingLiteral::Create(const ASTContext
&C
, EmptyShell Empty
) {
759 return new (C
) FloatingLiteral(C
, Empty
);
762 const llvm::fltSemantics
&FloatingLiteral::getSemantics() const {
763 switch(FloatingLiteralBits
.Semantics
) {
765 return llvm::APFloat::IEEEhalf
;
767 return llvm::APFloat::IEEEsingle
;
769 return llvm::APFloat::IEEEdouble
;
770 case x87DoubleExtended
:
771 return llvm::APFloat::x87DoubleExtended
;
773 return llvm::APFloat::IEEEquad
;
774 case PPCDoubleDouble
:
775 return llvm::APFloat::PPCDoubleDouble
;
777 llvm_unreachable("Unrecognised floating semantics");
780 void FloatingLiteral::setSemantics(const llvm::fltSemantics
&Sem
) {
781 if (&Sem
== &llvm::APFloat::IEEEhalf
)
782 FloatingLiteralBits
.Semantics
= IEEEhalf
;
783 else if (&Sem
== &llvm::APFloat::IEEEsingle
)
784 FloatingLiteralBits
.Semantics
= IEEEsingle
;
785 else if (&Sem
== &llvm::APFloat::IEEEdouble
)
786 FloatingLiteralBits
.Semantics
= IEEEdouble
;
787 else if (&Sem
== &llvm::APFloat::x87DoubleExtended
)
788 FloatingLiteralBits
.Semantics
= x87DoubleExtended
;
789 else if (&Sem
== &llvm::APFloat::IEEEquad
)
790 FloatingLiteralBits
.Semantics
= IEEEquad
;
791 else if (&Sem
== &llvm::APFloat::PPCDoubleDouble
)
792 FloatingLiteralBits
.Semantics
= PPCDoubleDouble
;
794 llvm_unreachable("Unknown floating semantics");
797 /// getValueAsApproximateDouble - This returns the value as an inaccurate
798 /// double. Note that this may cause loss of precision, but is useful for
799 /// debugging dumps, etc.
800 double FloatingLiteral::getValueAsApproximateDouble() const {
801 llvm::APFloat V
= getValue();
803 V
.convert(llvm::APFloat::IEEEdouble
, llvm::APFloat::rmNearestTiesToEven
,
805 return V
.convertToDouble();
808 int StringLiteral::mapCharByteWidth(TargetInfo
const &target
,StringKind k
) {
809 int CharByteWidth
= 0;
813 CharByteWidth
= target
.getCharWidth();
816 CharByteWidth
= target
.getWCharWidth();
819 CharByteWidth
= target
.getChar16Width();
822 CharByteWidth
= target
.getChar32Width();
825 assert((CharByteWidth
& 7) == 0 && "Assumes character size is byte multiple");
827 assert((CharByteWidth
==1 || CharByteWidth
==2 || CharByteWidth
==4)
828 && "character byte widths supported are 1, 2, and 4 only");
829 return CharByteWidth
;
832 StringLiteral
*StringLiteral::Create(const ASTContext
&C
, StringRef Str
,
833 StringKind Kind
, bool Pascal
, QualType Ty
,
834 const SourceLocation
*Loc
,
836 assert(C
.getAsConstantArrayType(Ty
) &&
837 "StringLiteral must be of constant array type!");
839 // Allocate enough space for the StringLiteral plus an array of locations for
840 // any concatenated string tokens.
841 void *Mem
= C
.Allocate(sizeof(StringLiteral
)+
842 sizeof(SourceLocation
)*(NumStrs
-1),
843 llvm::alignOf
<StringLiteral
>());
844 StringLiteral
*SL
= new (Mem
) StringLiteral(Ty
);
846 // OPTIMIZE: could allocate this appended to the StringLiteral.
847 SL
->setString(C
,Str
,Kind
,Pascal
);
849 SL
->TokLocs
[0] = Loc
[0];
850 SL
->NumConcatenated
= NumStrs
;
853 memcpy(&SL
->TokLocs
[1], Loc
+1, sizeof(SourceLocation
)*(NumStrs
-1));
857 StringLiteral
*StringLiteral::CreateEmpty(const ASTContext
&C
,
859 void *Mem
= C
.Allocate(sizeof(StringLiteral
)+
860 sizeof(SourceLocation
)*(NumStrs
-1),
861 llvm::alignOf
<StringLiteral
>());
862 StringLiteral
*SL
= new (Mem
) StringLiteral(QualType());
863 SL
->CharByteWidth
= 0;
865 SL
->NumConcatenated
= NumStrs
;
869 void StringLiteral::outputString(raw_ostream
&OS
) const {
871 case Ascii
: break; // no prefix.
872 case Wide
: OS
<< 'L'; break;
873 case UTF8
: OS
<< "u8"; break;
874 case UTF16
: OS
<< 'u'; break;
875 case UTF32
: OS
<< 'U'; break;
878 static const char Hex
[] = "0123456789ABCDEF";
880 unsigned LastSlashX
= getLength();
881 for (unsigned I
= 0, N
= getLength(); I
!= N
; ++I
) {
882 switch (uint32_t Char
= getCodeUnit(I
)) {
884 // FIXME: Convert UTF-8 back to codepoints before rendering.
886 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
887 // Leave invalid surrogates alone; we'll use \x for those.
888 if (getKind() == UTF16
&& I
!= N
- 1 && Char
>= 0xd800 &&
890 uint32_t Trail
= getCodeUnit(I
+ 1);
891 if (Trail
>= 0xdc00 && Trail
<= 0xdfff) {
892 Char
= 0x10000 + ((Char
- 0xd800) << 10) + (Trail
- 0xdc00);
898 // If this is a wide string, output characters over 0xff using \x
899 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
900 // codepoint: use \x escapes for invalid codepoints.
901 if (getKind() == Wide
||
902 (Char
>= 0xd800 && Char
<= 0xdfff) || Char
>= 0x110000) {
903 // FIXME: Is this the best way to print wchar_t?
906 while ((Char
>> Shift
) == 0)
908 for (/**/; Shift
>= 0; Shift
-= 4)
909 OS
<< Hex
[(Char
>> Shift
) & 15];
916 << Hex
[(Char
>> 20) & 15]
917 << Hex
[(Char
>> 16) & 15];
920 OS
<< Hex
[(Char
>> 12) & 15]
921 << Hex
[(Char
>> 8) & 15]
922 << Hex
[(Char
>> 4) & 15]
923 << Hex
[(Char
>> 0) & 15];
927 // If we used \x... for the previous character, and this character is a
928 // hexadecimal digit, prevent it being slurped as part of the \x.
929 if (LastSlashX
+ 1 == I
) {
931 case '0': case '1': case '2': case '3': case '4':
932 case '5': case '6': case '7': case '8': case '9':
933 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
934 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
939 assert(Char
<= 0xff &&
940 "Characters above 0xff should already have been handled.");
942 if (isPrintable(Char
))
944 else // Output anything hard as an octal escape.
946 << (char)('0' + ((Char
>> 6) & 7))
947 << (char)('0' + ((Char
>> 3) & 7))
948 << (char)('0' + ((Char
>> 0) & 7));
950 // Handle some common non-printable cases to make dumps prettier.
951 case '\\': OS
<< "\\\\"; break;
952 case '"': OS
<< "\\\""; break;
953 case '\n': OS
<< "\\n"; break;
954 case '\t': OS
<< "\\t"; break;
955 case '\a': OS
<< "\\a"; break;
956 case '\b': OS
<< "\\b"; break;
962 void StringLiteral::setString(const ASTContext
&C
, StringRef Str
,
963 StringKind Kind
, bool IsPascal
) {
964 //FIXME: we assume that the string data comes from a target that uses the same
965 // code unit size and endianess for the type of string.
967 this->IsPascal
= IsPascal
;
969 CharByteWidth
= mapCharByteWidth(C
.getTargetInfo(),Kind
);
970 assert((Str
.size()%CharByteWidth
== 0)
971 && "size of data must be multiple of CharByteWidth");
972 Length
= Str
.size()/CharByteWidth
;
974 switch(CharByteWidth
) {
976 char *AStrData
= new (C
) char[Length
];
977 std::memcpy(AStrData
,Str
.data(),Length
*sizeof(*AStrData
));
978 StrData
.asChar
= AStrData
;
982 uint16_t *AStrData
= new (C
) uint16_t[Length
];
983 std::memcpy(AStrData
,Str
.data(),Length
*sizeof(*AStrData
));
984 StrData
.asUInt16
= AStrData
;
988 uint32_t *AStrData
= new (C
) uint32_t[Length
];
989 std::memcpy(AStrData
,Str
.data(),Length
*sizeof(*AStrData
));
990 StrData
.asUInt32
= AStrData
;
994 assert(false && "unsupported CharByteWidth");
998 /// getLocationOfByte - Return a source location that points to the specified
999 /// byte of this string literal.
1001 /// Strings are amazingly complex. They can be formed from multiple tokens and
1002 /// can have escape sequences in them in addition to the usual trigraph and
1003 /// escaped newline business. This routine handles this complexity.
1005 SourceLocation
StringLiteral::
1006 getLocationOfByte(unsigned ByteNo
, const SourceManager
&SM
,
1007 const LangOptions
&Features
, const TargetInfo
&Target
) const {
1008 assert((Kind
== StringLiteral::Ascii
|| Kind
== StringLiteral::UTF8
) &&
1009 "Only narrow string literals are currently supported");
1011 // Loop over all of the tokens in this string until we find the one that
1012 // contains the byte we're looking for.
1015 assert(TokNo
< getNumConcatenated() && "Invalid byte number!");
1016 SourceLocation StrTokLoc
= getStrTokenLoc(TokNo
);
1018 // Get the spelling of the string so that we can get the data that makes up
1019 // the string literal, not the identifier for the macro it is potentially
1020 // expanded through.
1021 SourceLocation StrTokSpellingLoc
= SM
.getSpellingLoc(StrTokLoc
);
1023 // Re-lex the token to get its length and original spelling.
1024 std::pair
<FileID
, unsigned> LocInfo
=SM
.getDecomposedLoc(StrTokSpellingLoc
);
1025 bool Invalid
= false;
1026 StringRef Buffer
= SM
.getBufferData(LocInfo
.first
, &Invalid
);
1028 return StrTokSpellingLoc
;
1030 const char *StrData
= Buffer
.data()+LocInfo
.second
;
1032 // Create a lexer starting at the beginning of this token.
1033 Lexer
TheLexer(SM
.getLocForStartOfFile(LocInfo
.first
), Features
,
1034 Buffer
.begin(), StrData
, Buffer
.end());
1036 TheLexer
.LexFromRawLexer(TheTok
);
1038 // Use the StringLiteralParser to compute the length of the string in bytes.
1039 StringLiteralParser
SLP(TheTok
, SM
, Features
, Target
);
1040 unsigned TokNumBytes
= SLP
.GetStringLength();
1042 // If the byte is in this token, return the location of the byte.
1043 if (ByteNo
< TokNumBytes
||
1044 (ByteNo
== TokNumBytes
&& TokNo
== getNumConcatenated() - 1)) {
1045 unsigned Offset
= SLP
.getOffsetOfStringByte(TheTok
, ByteNo
);
1047 // Now that we know the offset of the token in the spelling, use the
1048 // preprocessor to get the offset in the original source.
1049 return Lexer::AdvanceToTokenCharacter(StrTokLoc
, Offset
, SM
, Features
);
1052 // Move to the next string token.
1054 ByteNo
-= TokNumBytes
;
1060 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1061 /// corresponds to, e.g. "sizeof" or "[pre]++".
1062 StringRef
UnaryOperator::getOpcodeStr(Opcode Op
) {
1064 case UO_PostInc
: return "++";
1065 case UO_PostDec
: return "--";
1066 case UO_PreInc
: return "++";
1067 case UO_PreDec
: return "--";
1068 case UO_AddrOf
: return "&";
1069 case UO_Deref
: return "*";
1070 case UO_Plus
: return "+";
1071 case UO_Minus
: return "-";
1072 case UO_Not
: return "~";
1073 case UO_LNot
: return "!";
1074 case UO_Real
: return "__real";
1075 case UO_Imag
: return "__imag";
1076 case UO_Extension
: return "__extension__";
1078 llvm_unreachable("Unknown unary operator");
1082 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO
, bool Postfix
) {
1084 default: llvm_unreachable("No unary operator for overloaded function");
1085 case OO_PlusPlus
: return Postfix
? UO_PostInc
: UO_PreInc
;
1086 case OO_MinusMinus
: return Postfix
? UO_PostDec
: UO_PreDec
;
1087 case OO_Amp
: return UO_AddrOf
;
1088 case OO_Star
: return UO_Deref
;
1089 case OO_Plus
: return UO_Plus
;
1090 case OO_Minus
: return UO_Minus
;
1091 case OO_Tilde
: return UO_Not
;
1092 case OO_Exclaim
: return UO_LNot
;
1096 OverloadedOperatorKind
UnaryOperator::getOverloadedOperator(Opcode Opc
) {
1098 case UO_PostInc
: case UO_PreInc
: return OO_PlusPlus
;
1099 case UO_PostDec
: case UO_PreDec
: return OO_MinusMinus
;
1100 case UO_AddrOf
: return OO_Amp
;
1101 case UO_Deref
: return OO_Star
;
1102 case UO_Plus
: return OO_Plus
;
1103 case UO_Minus
: return OO_Minus
;
1104 case UO_Not
: return OO_Tilde
;
1105 case UO_LNot
: return OO_Exclaim
;
1106 default: return OO_None
;
1111 //===----------------------------------------------------------------------===//
1112 // Postfix Operators.
1113 //===----------------------------------------------------------------------===//
1115 CallExpr::CallExpr(const ASTContext
& C
, StmtClass SC
, Expr
*fn
,
1116 unsigned NumPreArgs
, ArrayRef
<Expr
*> args
, QualType t
,
1117 ExprValueKind VK
, SourceLocation rparenloc
)
1118 : Expr(SC
, t
, VK
, OK_Ordinary
,
1119 fn
->isTypeDependent(),
1120 fn
->isValueDependent(),
1121 fn
->isInstantiationDependent(),
1122 fn
->containsUnexpandedParameterPack()),
1123 NumArgs(args
.size()) {
1125 SubExprs
= new (C
) Stmt
*[args
.size()+PREARGS_START
+NumPreArgs
];
1127 for (unsigned i
= 0; i
!= args
.size(); ++i
) {
1128 if (args
[i
]->isTypeDependent())
1129 ExprBits
.TypeDependent
= true;
1130 if (args
[i
]->isValueDependent())
1131 ExprBits
.ValueDependent
= true;
1132 if (args
[i
]->isInstantiationDependent())
1133 ExprBits
.InstantiationDependent
= true;
1134 if (args
[i
]->containsUnexpandedParameterPack())
1135 ExprBits
.ContainsUnexpandedParameterPack
= true;
1137 SubExprs
[i
+PREARGS_START
+NumPreArgs
] = args
[i
];
1140 CallExprBits
.NumPreArgs
= NumPreArgs
;
1141 RParenLoc
= rparenloc
;
1144 CallExpr::CallExpr(const ASTContext
& C
, Expr
*fn
, ArrayRef
<Expr
*> args
,
1145 QualType t
, ExprValueKind VK
, SourceLocation rparenloc
)
1146 : Expr(CallExprClass
, t
, VK
, OK_Ordinary
,
1147 fn
->isTypeDependent(),
1148 fn
->isValueDependent(),
1149 fn
->isInstantiationDependent(),
1150 fn
->containsUnexpandedParameterPack()),
1151 NumArgs(args
.size()) {
1153 SubExprs
= new (C
) Stmt
*[args
.size()+PREARGS_START
];
1155 for (unsigned i
= 0; i
!= args
.size(); ++i
) {
1156 if (args
[i
]->isTypeDependent())
1157 ExprBits
.TypeDependent
= true;
1158 if (args
[i
]->isValueDependent())
1159 ExprBits
.ValueDependent
= true;
1160 if (args
[i
]->isInstantiationDependent())
1161 ExprBits
.InstantiationDependent
= true;
1162 if (args
[i
]->containsUnexpandedParameterPack())
1163 ExprBits
.ContainsUnexpandedParameterPack
= true;
1165 SubExprs
[i
+PREARGS_START
] = args
[i
];
1168 CallExprBits
.NumPreArgs
= 0;
1169 RParenLoc
= rparenloc
;
1172 CallExpr::CallExpr(const ASTContext
&C
, StmtClass SC
, EmptyShell Empty
)
1173 : Expr(SC
, Empty
), SubExprs(nullptr), NumArgs(0) {
1174 // FIXME: Why do we allocate this?
1175 SubExprs
= new (C
) Stmt
*[PREARGS_START
];
1176 CallExprBits
.NumPreArgs
= 0;
1179 CallExpr::CallExpr(const ASTContext
&C
, StmtClass SC
, unsigned NumPreArgs
,
1181 : Expr(SC
, Empty
), SubExprs(nullptr), NumArgs(0) {
1182 // FIXME: Why do we allocate this?
1183 SubExprs
= new (C
) Stmt
*[PREARGS_START
+NumPreArgs
];
1184 CallExprBits
.NumPreArgs
= NumPreArgs
;
1187 Decl
*CallExpr::getCalleeDecl() {
1188 Expr
*CEE
= getCallee()->IgnoreParenImpCasts();
1190 while (SubstNonTypeTemplateParmExpr
*NTTP
1191 = dyn_cast
<SubstNonTypeTemplateParmExpr
>(CEE
)) {
1192 CEE
= NTTP
->getReplacement()->IgnoreParenCasts();
1195 // If we're calling a dereference, look at the pointer instead.
1196 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(CEE
)) {
1197 if (BO
->isPtrMemOp())
1198 CEE
= BO
->getRHS()->IgnoreParenCasts();
1199 } else if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(CEE
)) {
1200 if (UO
->getOpcode() == UO_Deref
)
1201 CEE
= UO
->getSubExpr()->IgnoreParenCasts();
1203 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(CEE
))
1204 return DRE
->getDecl();
1205 if (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(CEE
))
1206 return ME
->getMemberDecl();
1211 FunctionDecl
*CallExpr::getDirectCallee() {
1212 return dyn_cast_or_null
<FunctionDecl
>(getCalleeDecl());
1215 /// setNumArgs - This changes the number of arguments present in this call.
1216 /// Any orphaned expressions are deleted by this, and any new operands are set
1218 void CallExpr::setNumArgs(const ASTContext
& C
, unsigned NumArgs
) {
1219 // No change, just return.
1220 if (NumArgs
== getNumArgs()) return;
1222 // If shrinking # arguments, just delete the extras and forgot them.
1223 if (NumArgs
< getNumArgs()) {
1224 this->NumArgs
= NumArgs
;
1228 // Otherwise, we are growing the # arguments. New an bigger argument array.
1229 unsigned NumPreArgs
= getNumPreArgs();
1230 Stmt
**NewSubExprs
= new (C
) Stmt
*[NumArgs
+PREARGS_START
+NumPreArgs
];
1232 for (unsigned i
= 0; i
!= getNumArgs()+PREARGS_START
+NumPreArgs
; ++i
)
1233 NewSubExprs
[i
] = SubExprs
[i
];
1234 // Null out new args.
1235 for (unsigned i
= getNumArgs()+PREARGS_START
+NumPreArgs
;
1236 i
!= NumArgs
+PREARGS_START
+NumPreArgs
; ++i
)
1237 NewSubExprs
[i
] = nullptr;
1239 if (SubExprs
) C
.Deallocate(SubExprs
);
1240 SubExprs
= NewSubExprs
;
1241 this->NumArgs
= NumArgs
;
1244 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1246 unsigned CallExpr::getBuiltinCallee() const {
1247 // All simple function calls (e.g. func()) are implicitly cast to pointer to
1248 // function. As a result, we try and obtain the DeclRefExpr from the
1249 // ImplicitCastExpr.
1250 const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(getCallee());
1251 if (!ICE
) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1254 const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(ICE
->getSubExpr());
1258 const FunctionDecl
*FDecl
= dyn_cast
<FunctionDecl
>(DRE
->getDecl());
1262 if (!FDecl
->getIdentifier())
1265 return FDecl
->getBuiltinID();
1268 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext
&Ctx
) const {
1269 if (unsigned BI
= getBuiltinCallee())
1270 return Ctx
.BuiltinInfo
.isUnevaluated(BI
);
1274 QualType
CallExpr::getCallReturnType() const {
1275 QualType CalleeType
= getCallee()->getType();
1276 if (const PointerType
*FnTypePtr
= CalleeType
->getAs
<PointerType
>())
1277 CalleeType
= FnTypePtr
->getPointeeType();
1278 else if (const BlockPointerType
*BPT
= CalleeType
->getAs
<BlockPointerType
>())
1279 CalleeType
= BPT
->getPointeeType();
1280 else if (CalleeType
->isSpecificPlaceholderType(BuiltinType::BoundMember
))
1281 // This should never be overloaded and so should never return null.
1282 CalleeType
= Expr::findBoundMemberType(getCallee());
1284 const FunctionType
*FnType
= CalleeType
->castAs
<FunctionType
>();
1285 return FnType
->getReturnType();
1288 SourceLocation
CallExpr::getLocStart() const {
1289 if (isa
<CXXOperatorCallExpr
>(this))
1290 return cast
<CXXOperatorCallExpr
>(this)->getLocStart();
1292 SourceLocation begin
= getCallee()->getLocStart();
1293 if (begin
.isInvalid() && getNumArgs() > 0 && getArg(0))
1294 begin
= getArg(0)->getLocStart();
1297 SourceLocation
CallExpr::getLocEnd() const {
1298 if (isa
<CXXOperatorCallExpr
>(this))
1299 return cast
<CXXOperatorCallExpr
>(this)->getLocEnd();
1301 SourceLocation end
= getRParenLoc();
1302 if (end
.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1303 end
= getArg(getNumArgs() - 1)->getLocEnd();
1307 OffsetOfExpr
*OffsetOfExpr::Create(const ASTContext
&C
, QualType type
,
1308 SourceLocation OperatorLoc
,
1309 TypeSourceInfo
*tsi
,
1310 ArrayRef
<OffsetOfNode
> comps
,
1311 ArrayRef
<Expr
*> exprs
,
1312 SourceLocation RParenLoc
) {
1313 void *Mem
= C
.Allocate(sizeof(OffsetOfExpr
) +
1314 sizeof(OffsetOfNode
) * comps
.size() +
1315 sizeof(Expr
*) * exprs
.size());
1317 return new (Mem
) OffsetOfExpr(C
, type
, OperatorLoc
, tsi
, comps
, exprs
,
1321 OffsetOfExpr
*OffsetOfExpr::CreateEmpty(const ASTContext
&C
,
1322 unsigned numComps
, unsigned numExprs
) {
1323 void *Mem
= C
.Allocate(sizeof(OffsetOfExpr
) +
1324 sizeof(OffsetOfNode
) * numComps
+
1325 sizeof(Expr
*) * numExprs
);
1326 return new (Mem
) OffsetOfExpr(numComps
, numExprs
);
1329 OffsetOfExpr::OffsetOfExpr(const ASTContext
&C
, QualType type
,
1330 SourceLocation OperatorLoc
, TypeSourceInfo
*tsi
,
1331 ArrayRef
<OffsetOfNode
> comps
, ArrayRef
<Expr
*> exprs
,
1332 SourceLocation RParenLoc
)
1333 : Expr(OffsetOfExprClass
, type
, VK_RValue
, OK_Ordinary
,
1334 /*TypeDependent=*/false,
1335 /*ValueDependent=*/tsi
->getType()->isDependentType(),
1336 tsi
->getType()->isInstantiationDependentType(),
1337 tsi
->getType()->containsUnexpandedParameterPack()),
1338 OperatorLoc(OperatorLoc
), RParenLoc(RParenLoc
), TSInfo(tsi
),
1339 NumComps(comps
.size()), NumExprs(exprs
.size())
1341 for (unsigned i
= 0; i
!= comps
.size(); ++i
) {
1342 setComponent(i
, comps
[i
]);
1345 for (unsigned i
= 0; i
!= exprs
.size(); ++i
) {
1346 if (exprs
[i
]->isTypeDependent() || exprs
[i
]->isValueDependent())
1347 ExprBits
.ValueDependent
= true;
1348 if (exprs
[i
]->containsUnexpandedParameterPack())
1349 ExprBits
.ContainsUnexpandedParameterPack
= true;
1351 setIndexExpr(i
, exprs
[i
]);
1355 IdentifierInfo
*OffsetOfExpr::OffsetOfNode::getFieldName() const {
1356 assert(getKind() == Field
|| getKind() == Identifier
);
1357 if (getKind() == Field
)
1358 return getField()->getIdentifier();
1360 return reinterpret_cast<IdentifierInfo
*> (Data
& ~(uintptr_t)Mask
);
1363 MemberExpr
*MemberExpr::Create(const ASTContext
&C
, Expr
*base
, bool isarrow
,
1364 NestedNameSpecifierLoc QualifierLoc
,
1365 SourceLocation TemplateKWLoc
,
1366 ValueDecl
*memberdecl
,
1367 DeclAccessPair founddecl
,
1368 DeclarationNameInfo nameinfo
,
1369 const TemplateArgumentListInfo
*targs
,
1372 ExprObjectKind ok
) {
1373 std::size_t Size
= sizeof(MemberExpr
);
1375 bool hasQualOrFound
= (QualifierLoc
||
1376 founddecl
.getDecl() != memberdecl
||
1377 founddecl
.getAccess() != memberdecl
->getAccess());
1379 Size
+= sizeof(MemberNameQualifier
);
1382 Size
+= ASTTemplateKWAndArgsInfo::sizeFor(targs
->size());
1383 else if (TemplateKWLoc
.isValid())
1384 Size
+= ASTTemplateKWAndArgsInfo::sizeFor(0);
1386 void *Mem
= C
.Allocate(Size
, llvm::alignOf
<MemberExpr
>());
1387 MemberExpr
*E
= new (Mem
) MemberExpr(base
, isarrow
, memberdecl
, nameinfo
,
1390 if (hasQualOrFound
) {
1391 // FIXME: Wrong. We should be looking at the member declaration we found.
1392 if (QualifierLoc
&& QualifierLoc
.getNestedNameSpecifier()->isDependent()) {
1393 E
->setValueDependent(true);
1394 E
->setTypeDependent(true);
1395 E
->setInstantiationDependent(true);
1397 else if (QualifierLoc
&&
1398 QualifierLoc
.getNestedNameSpecifier()->isInstantiationDependent())
1399 E
->setInstantiationDependent(true);
1401 E
->HasQualifierOrFoundDecl
= true;
1403 MemberNameQualifier
*NQ
= E
->getMemberQualifier();
1404 NQ
->QualifierLoc
= QualifierLoc
;
1405 NQ
->FoundDecl
= founddecl
;
1408 E
->HasTemplateKWAndArgsInfo
= (targs
|| TemplateKWLoc
.isValid());
1411 bool Dependent
= false;
1412 bool InstantiationDependent
= false;
1413 bool ContainsUnexpandedParameterPack
= false;
1414 E
->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc
, *targs
,
1416 InstantiationDependent
,
1417 ContainsUnexpandedParameterPack
);
1418 if (InstantiationDependent
)
1419 E
->setInstantiationDependent(true);
1420 } else if (TemplateKWLoc
.isValid()) {
1421 E
->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc
);
1427 SourceLocation
MemberExpr::getLocStart() const {
1428 if (isImplicitAccess()) {
1430 return getQualifierLoc().getBeginLoc();
1434 // FIXME: We don't want this to happen. Rather, we should be able to
1435 // detect all kinds of implicit accesses more cleanly.
1436 SourceLocation BaseStartLoc
= getBase()->getLocStart();
1437 if (BaseStartLoc
.isValid())
1438 return BaseStartLoc
;
1441 SourceLocation
MemberExpr::getLocEnd() const {
1442 SourceLocation EndLoc
= getMemberNameInfo().getEndLoc();
1443 if (hasExplicitTemplateArgs())
1444 EndLoc
= getRAngleLoc();
1445 else if (EndLoc
.isInvalid())
1446 EndLoc
= getBase()->getLocEnd();
1450 bool CastExpr::CastConsistency() const {
1451 switch (getCastKind()) {
1452 case CK_DerivedToBase
:
1453 case CK_UncheckedDerivedToBase
:
1454 case CK_DerivedToBaseMemberPointer
:
1455 case CK_BaseToDerived
:
1456 case CK_BaseToDerivedMemberPointer
:
1457 assert(!path_empty() && "Cast kind should have a base path!");
1460 case CK_CPointerToObjCPointerCast
:
1461 assert(getType()->isObjCObjectPointerType());
1462 assert(getSubExpr()->getType()->isPointerType());
1463 goto CheckNoBasePath
;
1465 case CK_BlockPointerToObjCPointerCast
:
1466 assert(getType()->isObjCObjectPointerType());
1467 assert(getSubExpr()->getType()->isBlockPointerType());
1468 goto CheckNoBasePath
;
1470 case CK_ReinterpretMemberPointer
:
1471 assert(getType()->isMemberPointerType());
1472 assert(getSubExpr()->getType()->isMemberPointerType());
1473 goto CheckNoBasePath
;
1476 // Arbitrary casts to C pointer types count as bitcasts.
1477 // Otherwise, we should only have block and ObjC pointer casts
1478 // here if they stay within the type kind.
1479 if (!getType()->isPointerType()) {
1480 assert(getType()->isObjCObjectPointerType() ==
1481 getSubExpr()->getType()->isObjCObjectPointerType());
1482 assert(getType()->isBlockPointerType() ==
1483 getSubExpr()->getType()->isBlockPointerType());
1485 goto CheckNoBasePath
;
1487 case CK_AnyPointerToBlockPointerCast
:
1488 assert(getType()->isBlockPointerType());
1489 assert(getSubExpr()->getType()->isAnyPointerType() &&
1490 !getSubExpr()->getType()->isBlockPointerType());
1491 goto CheckNoBasePath
;
1493 case CK_CopyAndAutoreleaseBlockObject
:
1494 assert(getType()->isBlockPointerType());
1495 assert(getSubExpr()->getType()->isBlockPointerType());
1496 goto CheckNoBasePath
;
1498 case CK_FunctionToPointerDecay
:
1499 assert(getType()->isPointerType());
1500 assert(getSubExpr()->getType()->isFunctionType());
1501 goto CheckNoBasePath
;
1503 case CK_AddressSpaceConversion
:
1504 assert(getType()->isPointerType());
1505 assert(getSubExpr()->getType()->isPointerType());
1506 assert(getType()->getPointeeType().getAddressSpace() !=
1507 getSubExpr()->getType()->getPointeeType().getAddressSpace());
1508 // These should not have an inheritance path.
1511 case CK_ArrayToPointerDecay
:
1512 case CK_NullToMemberPointer
:
1513 case CK_NullToPointer
:
1514 case CK_ConstructorConversion
:
1515 case CK_IntegralToPointer
:
1516 case CK_PointerToIntegral
:
1518 case CK_VectorSplat
:
1519 case CK_IntegralCast
:
1520 case CK_IntegralToFloating
:
1521 case CK_FloatingToIntegral
:
1522 case CK_FloatingCast
:
1523 case CK_ObjCObjectLValueCast
:
1524 case CK_FloatingRealToComplex
:
1525 case CK_FloatingComplexToReal
:
1526 case CK_FloatingComplexCast
:
1527 case CK_FloatingComplexToIntegralComplex
:
1528 case CK_IntegralRealToComplex
:
1529 case CK_IntegralComplexToReal
:
1530 case CK_IntegralComplexCast
:
1531 case CK_IntegralComplexToFloatingComplex
:
1532 case CK_ARCProduceObject
:
1533 case CK_ARCConsumeObject
:
1534 case CK_ARCReclaimReturnedObject
:
1535 case CK_ARCExtendBlockObject
:
1536 case CK_ZeroToOCLEvent
:
1537 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1538 goto CheckNoBasePath
;
1541 case CK_LValueToRValue
:
1543 case CK_AtomicToNonAtomic
:
1544 case CK_NonAtomicToAtomic
:
1545 case CK_PointerToBoolean
:
1546 case CK_IntegralToBoolean
:
1547 case CK_FloatingToBoolean
:
1548 case CK_MemberPointerToBoolean
:
1549 case CK_FloatingComplexToBoolean
:
1550 case CK_IntegralComplexToBoolean
:
1551 case CK_LValueBitCast
: // -> bool&
1552 case CK_UserDefinedConversion
: // operator bool()
1553 case CK_BuiltinFnToFnPtr
:
1555 assert(path_empty() && "Cast kind should not have a base path!");
1561 const char *CastExpr::getCastKindName() const {
1562 switch (getCastKind()) {
1567 case CK_LValueBitCast
:
1568 return "LValueBitCast";
1569 case CK_LValueToRValue
:
1570 return "LValueToRValue";
1573 case CK_BaseToDerived
:
1574 return "BaseToDerived";
1575 case CK_DerivedToBase
:
1576 return "DerivedToBase";
1577 case CK_UncheckedDerivedToBase
:
1578 return "UncheckedDerivedToBase";
1583 case CK_ArrayToPointerDecay
:
1584 return "ArrayToPointerDecay";
1585 case CK_FunctionToPointerDecay
:
1586 return "FunctionToPointerDecay";
1587 case CK_NullToMemberPointer
:
1588 return "NullToMemberPointer";
1589 case CK_NullToPointer
:
1590 return "NullToPointer";
1591 case CK_BaseToDerivedMemberPointer
:
1592 return "BaseToDerivedMemberPointer";
1593 case CK_DerivedToBaseMemberPointer
:
1594 return "DerivedToBaseMemberPointer";
1595 case CK_ReinterpretMemberPointer
:
1596 return "ReinterpretMemberPointer";
1597 case CK_UserDefinedConversion
:
1598 return "UserDefinedConversion";
1599 case CK_ConstructorConversion
:
1600 return "ConstructorConversion";
1601 case CK_IntegralToPointer
:
1602 return "IntegralToPointer";
1603 case CK_PointerToIntegral
:
1604 return "PointerToIntegral";
1605 case CK_PointerToBoolean
:
1606 return "PointerToBoolean";
1609 case CK_VectorSplat
:
1610 return "VectorSplat";
1611 case CK_IntegralCast
:
1612 return "IntegralCast";
1613 case CK_IntegralToBoolean
:
1614 return "IntegralToBoolean";
1615 case CK_IntegralToFloating
:
1616 return "IntegralToFloating";
1617 case CK_FloatingToIntegral
:
1618 return "FloatingToIntegral";
1619 case CK_FloatingCast
:
1620 return "FloatingCast";
1621 case CK_FloatingToBoolean
:
1622 return "FloatingToBoolean";
1623 case CK_MemberPointerToBoolean
:
1624 return "MemberPointerToBoolean";
1625 case CK_CPointerToObjCPointerCast
:
1626 return "CPointerToObjCPointerCast";
1627 case CK_BlockPointerToObjCPointerCast
:
1628 return "BlockPointerToObjCPointerCast";
1629 case CK_AnyPointerToBlockPointerCast
:
1630 return "AnyPointerToBlockPointerCast";
1631 case CK_ObjCObjectLValueCast
:
1632 return "ObjCObjectLValueCast";
1633 case CK_FloatingRealToComplex
:
1634 return "FloatingRealToComplex";
1635 case CK_FloatingComplexToReal
:
1636 return "FloatingComplexToReal";
1637 case CK_FloatingComplexToBoolean
:
1638 return "FloatingComplexToBoolean";
1639 case CK_FloatingComplexCast
:
1640 return "FloatingComplexCast";
1641 case CK_FloatingComplexToIntegralComplex
:
1642 return "FloatingComplexToIntegralComplex";
1643 case CK_IntegralRealToComplex
:
1644 return "IntegralRealToComplex";
1645 case CK_IntegralComplexToReal
:
1646 return "IntegralComplexToReal";
1647 case CK_IntegralComplexToBoolean
:
1648 return "IntegralComplexToBoolean";
1649 case CK_IntegralComplexCast
:
1650 return "IntegralComplexCast";
1651 case CK_IntegralComplexToFloatingComplex
:
1652 return "IntegralComplexToFloatingComplex";
1653 case CK_ARCConsumeObject
:
1654 return "ARCConsumeObject";
1655 case CK_ARCProduceObject
:
1656 return "ARCProduceObject";
1657 case CK_ARCReclaimReturnedObject
:
1658 return "ARCReclaimReturnedObject";
1659 case CK_ARCExtendBlockObject
:
1660 return "ARCExtendBlockObject";
1661 case CK_AtomicToNonAtomic
:
1662 return "AtomicToNonAtomic";
1663 case CK_NonAtomicToAtomic
:
1664 return "NonAtomicToAtomic";
1665 case CK_CopyAndAutoreleaseBlockObject
:
1666 return "CopyAndAutoreleaseBlockObject";
1667 case CK_BuiltinFnToFnPtr
:
1668 return "BuiltinFnToFnPtr";
1669 case CK_ZeroToOCLEvent
:
1670 return "ZeroToOCLEvent";
1671 case CK_AddressSpaceConversion
:
1672 return "AddressSpaceConversion";
1675 llvm_unreachable("Unhandled cast kind!");
1678 Expr
*CastExpr::getSubExprAsWritten() {
1679 Expr
*SubExpr
= nullptr;
1682 SubExpr
= E
->getSubExpr();
1684 // Skip through reference binding to temporary.
1685 if (MaterializeTemporaryExpr
*Materialize
1686 = dyn_cast
<MaterializeTemporaryExpr
>(SubExpr
))
1687 SubExpr
= Materialize
->GetTemporaryExpr();
1689 // Skip any temporary bindings; they're implicit.
1690 if (CXXBindTemporaryExpr
*Binder
= dyn_cast
<CXXBindTemporaryExpr
>(SubExpr
))
1691 SubExpr
= Binder
->getSubExpr();
1693 // Conversions by constructor and conversion functions have a
1694 // subexpression describing the call; strip it off.
1695 if (E
->getCastKind() == CK_ConstructorConversion
)
1696 SubExpr
= cast
<CXXConstructExpr
>(SubExpr
)->getArg(0);
1697 else if (E
->getCastKind() == CK_UserDefinedConversion
)
1698 SubExpr
= cast
<CXXMemberCallExpr
>(SubExpr
)->getImplicitObjectArgument();
1700 // If the subexpression we're left with is an implicit cast, look
1701 // through that, too.
1702 } while ((E
= dyn_cast
<ImplicitCastExpr
>(SubExpr
)));
1707 CXXBaseSpecifier
**CastExpr::path_buffer() {
1708 switch (getStmtClass()) {
1709 #define ABSTRACT_STMT(x)
1710 #define CASTEXPR(Type, Base) \
1711 case Stmt::Type##Class: \
1712 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1713 #define STMT(Type, Base)
1714 #include "clang/AST/StmtNodes.inc"
1716 llvm_unreachable("non-cast expressions not possible here");
1720 void CastExpr::setCastPath(const CXXCastPath
&Path
) {
1721 assert(Path
.size() == path_size());
1722 memcpy(path_buffer(), Path
.data(), Path
.size() * sizeof(CXXBaseSpecifier
*));
1725 ImplicitCastExpr
*ImplicitCastExpr::Create(const ASTContext
&C
, QualType T
,
1726 CastKind Kind
, Expr
*Operand
,
1727 const CXXCastPath
*BasePath
,
1729 unsigned PathSize
= (BasePath
? BasePath
->size() : 0);
1731 C
.Allocate(sizeof(ImplicitCastExpr
) + PathSize
* sizeof(CXXBaseSpecifier
*));
1732 ImplicitCastExpr
*E
=
1733 new (Buffer
) ImplicitCastExpr(T
, Kind
, Operand
, PathSize
, VK
);
1734 if (PathSize
) E
->setCastPath(*BasePath
);
1738 ImplicitCastExpr
*ImplicitCastExpr::CreateEmpty(const ASTContext
&C
,
1739 unsigned PathSize
) {
1741 C
.Allocate(sizeof(ImplicitCastExpr
) + PathSize
* sizeof(CXXBaseSpecifier
*));
1742 return new (Buffer
) ImplicitCastExpr(EmptyShell(), PathSize
);
1746 CStyleCastExpr
*CStyleCastExpr::Create(const ASTContext
&C
, QualType T
,
1747 ExprValueKind VK
, CastKind K
, Expr
*Op
,
1748 const CXXCastPath
*BasePath
,
1749 TypeSourceInfo
*WrittenTy
,
1750 SourceLocation L
, SourceLocation R
) {
1751 unsigned PathSize
= (BasePath
? BasePath
->size() : 0);
1753 C
.Allocate(sizeof(CStyleCastExpr
) + PathSize
* sizeof(CXXBaseSpecifier
*));
1755 new (Buffer
) CStyleCastExpr(T
, VK
, K
, Op
, PathSize
, WrittenTy
, L
, R
);
1756 if (PathSize
) E
->setCastPath(*BasePath
);
1760 CStyleCastExpr
*CStyleCastExpr::CreateEmpty(const ASTContext
&C
,
1761 unsigned PathSize
) {
1763 C
.Allocate(sizeof(CStyleCastExpr
) + PathSize
* sizeof(CXXBaseSpecifier
*));
1764 return new (Buffer
) CStyleCastExpr(EmptyShell(), PathSize
);
1767 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1768 /// corresponds to, e.g. "<<=".
1769 StringRef
BinaryOperator::getOpcodeStr(Opcode Op
) {
1771 case BO_PtrMemD
: return ".*";
1772 case BO_PtrMemI
: return "->*";
1773 case BO_Mul
: return "*";
1774 case BO_Div
: return "/";
1775 case BO_Rem
: return "%";
1776 case BO_Add
: return "+";
1777 case BO_Sub
: return "-";
1778 case BO_Shl
: return "<<";
1779 case BO_Shr
: return ">>";
1780 case BO_LT
: return "<";
1781 case BO_GT
: return ">";
1782 case BO_LE
: return "<=";
1783 case BO_GE
: return ">=";
1784 case BO_EQ
: return "==";
1785 case BO_NE
: return "!=";
1786 case BO_And
: return "&";
1787 case BO_Xor
: return "^";
1788 case BO_Or
: return "|";
1789 case BO_LAnd
: return "&&";
1790 case BO_LOr
: return "||";
1791 case BO_Assign
: return "=";
1792 case BO_MulAssign
: return "*=";
1793 case BO_DivAssign
: return "/=";
1794 case BO_RemAssign
: return "%=";
1795 case BO_AddAssign
: return "+=";
1796 case BO_SubAssign
: return "-=";
1797 case BO_ShlAssign
: return "<<=";
1798 case BO_ShrAssign
: return ">>=";
1799 case BO_AndAssign
: return "&=";
1800 case BO_XorAssign
: return "^=";
1801 case BO_OrAssign
: return "|=";
1802 case BO_Comma
: return ",";
1805 llvm_unreachable("Invalid OpCode!");
1809 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO
) {
1811 default: llvm_unreachable("Not an overloadable binary operator");
1812 case OO_Plus
: return BO_Add
;
1813 case OO_Minus
: return BO_Sub
;
1814 case OO_Star
: return BO_Mul
;
1815 case OO_Slash
: return BO_Div
;
1816 case OO_Percent
: return BO_Rem
;
1817 case OO_Caret
: return BO_Xor
;
1818 case OO_Amp
: return BO_And
;
1819 case OO_Pipe
: return BO_Or
;
1820 case OO_Equal
: return BO_Assign
;
1821 case OO_Less
: return BO_LT
;
1822 case OO_Greater
: return BO_GT
;
1823 case OO_PlusEqual
: return BO_AddAssign
;
1824 case OO_MinusEqual
: return BO_SubAssign
;
1825 case OO_StarEqual
: return BO_MulAssign
;
1826 case OO_SlashEqual
: return BO_DivAssign
;
1827 case OO_PercentEqual
: return BO_RemAssign
;
1828 case OO_CaretEqual
: return BO_XorAssign
;
1829 case OO_AmpEqual
: return BO_AndAssign
;
1830 case OO_PipeEqual
: return BO_OrAssign
;
1831 case OO_LessLess
: return BO_Shl
;
1832 case OO_GreaterGreater
: return BO_Shr
;
1833 case OO_LessLessEqual
: return BO_ShlAssign
;
1834 case OO_GreaterGreaterEqual
: return BO_ShrAssign
;
1835 case OO_EqualEqual
: return BO_EQ
;
1836 case OO_ExclaimEqual
: return BO_NE
;
1837 case OO_LessEqual
: return BO_LE
;
1838 case OO_GreaterEqual
: return BO_GE
;
1839 case OO_AmpAmp
: return BO_LAnd
;
1840 case OO_PipePipe
: return BO_LOr
;
1841 case OO_Comma
: return BO_Comma
;
1842 case OO_ArrowStar
: return BO_PtrMemI
;
1846 OverloadedOperatorKind
BinaryOperator::getOverloadedOperator(Opcode Opc
) {
1847 static const OverloadedOperatorKind OverOps
[] = {
1848 /* .* Cannot be overloaded */OO_None
, OO_ArrowStar
,
1849 OO_Star
, OO_Slash
, OO_Percent
,
1851 OO_LessLess
, OO_GreaterGreater
,
1852 OO_Less
, OO_Greater
, OO_LessEqual
, OO_GreaterEqual
,
1853 OO_EqualEqual
, OO_ExclaimEqual
,
1859 OO_Equal
, OO_StarEqual
,
1860 OO_SlashEqual
, OO_PercentEqual
,
1861 OO_PlusEqual
, OO_MinusEqual
,
1862 OO_LessLessEqual
, OO_GreaterGreaterEqual
,
1863 OO_AmpEqual
, OO_CaretEqual
,
1867 return OverOps
[Opc
];
1870 InitListExpr::InitListExpr(const ASTContext
&C
, SourceLocation lbraceloc
,
1871 ArrayRef
<Expr
*> initExprs
, SourceLocation rbraceloc
)
1872 : Expr(InitListExprClass
, QualType(), VK_RValue
, OK_Ordinary
, false, false,
1874 InitExprs(C
, initExprs
.size()),
1875 LBraceLoc(lbraceloc
), RBraceLoc(rbraceloc
), AltForm(nullptr, true)
1877 sawArrayRangeDesignator(false);
1878 for (unsigned I
= 0; I
!= initExprs
.size(); ++I
) {
1879 if (initExprs
[I
]->isTypeDependent())
1880 ExprBits
.TypeDependent
= true;
1881 if (initExprs
[I
]->isValueDependent())
1882 ExprBits
.ValueDependent
= true;
1883 if (initExprs
[I
]->isInstantiationDependent())
1884 ExprBits
.InstantiationDependent
= true;
1885 if (initExprs
[I
]->containsUnexpandedParameterPack())
1886 ExprBits
.ContainsUnexpandedParameterPack
= true;
1889 InitExprs
.insert(C
, InitExprs
.end(), initExprs
.begin(), initExprs
.end());
1892 void InitListExpr::reserveInits(const ASTContext
&C
, unsigned NumInits
) {
1893 if (NumInits
> InitExprs
.size())
1894 InitExprs
.reserve(C
, NumInits
);
1897 void InitListExpr::resizeInits(const ASTContext
&C
, unsigned NumInits
) {
1898 InitExprs
.resize(C
, NumInits
, nullptr);
1901 Expr
*InitListExpr::updateInit(const ASTContext
&C
, unsigned Init
, Expr
*expr
) {
1902 if (Init
>= InitExprs
.size()) {
1903 InitExprs
.insert(C
, InitExprs
.end(), Init
- InitExprs
.size() + 1, nullptr);
1904 setInit(Init
, expr
);
1908 Expr
*Result
= cast_or_null
<Expr
>(InitExprs
[Init
]);
1909 setInit(Init
, expr
);
1913 void InitListExpr::setArrayFiller(Expr
*filler
) {
1914 assert(!hasArrayFiller() && "Filler already set!");
1915 ArrayFillerOrUnionFieldInit
= filler
;
1916 // Fill out any "holes" in the array due to designated initializers.
1917 Expr
**inits
= getInits();
1918 for (unsigned i
= 0, e
= getNumInits(); i
!= e
; ++i
)
1919 if (inits
[i
] == nullptr)
1923 bool InitListExpr::isStringLiteralInit() const {
1924 if (getNumInits() != 1)
1926 const ArrayType
*AT
= getType()->getAsArrayTypeUnsafe();
1927 if (!AT
|| !AT
->getElementType()->isIntegerType())
1929 // It is possible for getInit() to return null.
1930 const Expr
*Init
= getInit(0);
1933 Init
= Init
->IgnoreParens();
1934 return isa
<StringLiteral
>(Init
) || isa
<ObjCEncodeExpr
>(Init
);
1937 SourceLocation
InitListExpr::getLocStart() const {
1938 if (InitListExpr
*SyntacticForm
= getSyntacticForm())
1939 return SyntacticForm
->getLocStart();
1940 SourceLocation Beg
= LBraceLoc
;
1941 if (Beg
.isInvalid()) {
1942 // Find the first non-null initializer.
1943 for (InitExprsTy::const_iterator I
= InitExprs
.begin(),
1944 E
= InitExprs
.end();
1947 Beg
= S
->getLocStart();
1955 SourceLocation
InitListExpr::getLocEnd() const {
1956 if (InitListExpr
*SyntacticForm
= getSyntacticForm())
1957 return SyntacticForm
->getLocEnd();
1958 SourceLocation End
= RBraceLoc
;
1959 if (End
.isInvalid()) {
1960 // Find the first non-null initializer from the end.
1961 for (InitExprsTy::const_reverse_iterator I
= InitExprs
.rbegin(),
1962 E
= InitExprs
.rend();
1965 End
= S
->getLocEnd();
1973 /// getFunctionType - Return the underlying function type for this block.
1975 const FunctionProtoType
*BlockExpr::getFunctionType() const {
1976 // The block pointer is never sugared, but the function type might be.
1977 return cast
<BlockPointerType
>(getType())
1978 ->getPointeeType()->castAs
<FunctionProtoType
>();
1981 SourceLocation
BlockExpr::getCaretLocation() const {
1982 return TheBlock
->getCaretLocation();
1984 const Stmt
*BlockExpr::getBody() const {
1985 return TheBlock
->getBody();
1987 Stmt
*BlockExpr::getBody() {
1988 return TheBlock
->getBody();
1992 //===----------------------------------------------------------------------===//
1993 // Generic Expression Routines
1994 //===----------------------------------------------------------------------===//
1996 /// isUnusedResultAWarning - Return true if this immediate expression should
1997 /// be warned about if the result is unused. If so, fill in Loc and Ranges
1998 /// with location to warn on and the source range[s] to report with the
2000 bool Expr::isUnusedResultAWarning(const Expr
*&WarnE
, SourceLocation
&Loc
,
2001 SourceRange
&R1
, SourceRange
&R2
,
2002 ASTContext
&Ctx
) const {
2003 // Don't warn if the expr is type dependent. The type could end up
2004 // instantiating to void.
2005 if (isTypeDependent())
2008 switch (getStmtClass()) {
2010 if (getType()->isVoidType())
2014 R1
= getSourceRange();
2016 case ParenExprClass
:
2017 return cast
<ParenExpr
>(this)->getSubExpr()->
2018 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2019 case GenericSelectionExprClass
:
2020 return cast
<GenericSelectionExpr
>(this)->getResultExpr()->
2021 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2022 case ChooseExprClass
:
2023 return cast
<ChooseExpr
>(this)->getChosenSubExpr()->
2024 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2025 case UnaryOperatorClass
: {
2026 const UnaryOperator
*UO
= cast
<UnaryOperator
>(this);
2028 switch (UO
->getOpcode()) {
2039 case UO_PreDec
: // ++/--
2040 return false; // Not a warning.
2043 // accessing a piece of a volatile complex is a side-effect.
2044 if (Ctx
.getCanonicalType(UO
->getSubExpr()->getType())
2045 .isVolatileQualified())
2049 return UO
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2052 Loc
= UO
->getOperatorLoc();
2053 R1
= UO
->getSubExpr()->getSourceRange();
2056 case BinaryOperatorClass
: {
2057 const BinaryOperator
*BO
= cast
<BinaryOperator
>(this);
2058 switch (BO
->getOpcode()) {
2061 // Consider the RHS of comma for side effects. LHS was checked by
2062 // Sema::CheckCommaOperands.
2064 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2065 // lvalue-ness) of an assignment written in a macro.
2066 if (IntegerLiteral
*IE
=
2067 dyn_cast
<IntegerLiteral
>(BO
->getRHS()->IgnoreParens()))
2068 if (IE
->getValue() == 0)
2070 return BO
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2071 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2074 if (!BO
->getLHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
) ||
2075 !BO
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
))
2079 if (BO
->isAssignmentOp())
2082 Loc
= BO
->getOperatorLoc();
2083 R1
= BO
->getLHS()->getSourceRange();
2084 R2
= BO
->getRHS()->getSourceRange();
2087 case CompoundAssignOperatorClass
:
2088 case VAArgExprClass
:
2089 case AtomicExprClass
:
2092 case ConditionalOperatorClass
: {
2093 // If only one of the LHS or RHS is a warning, the operator might
2094 // be being used for control flow. Only warn if both the LHS and
2095 // RHS are warnings.
2096 const ConditionalOperator
*Exp
= cast
<ConditionalOperator
>(this);
2097 if (!Exp
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
))
2101 return Exp
->getLHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2104 case MemberExprClass
:
2106 Loc
= cast
<MemberExpr
>(this)->getMemberLoc();
2107 R1
= SourceRange(Loc
, Loc
);
2108 R2
= cast
<MemberExpr
>(this)->getBase()->getSourceRange();
2111 case ArraySubscriptExprClass
:
2113 Loc
= cast
<ArraySubscriptExpr
>(this)->getRBracketLoc();
2114 R1
= cast
<ArraySubscriptExpr
>(this)->getLHS()->getSourceRange();
2115 R2
= cast
<ArraySubscriptExpr
>(this)->getRHS()->getSourceRange();
2118 case CXXOperatorCallExprClass
: {
2119 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2120 // overloads as there is no reasonable way to define these such that they
2121 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2122 // warning: operators == and != are commonly typo'ed, and so warning on them
2123 // provides additional value as well. If this list is updated,
2124 // DiagnoseUnusedComparison should be as well.
2125 const CXXOperatorCallExpr
*Op
= cast
<CXXOperatorCallExpr
>(this);
2126 switch (Op
->getOperator()) {
2130 case OO_ExclaimEqual
:
2133 case OO_GreaterEqual
:
2135 if (Op
->getCallReturnType()->isReferenceType() ||
2136 Op
->getCallReturnType()->isVoidType())
2139 Loc
= Op
->getOperatorLoc();
2140 R1
= Op
->getSourceRange();
2144 // Fallthrough for generic call handling.
2147 case CXXMemberCallExprClass
:
2148 case UserDefinedLiteralClass
: {
2149 // If this is a direct call, get the callee.
2150 const CallExpr
*CE
= cast
<CallExpr
>(this);
2151 if (const Decl
*FD
= CE
->getCalleeDecl()) {
2152 // If the callee has attribute pure, const, or warn_unused_result, warn
2153 // about it. void foo() { strlen("bar"); } should warn.
2155 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2156 // updated to match for QoI.
2157 if (FD
->hasAttr
<WarnUnusedResultAttr
>() ||
2158 FD
->hasAttr
<PureAttr
>() || FD
->hasAttr
<ConstAttr
>()) {
2160 Loc
= CE
->getCallee()->getLocStart();
2161 R1
= CE
->getCallee()->getSourceRange();
2163 if (unsigned NumArgs
= CE
->getNumArgs())
2164 R2
= SourceRange(CE
->getArg(0)->getLocStart(),
2165 CE
->getArg(NumArgs
-1)->getLocEnd());
2172 // If we don't know precisely what we're looking at, let's not warn.
2173 case UnresolvedLookupExprClass
:
2174 case CXXUnresolvedConstructExprClass
:
2177 case CXXTemporaryObjectExprClass
:
2178 case CXXConstructExprClass
: {
2179 if (const CXXRecordDecl
*Type
= getType()->getAsCXXRecordDecl()) {
2180 if (Type
->hasAttr
<WarnUnusedAttr
>()) {
2182 Loc
= getLocStart();
2183 R1
= getSourceRange();
2190 case ObjCMessageExprClass
: {
2191 const ObjCMessageExpr
*ME
= cast
<ObjCMessageExpr
>(this);
2192 if (Ctx
.getLangOpts().ObjCAutoRefCount
&&
2193 ME
->isInstanceMessage() &&
2194 !ME
->getType()->isVoidType() &&
2195 ME
->getMethodFamily() == OMF_init
) {
2198 R1
= ME
->getSourceRange();
2202 if (const ObjCMethodDecl
*MD
= ME
->getMethodDecl())
2203 if (MD
->hasAttr
<WarnUnusedResultAttr
>() ||
2204 (MD
->isPropertyAccessor() && !MD
->getReturnType()->isVoidType() &&
2205 !ME
->getReceiverType()->isObjCIdType())) {
2214 case ObjCPropertyRefExprClass
:
2217 R1
= getSourceRange();
2220 case PseudoObjectExprClass
: {
2221 const PseudoObjectExpr
*PO
= cast
<PseudoObjectExpr
>(this);
2223 // Only complain about things that have the form of a getter.
2224 if (isa
<UnaryOperator
>(PO
->getSyntacticForm()) ||
2225 isa
<BinaryOperator
>(PO
->getSyntacticForm()))
2230 R1
= getSourceRange();
2234 case StmtExprClass
: {
2235 // Statement exprs don't logically have side effects themselves, but are
2236 // sometimes used in macros in ways that give them a type that is unused.
2237 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2238 // however, if the result of the stmt expr is dead, we don't want to emit a
2240 const CompoundStmt
*CS
= cast
<StmtExpr
>(this)->getSubStmt();
2241 if (!CS
->body_empty()) {
2242 if (const Expr
*E
= dyn_cast
<Expr
>(CS
->body_back()))
2243 return E
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2244 if (const LabelStmt
*Label
= dyn_cast
<LabelStmt
>(CS
->body_back()))
2245 if (const Expr
*E
= dyn_cast
<Expr
>(Label
->getSubStmt()))
2246 return E
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2249 if (getType()->isVoidType())
2252 Loc
= cast
<StmtExpr
>(this)->getLParenLoc();
2253 R1
= getSourceRange();
2256 case CXXFunctionalCastExprClass
:
2257 case CStyleCastExprClass
: {
2258 // Ignore an explicit cast to void unless the operand is a non-trivial
2260 const CastExpr
*CE
= cast
<CastExpr
>(this);
2261 if (CE
->getCastKind() == CK_ToVoid
) {
2262 if (CE
->getSubExpr()->isGLValue() &&
2263 CE
->getSubExpr()->getType().isVolatileQualified()) {
2264 const DeclRefExpr
*DRE
=
2265 dyn_cast
<DeclRefExpr
>(CE
->getSubExpr()->IgnoreParens());
2266 if (!(DRE
&& isa
<VarDecl
>(DRE
->getDecl()) &&
2267 cast
<VarDecl
>(DRE
->getDecl())->hasLocalStorage())) {
2268 return CE
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
,
2275 // If this is a cast to a constructor conversion, check the operand.
2276 // Otherwise, the result of the cast is unused.
2277 if (CE
->getCastKind() == CK_ConstructorConversion
)
2278 return CE
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2281 if (const CXXFunctionalCastExpr
*CXXCE
=
2282 dyn_cast
<CXXFunctionalCastExpr
>(this)) {
2283 Loc
= CXXCE
->getLocStart();
2284 R1
= CXXCE
->getSubExpr()->getSourceRange();
2286 const CStyleCastExpr
*CStyleCE
= cast
<CStyleCastExpr
>(this);
2287 Loc
= CStyleCE
->getLParenLoc();
2288 R1
= CStyleCE
->getSubExpr()->getSourceRange();
2292 case ImplicitCastExprClass
: {
2293 const CastExpr
*ICE
= cast
<ImplicitCastExpr
>(this);
2295 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2296 if (ICE
->getCastKind() == CK_LValueToRValue
&&
2297 ICE
->getSubExpr()->getType().isVolatileQualified())
2300 return ICE
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2302 case CXXDefaultArgExprClass
:
2303 return (cast
<CXXDefaultArgExpr
>(this)
2304 ->getExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
));
2305 case CXXDefaultInitExprClass
:
2306 return (cast
<CXXDefaultInitExpr
>(this)
2307 ->getExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
));
2309 case CXXNewExprClass
:
2310 // FIXME: In theory, there might be new expressions that don't have side
2311 // effects (e.g. a placement new with an uninitialized POD).
2312 case CXXDeleteExprClass
:
2314 case CXXBindTemporaryExprClass
:
2315 return (cast
<CXXBindTemporaryExpr
>(this)
2316 ->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
));
2317 case ExprWithCleanupsClass
:
2318 return (cast
<ExprWithCleanups
>(this)
2319 ->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
));
2323 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2324 /// returns true, if it is; false otherwise.
2325 bool Expr::isOBJCGCCandidate(ASTContext
&Ctx
) const {
2326 const Expr
*E
= IgnoreParens();
2327 switch (E
->getStmtClass()) {
2330 case ObjCIvarRefExprClass
:
2332 case Expr::UnaryOperatorClass
:
2333 return cast
<UnaryOperator
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
2334 case ImplicitCastExprClass
:
2335 return cast
<ImplicitCastExpr
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
2336 case MaterializeTemporaryExprClass
:
2337 return cast
<MaterializeTemporaryExpr
>(E
)->GetTemporaryExpr()
2338 ->isOBJCGCCandidate(Ctx
);
2339 case CStyleCastExprClass
:
2340 return cast
<CStyleCastExpr
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
2341 case DeclRefExprClass
: {
2342 const Decl
*D
= cast
<DeclRefExpr
>(E
)->getDecl();
2344 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2345 if (VD
->hasGlobalStorage())
2347 QualType T
= VD
->getType();
2348 // dereferencing to a pointer is always a gc'able candidate,
2349 // unless it is __weak.
2350 return T
->isPointerType() &&
2351 (Ctx
.getObjCGCAttrKind(T
) != Qualifiers::Weak
);
2355 case MemberExprClass
: {
2356 const MemberExpr
*M
= cast
<MemberExpr
>(E
);
2357 return M
->getBase()->isOBJCGCCandidate(Ctx
);
2359 case ArraySubscriptExprClass
:
2360 return cast
<ArraySubscriptExpr
>(E
)->getBase()->isOBJCGCCandidate(Ctx
);
2364 bool Expr::isBoundMemberFunction(ASTContext
&Ctx
) const {
2365 if (isTypeDependent())
2367 return ClassifyLValue(Ctx
) == Expr::LV_MemberFunction
;
2370 QualType
Expr::findBoundMemberType(const Expr
*expr
) {
2371 assert(expr
->hasPlaceholderType(BuiltinType::BoundMember
));
2373 // Bound member expressions are always one of these possibilities:
2374 // x->m x.m x->*y x.*y
2375 // (possibly parenthesized)
2377 expr
= expr
->IgnoreParens();
2378 if (const MemberExpr
*mem
= dyn_cast
<MemberExpr
>(expr
)) {
2379 assert(isa
<CXXMethodDecl
>(mem
->getMemberDecl()));
2380 return mem
->getMemberDecl()->getType();
2383 if (const BinaryOperator
*op
= dyn_cast
<BinaryOperator
>(expr
)) {
2384 QualType type
= op
->getRHS()->getType()->castAs
<MemberPointerType
>()
2386 assert(type
->isFunctionType());
2390 assert(isa
<UnresolvedMemberExpr
>(expr
));
2394 Expr
* Expr::IgnoreParens() {
2397 if (ParenExpr
* P
= dyn_cast
<ParenExpr
>(E
)) {
2398 E
= P
->getSubExpr();
2401 if (UnaryOperator
* P
= dyn_cast
<UnaryOperator
>(E
)) {
2402 if (P
->getOpcode() == UO_Extension
) {
2403 E
= P
->getSubExpr();
2407 if (GenericSelectionExpr
* P
= dyn_cast
<GenericSelectionExpr
>(E
)) {
2408 if (!P
->isResultDependent()) {
2409 E
= P
->getResultExpr();
2413 if (ChooseExpr
* P
= dyn_cast
<ChooseExpr
>(E
)) {
2414 if (!P
->isConditionDependent()) {
2415 E
= P
->getChosenSubExpr();
2423 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2424 /// or CastExprs or ImplicitCastExprs, returning their operand.
2425 Expr
*Expr::IgnoreParenCasts() {
2428 E
= E
->IgnoreParens();
2429 if (CastExpr
*P
= dyn_cast
<CastExpr
>(E
)) {
2430 E
= P
->getSubExpr();
2433 if (MaterializeTemporaryExpr
*Materialize
2434 = dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
2435 E
= Materialize
->GetTemporaryExpr();
2438 if (SubstNonTypeTemplateParmExpr
*NTTP
2439 = dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
)) {
2440 E
= NTTP
->getReplacement();
2447 Expr
*Expr::IgnoreCasts() {
2450 if (CastExpr
*P
= dyn_cast
<CastExpr
>(E
)) {
2451 E
= P
->getSubExpr();
2454 if (MaterializeTemporaryExpr
*Materialize
2455 = dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
2456 E
= Materialize
->GetTemporaryExpr();
2459 if (SubstNonTypeTemplateParmExpr
*NTTP
2460 = dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
)) {
2461 E
= NTTP
->getReplacement();
2468 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2469 /// casts. This is intended purely as a temporary workaround for code
2470 /// that hasn't yet been rewritten to do the right thing about those
2471 /// casts, and may disappear along with the last internal use.
2472 Expr
*Expr::IgnoreParenLValueCasts() {
2475 E
= E
->IgnoreParens();
2476 if (CastExpr
*P
= dyn_cast
<CastExpr
>(E
)) {
2477 if (P
->getCastKind() == CK_LValueToRValue
) {
2478 E
= P
->getSubExpr();
2481 } else if (MaterializeTemporaryExpr
*Materialize
2482 = dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
2483 E
= Materialize
->GetTemporaryExpr();
2485 } else if (SubstNonTypeTemplateParmExpr
*NTTP
2486 = dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
)) {
2487 E
= NTTP
->getReplacement();
2495 Expr
*Expr::ignoreParenBaseCasts() {
2498 E
= E
->IgnoreParens();
2499 if (CastExpr
*CE
= dyn_cast
<CastExpr
>(E
)) {
2500 if (CE
->getCastKind() == CK_DerivedToBase
||
2501 CE
->getCastKind() == CK_UncheckedDerivedToBase
||
2502 CE
->getCastKind() == CK_NoOp
) {
2503 E
= CE
->getSubExpr();
2512 Expr
*Expr::IgnoreParenImpCasts() {
2515 E
= E
->IgnoreParens();
2516 if (ImplicitCastExpr
*P
= dyn_cast
<ImplicitCastExpr
>(E
)) {
2517 E
= P
->getSubExpr();
2520 if (MaterializeTemporaryExpr
*Materialize
2521 = dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
2522 E
= Materialize
->GetTemporaryExpr();
2525 if (SubstNonTypeTemplateParmExpr
*NTTP
2526 = dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
)) {
2527 E
= NTTP
->getReplacement();
2534 Expr
*Expr::IgnoreConversionOperator() {
2535 if (CXXMemberCallExpr
*MCE
= dyn_cast
<CXXMemberCallExpr
>(this)) {
2536 if (MCE
->getMethodDecl() && isa
<CXXConversionDecl
>(MCE
->getMethodDecl()))
2537 return MCE
->getImplicitObjectArgument();
2542 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2543 /// value (including ptr->int casts of the same size). Strip off any
2544 /// ParenExpr or CastExprs, returning their operand.
2545 Expr
*Expr::IgnoreParenNoopCasts(ASTContext
&Ctx
) {
2548 E
= E
->IgnoreParens();
2550 if (CastExpr
*P
= dyn_cast
<CastExpr
>(E
)) {
2551 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2552 // ptr<->int casts of the same width. We also ignore all identity casts.
2553 Expr
*SE
= P
->getSubExpr();
2555 if (Ctx
.hasSameUnqualifiedType(E
->getType(), SE
->getType())) {
2560 if ((E
->getType()->isPointerType() ||
2561 E
->getType()->isIntegralType(Ctx
)) &&
2562 (SE
->getType()->isPointerType() ||
2563 SE
->getType()->isIntegralType(Ctx
)) &&
2564 Ctx
.getTypeSize(E
->getType()) == Ctx
.getTypeSize(SE
->getType())) {
2570 if (SubstNonTypeTemplateParmExpr
*NTTP
2571 = dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
)) {
2572 E
= NTTP
->getReplacement();
2580 bool Expr::isDefaultArgument() const {
2581 const Expr
*E
= this;
2582 if (const MaterializeTemporaryExpr
*M
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
2583 E
= M
->GetTemporaryExpr();
2585 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
2586 E
= ICE
->getSubExprAsWritten();
2588 return isa
<CXXDefaultArgExpr
>(E
);
2591 /// \brief Skip over any no-op casts and any temporary-binding
2593 static const Expr
*skipTemporaryBindingsNoOpCastsAndParens(const Expr
*E
) {
2594 if (const MaterializeTemporaryExpr
*M
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
2595 E
= M
->GetTemporaryExpr();
2597 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
2598 if (ICE
->getCastKind() == CK_NoOp
)
2599 E
= ICE
->getSubExpr();
2604 while (const CXXBindTemporaryExpr
*BE
= dyn_cast
<CXXBindTemporaryExpr
>(E
))
2605 E
= BE
->getSubExpr();
2607 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
2608 if (ICE
->getCastKind() == CK_NoOp
)
2609 E
= ICE
->getSubExpr();
2614 return E
->IgnoreParens();
2617 /// isTemporaryObject - Determines if this expression produces a
2618 /// temporary of the given class type.
2619 bool Expr::isTemporaryObject(ASTContext
&C
, const CXXRecordDecl
*TempTy
) const {
2620 if (!C
.hasSameUnqualifiedType(getType(), C
.getTypeDeclType(TempTy
)))
2623 const Expr
*E
= skipTemporaryBindingsNoOpCastsAndParens(this);
2625 // Temporaries are by definition pr-values of class type.
2626 if (!E
->Classify(C
).isPRValue()) {
2627 // In this context, property reference is a message call and is pr-value.
2628 if (!isa
<ObjCPropertyRefExpr
>(E
))
2632 // Black-list a few cases which yield pr-values of class type that don't
2633 // refer to temporaries of that type:
2635 // - implicit derived-to-base conversions
2636 if (isa
<ImplicitCastExpr
>(E
)) {
2637 switch (cast
<ImplicitCastExpr
>(E
)->getCastKind()) {
2638 case CK_DerivedToBase
:
2639 case CK_UncheckedDerivedToBase
:
2646 // - member expressions (all)
2647 if (isa
<MemberExpr
>(E
))
2650 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
))
2651 if (BO
->isPtrMemOp())
2654 // - opaque values (all)
2655 if (isa
<OpaqueValueExpr
>(E
))
2661 bool Expr::isImplicitCXXThis() const {
2662 const Expr
*E
= this;
2664 // Strip away parentheses and casts we don't care about.
2666 if (const ParenExpr
*Paren
= dyn_cast
<ParenExpr
>(E
)) {
2667 E
= Paren
->getSubExpr();
2671 if (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
2672 if (ICE
->getCastKind() == CK_NoOp
||
2673 ICE
->getCastKind() == CK_LValueToRValue
||
2674 ICE
->getCastKind() == CK_DerivedToBase
||
2675 ICE
->getCastKind() == CK_UncheckedDerivedToBase
) {
2676 E
= ICE
->getSubExpr();
2681 if (const UnaryOperator
* UnOp
= dyn_cast
<UnaryOperator
>(E
)) {
2682 if (UnOp
->getOpcode() == UO_Extension
) {
2683 E
= UnOp
->getSubExpr();
2688 if (const MaterializeTemporaryExpr
*M
2689 = dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
2690 E
= M
->GetTemporaryExpr();
2697 if (const CXXThisExpr
*This
= dyn_cast
<CXXThisExpr
>(E
))
2698 return This
->isImplicit();
2703 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2704 /// in Exprs is type-dependent.
2705 bool Expr::hasAnyTypeDependentArguments(ArrayRef
<Expr
*> Exprs
) {
2706 for (unsigned I
= 0; I
< Exprs
.size(); ++I
)
2707 if (Exprs
[I
]->isTypeDependent())
2713 bool Expr::isConstantInitializer(ASTContext
&Ctx
, bool IsForRef
,
2714 const Expr
**Culprit
) const {
2715 // This function is attempting whether an expression is an initializer
2716 // which can be evaluated at compile-time. It very closely parallels
2717 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2718 // will lead to unexpected results. Like ConstExprEmitter, it falls back
2719 // to isEvaluatable most of the time.
2721 // If we ever capture reference-binding directly in the AST, we can
2722 // kill the second parameter.
2726 if (EvaluateAsLValue(Result
, Ctx
) && !Result
.HasSideEffects
)
2733 switch (getStmtClass()) {
2735 case StringLiteralClass
:
2736 case ObjCEncodeExprClass
:
2738 case CXXTemporaryObjectExprClass
:
2739 case CXXConstructExprClass
: {
2740 const CXXConstructExpr
*CE
= cast
<CXXConstructExpr
>(this);
2742 if (CE
->getConstructor()->isTrivial() &&
2743 CE
->getConstructor()->getParent()->hasTrivialDestructor()) {
2744 // Trivial default constructor
2745 if (!CE
->getNumArgs()) return true;
2747 // Trivial copy constructor
2748 assert(CE
->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2749 return CE
->getArg(0)->isConstantInitializer(Ctx
, false, Culprit
);
2754 case CompoundLiteralExprClass
: {
2755 // This handles gcc's extension that allows global initializers like
2756 // "struct x {int x;} x = (struct x) {};".
2757 // FIXME: This accepts other cases it shouldn't!
2758 const Expr
*Exp
= cast
<CompoundLiteralExpr
>(this)->getInitializer();
2759 return Exp
->isConstantInitializer(Ctx
, false, Culprit
);
2761 case InitListExprClass
: {
2762 const InitListExpr
*ILE
= cast
<InitListExpr
>(this);
2763 if (ILE
->getType()->isArrayType()) {
2764 unsigned numInits
= ILE
->getNumInits();
2765 for (unsigned i
= 0; i
< numInits
; i
++) {
2766 if (!ILE
->getInit(i
)->isConstantInitializer(Ctx
, false, Culprit
))
2772 if (ILE
->getType()->isRecordType()) {
2773 unsigned ElementNo
= 0;
2774 RecordDecl
*RD
= ILE
->getType()->getAs
<RecordType
>()->getDecl();
2775 for (const auto *Field
: RD
->fields()) {
2776 // If this is a union, skip all the fields that aren't being initialized.
2777 if (RD
->isUnion() && ILE
->getInitializedFieldInUnion() != Field
)
2780 // Don't emit anonymous bitfields, they just affect layout.
2781 if (Field
->isUnnamedBitfield())
2784 if (ElementNo
< ILE
->getNumInits()) {
2785 const Expr
*Elt
= ILE
->getInit(ElementNo
++);
2786 if (Field
->isBitField()) {
2787 // Bitfields have to evaluate to an integer.
2788 llvm::APSInt ResultTmp
;
2789 if (!Elt
->EvaluateAsInt(ResultTmp
, Ctx
)) {
2795 bool RefType
= Field
->getType()->isReferenceType();
2796 if (!Elt
->isConstantInitializer(Ctx
, RefType
, Culprit
))
2806 case ImplicitValueInitExprClass
:
2808 case ParenExprClass
:
2809 return cast
<ParenExpr
>(this)->getSubExpr()
2810 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
2811 case GenericSelectionExprClass
:
2812 return cast
<GenericSelectionExpr
>(this)->getResultExpr()
2813 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
2814 case ChooseExprClass
:
2815 if (cast
<ChooseExpr
>(this)->isConditionDependent()) {
2820 return cast
<ChooseExpr
>(this)->getChosenSubExpr()
2821 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
2822 case UnaryOperatorClass
: {
2823 const UnaryOperator
* Exp
= cast
<UnaryOperator
>(this);
2824 if (Exp
->getOpcode() == UO_Extension
)
2825 return Exp
->getSubExpr()->isConstantInitializer(Ctx
, false, Culprit
);
2828 case CXXFunctionalCastExprClass
:
2829 case CXXStaticCastExprClass
:
2830 case ImplicitCastExprClass
:
2831 case CStyleCastExprClass
:
2832 case ObjCBridgedCastExprClass
:
2833 case CXXDynamicCastExprClass
:
2834 case CXXReinterpretCastExprClass
:
2835 case CXXConstCastExprClass
: {
2836 const CastExpr
*CE
= cast
<CastExpr
>(this);
2838 // Handle misc casts we want to ignore.
2839 if (CE
->getCastKind() == CK_NoOp
||
2840 CE
->getCastKind() == CK_LValueToRValue
||
2841 CE
->getCastKind() == CK_ToUnion
||
2842 CE
->getCastKind() == CK_ConstructorConversion
||
2843 CE
->getCastKind() == CK_NonAtomicToAtomic
||
2844 CE
->getCastKind() == CK_AtomicToNonAtomic
)
2845 return CE
->getSubExpr()->isConstantInitializer(Ctx
, false, Culprit
);
2849 case MaterializeTemporaryExprClass
:
2850 return cast
<MaterializeTemporaryExpr
>(this)->GetTemporaryExpr()
2851 ->isConstantInitializer(Ctx
, false, Culprit
);
2853 case SubstNonTypeTemplateParmExprClass
:
2854 return cast
<SubstNonTypeTemplateParmExpr
>(this)->getReplacement()
2855 ->isConstantInitializer(Ctx
, false, Culprit
);
2856 case CXXDefaultArgExprClass
:
2857 return cast
<CXXDefaultArgExpr
>(this)->getExpr()
2858 ->isConstantInitializer(Ctx
, false, Culprit
);
2859 case CXXDefaultInitExprClass
:
2860 return cast
<CXXDefaultInitExpr
>(this)->getExpr()
2861 ->isConstantInitializer(Ctx
, false, Culprit
);
2863 if (isEvaluatable(Ctx
))
2870 bool Expr::HasSideEffects(const ASTContext
&Ctx
,
2871 bool IncludePossibleEffects
) const {
2872 // In circumstances where we care about definite side effects instead of
2873 // potential side effects, we want to ignore expressions that are part of a
2874 // macro expansion as a potential side effect.
2875 if (!IncludePossibleEffects
&& getExprLoc().isMacroID())
2878 if (isInstantiationDependent())
2879 return IncludePossibleEffects
;
2881 switch (getStmtClass()) {
2883 #define ABSTRACT_STMT(Type)
2884 #define STMT(Type, Base) case Type##Class:
2885 #define EXPR(Type, Base)
2886 #include "clang/AST/StmtNodes.inc"
2887 llvm_unreachable("unexpected Expr kind");
2889 case DependentScopeDeclRefExprClass
:
2890 case CXXUnresolvedConstructExprClass
:
2891 case CXXDependentScopeMemberExprClass
:
2892 case UnresolvedLookupExprClass
:
2893 case UnresolvedMemberExprClass
:
2894 case PackExpansionExprClass
:
2895 case SubstNonTypeTemplateParmPackExprClass
:
2896 case FunctionParmPackExprClass
:
2898 case CXXFoldExprClass
:
2899 llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2901 case DeclRefExprClass
:
2902 case ObjCIvarRefExprClass
:
2903 case PredefinedExprClass
:
2904 case IntegerLiteralClass
:
2905 case FloatingLiteralClass
:
2906 case ImaginaryLiteralClass
:
2907 case StringLiteralClass
:
2908 case CharacterLiteralClass
:
2909 case OffsetOfExprClass
:
2910 case ImplicitValueInitExprClass
:
2911 case UnaryExprOrTypeTraitExprClass
:
2912 case AddrLabelExprClass
:
2913 case GNUNullExprClass
:
2914 case CXXBoolLiteralExprClass
:
2915 case CXXNullPtrLiteralExprClass
:
2916 case CXXThisExprClass
:
2917 case CXXScalarValueInitExprClass
:
2918 case TypeTraitExprClass
:
2919 case ArrayTypeTraitExprClass
:
2920 case ExpressionTraitExprClass
:
2921 case CXXNoexceptExprClass
:
2922 case SizeOfPackExprClass
:
2923 case ObjCStringLiteralClass
:
2924 case ObjCEncodeExprClass
:
2925 case ObjCBoolLiteralExprClass
:
2926 case CXXUuidofExprClass
:
2927 case OpaqueValueExprClass
:
2928 // These never have a side-effect.
2932 case CXXOperatorCallExprClass
:
2933 case CXXMemberCallExprClass
:
2934 case CUDAKernelCallExprClass
:
2935 case BlockExprClass
:
2936 case CXXBindTemporaryExprClass
:
2937 case UserDefinedLiteralClass
:
2938 // We don't know a call definitely has side effects, but we can check the
2940 if (!IncludePossibleEffects
)
2944 case MSPropertyRefExprClass
:
2945 case CompoundAssignOperatorClass
:
2946 case VAArgExprClass
:
2947 case AtomicExprClass
:
2949 case CXXThrowExprClass
:
2950 case CXXNewExprClass
:
2951 case CXXDeleteExprClass
:
2952 case ExprWithCleanupsClass
:
2953 // These always have a side-effect.
2956 case ParenExprClass
:
2957 case ArraySubscriptExprClass
:
2958 case MemberExprClass
:
2959 case ConditionalOperatorClass
:
2960 case BinaryConditionalOperatorClass
:
2961 case CompoundLiteralExprClass
:
2962 case ExtVectorElementExprClass
:
2963 case DesignatedInitExprClass
:
2964 case ParenListExprClass
:
2965 case CXXPseudoDestructorExprClass
:
2966 case CXXStdInitializerListExprClass
:
2967 case SubstNonTypeTemplateParmExprClass
:
2968 case MaterializeTemporaryExprClass
:
2969 case ShuffleVectorExprClass
:
2970 case ConvertVectorExprClass
:
2971 case AsTypeExprClass
:
2972 // These have a side-effect if any subexpression does.
2975 case UnaryOperatorClass
:
2976 if (cast
<UnaryOperator
>(this)->isIncrementDecrementOp())
2980 case BinaryOperatorClass
:
2981 if (cast
<BinaryOperator
>(this)->isAssignmentOp())
2985 case InitListExprClass
:
2986 // FIXME: The children for an InitListExpr doesn't include the array filler.
2987 if (const Expr
*E
= cast
<InitListExpr
>(this)->getArrayFiller())
2988 if (E
->HasSideEffects(Ctx
, IncludePossibleEffects
))
2992 case GenericSelectionExprClass
:
2993 return cast
<GenericSelectionExpr
>(this)->getResultExpr()->
2994 HasSideEffects(Ctx
, IncludePossibleEffects
);
2996 case ChooseExprClass
:
2997 return cast
<ChooseExpr
>(this)->getChosenSubExpr()->HasSideEffects(
2998 Ctx
, IncludePossibleEffects
);
3000 case CXXDefaultArgExprClass
:
3001 return cast
<CXXDefaultArgExpr
>(this)->getExpr()->HasSideEffects(
3002 Ctx
, IncludePossibleEffects
);
3004 case CXXDefaultInitExprClass
: {
3005 const FieldDecl
*FD
= cast
<CXXDefaultInitExpr
>(this)->getField();
3006 if (const Expr
*E
= FD
->getInClassInitializer())
3007 return E
->HasSideEffects(Ctx
, IncludePossibleEffects
);
3008 // If we've not yet parsed the initializer, assume it has side-effects.
3012 case CXXDynamicCastExprClass
: {
3013 // A dynamic_cast expression has side-effects if it can throw.
3014 const CXXDynamicCastExpr
*DCE
= cast
<CXXDynamicCastExpr
>(this);
3015 if (DCE
->getTypeAsWritten()->isReferenceType() &&
3016 DCE
->getCastKind() == CK_Dynamic
)
3019 case ImplicitCastExprClass
:
3020 case CStyleCastExprClass
:
3021 case CXXStaticCastExprClass
:
3022 case CXXReinterpretCastExprClass
:
3023 case CXXConstCastExprClass
:
3024 case CXXFunctionalCastExprClass
: {
3025 // While volatile reads are side-effecting in both C and C++, we treat them
3026 // as having possible (not definite) side-effects. This allows idiomatic
3027 // code to behave without warning, such as sizeof(*v) for a volatile-
3028 // qualified pointer.
3029 if (!IncludePossibleEffects
)
3032 const CastExpr
*CE
= cast
<CastExpr
>(this);
3033 if (CE
->getCastKind() == CK_LValueToRValue
&&
3034 CE
->getSubExpr()->getType().isVolatileQualified())
3039 case CXXTypeidExprClass
:
3040 // typeid might throw if its subexpression is potentially-evaluated, so has
3041 // side-effects in that case whether or not its subexpression does.
3042 return cast
<CXXTypeidExpr
>(this)->isPotentiallyEvaluated();
3044 case CXXConstructExprClass
:
3045 case CXXTemporaryObjectExprClass
: {
3046 const CXXConstructExpr
*CE
= cast
<CXXConstructExpr
>(this);
3047 if (!CE
->getConstructor()->isTrivial() && IncludePossibleEffects
)
3049 // A trivial constructor does not add any side-effects of its own. Just look
3050 // at its arguments.
3054 case LambdaExprClass
: {
3055 const LambdaExpr
*LE
= cast
<LambdaExpr
>(this);
3056 for (LambdaExpr::capture_iterator I
= LE
->capture_begin(),
3057 E
= LE
->capture_end(); I
!= E
; ++I
)
3058 if (I
->getCaptureKind() == LCK_ByCopy
)
3059 // FIXME: Only has a side-effect if the variable is volatile or if
3060 // the copy would invoke a non-trivial copy constructor.
3065 case PseudoObjectExprClass
: {
3066 // Only look for side-effects in the semantic form, and look past
3067 // OpaqueValueExpr bindings in that form.
3068 const PseudoObjectExpr
*PO
= cast
<PseudoObjectExpr
>(this);
3069 for (PseudoObjectExpr::const_semantics_iterator I
= PO
->semantics_begin(),
3070 E
= PO
->semantics_end();
3072 const Expr
*Subexpr
= *I
;
3073 if (const OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(Subexpr
))
3074 Subexpr
= OVE
->getSourceExpr();
3075 if (Subexpr
->HasSideEffects(Ctx
, IncludePossibleEffects
))
3081 case ObjCBoxedExprClass
:
3082 case ObjCArrayLiteralClass
:
3083 case ObjCDictionaryLiteralClass
:
3084 case ObjCSelectorExprClass
:
3085 case ObjCProtocolExprClass
:
3086 case ObjCIsaExprClass
:
3087 case ObjCIndirectCopyRestoreExprClass
:
3088 case ObjCSubscriptRefExprClass
:
3089 case ObjCBridgedCastExprClass
:
3090 case ObjCMessageExprClass
:
3091 case ObjCPropertyRefExprClass
:
3092 // FIXME: Classify these cases better.
3093 if (IncludePossibleEffects
)
3098 // Recurse to children.
3099 for (const_child_range SubStmts
= children(); SubStmts
; ++SubStmts
)
3100 if (const Stmt
*S
= *SubStmts
)
3101 if (cast
<Expr
>(S
)->HasSideEffects(Ctx
, IncludePossibleEffects
))
3108 /// \brief Look for a call to a non-trivial function within an expression.
3109 class NonTrivialCallFinder
: public EvaluatedExprVisitor
<NonTrivialCallFinder
>
3111 typedef EvaluatedExprVisitor
<NonTrivialCallFinder
> Inherited
;
3116 explicit NonTrivialCallFinder(ASTContext
&Context
)
3117 : Inherited(Context
), NonTrivial(false) { }
3119 bool hasNonTrivialCall() const { return NonTrivial
; }
3121 void VisitCallExpr(CallExpr
*E
) {
3122 if (CXXMethodDecl
*Method
3123 = dyn_cast_or_null
<CXXMethodDecl
>(E
->getCalleeDecl())) {
3124 if (Method
->isTrivial()) {
3125 // Recurse to children of the call.
3126 Inherited::VisitStmt(E
);
3134 void VisitCXXConstructExpr(CXXConstructExpr
*E
) {
3135 if (E
->getConstructor()->isTrivial()) {
3136 // Recurse to children of the call.
3137 Inherited::VisitStmt(E
);
3144 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
) {
3145 if (E
->getTemporary()->getDestructor()->isTrivial()) {
3146 Inherited::VisitStmt(E
);
3155 bool Expr::hasNonTrivialCall(ASTContext
&Ctx
) {
3156 NonTrivialCallFinder
Finder(Ctx
);
3158 return Finder
.hasNonTrivialCall();
3161 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3162 /// pointer constant or not, as well as the specific kind of constant detected.
3163 /// Null pointer constants can be integer constant expressions with the
3164 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3165 /// (a GNU extension).
3166 Expr::NullPointerConstantKind
3167 Expr::isNullPointerConstant(ASTContext
&Ctx
,
3168 NullPointerConstantValueDependence NPC
) const {
3169 if (isValueDependent() &&
3170 (!Ctx
.getLangOpts().CPlusPlus11
|| Ctx
.getLangOpts().MSVCCompat
)) {
3172 case NPC_NeverValueDependent
:
3173 llvm_unreachable("Unexpected value dependent expression!");
3174 case NPC_ValueDependentIsNull
:
3175 if (isTypeDependent() || getType()->isIntegralType(Ctx
))
3176 return NPCK_ZeroExpression
;
3178 return NPCK_NotNull
;
3180 case NPC_ValueDependentIsNotNull
:
3181 return NPCK_NotNull
;
3185 // Strip off a cast to void*, if it exists. Except in C++.
3186 if (const ExplicitCastExpr
*CE
= dyn_cast
<ExplicitCastExpr
>(this)) {
3187 if (!Ctx
.getLangOpts().CPlusPlus
) {
3188 // Check that it is a cast to void*.
3189 if (const PointerType
*PT
= CE
->getType()->getAs
<PointerType
>()) {
3190 QualType Pointee
= PT
->getPointeeType();
3191 if (!Pointee
.hasQualifiers() &&
3192 Pointee
->isVoidType() && // to void*
3193 CE
->getSubExpr()->getType()->isIntegerType()) // from int.
3194 return CE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3197 } else if (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(this)) {
3198 // Ignore the ImplicitCastExpr type entirely.
3199 return ICE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3200 } else if (const ParenExpr
*PE
= dyn_cast
<ParenExpr
>(this)) {
3201 // Accept ((void*)0) as a null pointer constant, as many other
3202 // implementations do.
3203 return PE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3204 } else if (const GenericSelectionExpr
*GE
=
3205 dyn_cast
<GenericSelectionExpr
>(this)) {
3206 if (GE
->isResultDependent())
3207 return NPCK_NotNull
;
3208 return GE
->getResultExpr()->isNullPointerConstant(Ctx
, NPC
);
3209 } else if (const ChooseExpr
*CE
= dyn_cast
<ChooseExpr
>(this)) {
3210 if (CE
->isConditionDependent())
3211 return NPCK_NotNull
;
3212 return CE
->getChosenSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3213 } else if (const CXXDefaultArgExpr
*DefaultArg
3214 = dyn_cast
<CXXDefaultArgExpr
>(this)) {
3215 // See through default argument expressions.
3216 return DefaultArg
->getExpr()->isNullPointerConstant(Ctx
, NPC
);
3217 } else if (const CXXDefaultInitExpr
*DefaultInit
3218 = dyn_cast
<CXXDefaultInitExpr
>(this)) {
3219 // See through default initializer expressions.
3220 return DefaultInit
->getExpr()->isNullPointerConstant(Ctx
, NPC
);
3221 } else if (isa
<GNUNullExpr
>(this)) {
3222 // The GNU __null extension is always a null pointer constant.
3223 return NPCK_GNUNull
;
3224 } else if (const MaterializeTemporaryExpr
*M
3225 = dyn_cast
<MaterializeTemporaryExpr
>(this)) {
3226 return M
->GetTemporaryExpr()->isNullPointerConstant(Ctx
, NPC
);
3227 } else if (const OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(this)) {
3228 if (const Expr
*Source
= OVE
->getSourceExpr())
3229 return Source
->isNullPointerConstant(Ctx
, NPC
);
3232 // C++11 nullptr_t is always a null pointer constant.
3233 if (getType()->isNullPtrType())
3234 return NPCK_CXX11_nullptr
;
3236 if (const RecordType
*UT
= getType()->getAsUnionType())
3237 if (!Ctx
.getLangOpts().CPlusPlus11
&&
3238 UT
&& UT
->getDecl()->hasAttr
<TransparentUnionAttr
>())
3239 if (const CompoundLiteralExpr
*CLE
= dyn_cast
<CompoundLiteralExpr
>(this)){
3240 const Expr
*InitExpr
= CLE
->getInitializer();
3241 if (const InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(InitExpr
))
3242 return ILE
->getInit(0)->isNullPointerConstant(Ctx
, NPC
);
3244 // This expression must be an integer type.
3245 if (!getType()->isIntegerType() ||
3246 (Ctx
.getLangOpts().CPlusPlus
&& getType()->isEnumeralType()))
3247 return NPCK_NotNull
;
3249 if (Ctx
.getLangOpts().CPlusPlus11
) {
3250 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3251 // value zero or a prvalue of type std::nullptr_t.
3252 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3253 const IntegerLiteral
*Lit
= dyn_cast
<IntegerLiteral
>(this);
3254 if (Lit
&& !Lit
->getValue())
3255 return NPCK_ZeroLiteral
;
3256 else if (!Ctx
.getLangOpts().MSVCCompat
|| !isCXX98IntegralConstantExpr(Ctx
))
3257 return NPCK_NotNull
;
3259 // If we have an integer constant expression, we need to *evaluate* it and
3260 // test for the value 0.
3261 if (!isIntegerConstantExpr(Ctx
))
3262 return NPCK_NotNull
;
3265 if (EvaluateKnownConstInt(Ctx
) != 0)
3266 return NPCK_NotNull
;
3268 if (isa
<IntegerLiteral
>(this))
3269 return NPCK_ZeroLiteral
;
3270 return NPCK_ZeroExpression
;
3273 /// \brief If this expression is an l-value for an Objective C
3274 /// property, find the underlying property reference expression.
3275 const ObjCPropertyRefExpr
*Expr::getObjCProperty() const {
3276 const Expr
*E
= this;
3278 assert((E
->getValueKind() == VK_LValue
&&
3279 E
->getObjectKind() == OK_ObjCProperty
) &&
3280 "expression is not a property reference");
3281 E
= E
->IgnoreParenCasts();
3282 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
3283 if (BO
->getOpcode() == BO_Comma
) {
3292 return cast
<ObjCPropertyRefExpr
>(E
);
3295 bool Expr::isObjCSelfExpr() const {
3296 const Expr
*E
= IgnoreParenImpCasts();
3298 const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
);
3302 const ImplicitParamDecl
*Param
= dyn_cast
<ImplicitParamDecl
>(DRE
->getDecl());
3306 const ObjCMethodDecl
*M
= dyn_cast
<ObjCMethodDecl
>(Param
->getDeclContext());
3310 return M
->getSelfDecl() == Param
;
3313 FieldDecl
*Expr::getSourceBitField() {
3314 Expr
*E
= this->IgnoreParens();
3316 while (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
3317 if (ICE
->getCastKind() == CK_LValueToRValue
||
3318 (ICE
->getValueKind() != VK_RValue
&& ICE
->getCastKind() == CK_NoOp
))
3319 E
= ICE
->getSubExpr()->IgnoreParens();
3324 if (MemberExpr
*MemRef
= dyn_cast
<MemberExpr
>(E
))
3325 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(MemRef
->getMemberDecl()))
3326 if (Field
->isBitField())
3329 if (ObjCIvarRefExpr
*IvarRef
= dyn_cast
<ObjCIvarRefExpr
>(E
))
3330 if (FieldDecl
*Ivar
= dyn_cast
<FieldDecl
>(IvarRef
->getDecl()))
3331 if (Ivar
->isBitField())
3334 if (DeclRefExpr
*DeclRef
= dyn_cast
<DeclRefExpr
>(E
))
3335 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(DeclRef
->getDecl()))
3336 if (Field
->isBitField())
3339 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(E
)) {
3340 if (BinOp
->isAssignmentOp() && BinOp
->getLHS())
3341 return BinOp
->getLHS()->getSourceBitField();
3343 if (BinOp
->getOpcode() == BO_Comma
&& BinOp
->getRHS())
3344 return BinOp
->getRHS()->getSourceBitField();
3347 if (UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(E
))
3348 if (UnOp
->isPrefix() && UnOp
->isIncrementDecrementOp())
3349 return UnOp
->getSubExpr()->getSourceBitField();
3354 bool Expr::refersToVectorElement() const {
3355 const Expr
*E
= this->IgnoreParens();
3357 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
3358 if (ICE
->getValueKind() != VK_RValue
&&
3359 ICE
->getCastKind() == CK_NoOp
)
3360 E
= ICE
->getSubExpr()->IgnoreParens();
3365 if (const ArraySubscriptExpr
*ASE
= dyn_cast
<ArraySubscriptExpr
>(E
))
3366 return ASE
->getBase()->getType()->isVectorType();
3368 if (isa
<ExtVectorElementExpr
>(E
))
3374 /// isArrow - Return true if the base expression is a pointer to vector,
3375 /// return false if the base expression is a vector.
3376 bool ExtVectorElementExpr::isArrow() const {
3377 return getBase()->getType()->isPointerType();
3380 unsigned ExtVectorElementExpr::getNumElements() const {
3381 if (const VectorType
*VT
= getType()->getAs
<VectorType
>())
3382 return VT
->getNumElements();
3386 /// containsDuplicateElements - Return true if any element access is repeated.
3387 bool ExtVectorElementExpr::containsDuplicateElements() const {
3388 // FIXME: Refactor this code to an accessor on the AST node which returns the
3389 // "type" of component access, and share with code below and in Sema.
3390 StringRef Comp
= Accessor
->getName();
3392 // Halving swizzles do not contain duplicate elements.
3393 if (Comp
== "hi" || Comp
== "lo" || Comp
== "even" || Comp
== "odd")
3396 // Advance past s-char prefix on hex swizzles.
3397 if (Comp
[0] == 's' || Comp
[0] == 'S')
3398 Comp
= Comp
.substr(1);
3400 for (unsigned i
= 0, e
= Comp
.size(); i
!= e
; ++i
)
3401 if (Comp
.substr(i
+ 1).find(Comp
[i
]) != StringRef::npos
)
3407 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3408 void ExtVectorElementExpr::getEncodedElementAccess(
3409 SmallVectorImpl
<unsigned> &Elts
) const {
3410 StringRef Comp
= Accessor
->getName();
3411 if (Comp
[0] == 's' || Comp
[0] == 'S')
3412 Comp
= Comp
.substr(1);
3414 bool isHi
= Comp
== "hi";
3415 bool isLo
= Comp
== "lo";
3416 bool isEven
= Comp
== "even";
3417 bool isOdd
= Comp
== "odd";
3419 for (unsigned i
= 0, e
= getNumElements(); i
!= e
; ++i
) {
3431 Index
= ExtVectorType::getAccessorIdx(Comp
[i
]);
3433 Elts
.push_back(Index
);
3437 ObjCMessageExpr::ObjCMessageExpr(QualType T
,
3439 SourceLocation LBracLoc
,
3440 SourceLocation SuperLoc
,
3441 bool IsInstanceSuper
,
3444 ArrayRef
<SourceLocation
> SelLocs
,
3445 SelectorLocationsKind SelLocsK
,
3446 ObjCMethodDecl
*Method
,
3447 ArrayRef
<Expr
*> Args
,
3448 SourceLocation RBracLoc
,
3450 : Expr(ObjCMessageExprClass
, T
, VK
, OK_Ordinary
,
3451 /*TypeDependent=*/false, /*ValueDependent=*/false,
3452 /*InstantiationDependent=*/false,
3453 /*ContainsUnexpandedParameterPack=*/false),
3454 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method
? Method
3455 : Sel
.getAsOpaquePtr())),
3456 Kind(IsInstanceSuper
? SuperInstance
: SuperClass
),
3457 HasMethod(Method
!= nullptr), IsDelegateInitCall(false),
3458 IsImplicit(isImplicit
), SuperLoc(SuperLoc
), LBracLoc(LBracLoc
),
3461 initArgsAndSelLocs(Args
, SelLocs
, SelLocsK
);
3462 setReceiverPointer(SuperType
.getAsOpaquePtr());
3465 ObjCMessageExpr::ObjCMessageExpr(QualType T
,
3467 SourceLocation LBracLoc
,
3468 TypeSourceInfo
*Receiver
,
3470 ArrayRef
<SourceLocation
> SelLocs
,
3471 SelectorLocationsKind SelLocsK
,
3472 ObjCMethodDecl
*Method
,
3473 ArrayRef
<Expr
*> Args
,
3474 SourceLocation RBracLoc
,
3476 : Expr(ObjCMessageExprClass
, T
, VK
, OK_Ordinary
, T
->isDependentType(),
3477 T
->isDependentType(), T
->isInstantiationDependentType(),
3478 T
->containsUnexpandedParameterPack()),
3479 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method
? Method
3480 : Sel
.getAsOpaquePtr())),
3482 HasMethod(Method
!= nullptr), IsDelegateInitCall(false),
3483 IsImplicit(isImplicit
), LBracLoc(LBracLoc
), RBracLoc(RBracLoc
)
3485 initArgsAndSelLocs(Args
, SelLocs
, SelLocsK
);
3486 setReceiverPointer(Receiver
);
3489 ObjCMessageExpr::ObjCMessageExpr(QualType T
,
3491 SourceLocation LBracLoc
,
3494 ArrayRef
<SourceLocation
> SelLocs
,
3495 SelectorLocationsKind SelLocsK
,
3496 ObjCMethodDecl
*Method
,
3497 ArrayRef
<Expr
*> Args
,
3498 SourceLocation RBracLoc
,
3500 : Expr(ObjCMessageExprClass
, T
, VK
, OK_Ordinary
, Receiver
->isTypeDependent(),
3501 Receiver
->isTypeDependent(),
3502 Receiver
->isInstantiationDependent(),
3503 Receiver
->containsUnexpandedParameterPack()),
3504 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method
? Method
3505 : Sel
.getAsOpaquePtr())),
3507 HasMethod(Method
!= nullptr), IsDelegateInitCall(false),
3508 IsImplicit(isImplicit
), LBracLoc(LBracLoc
), RBracLoc(RBracLoc
)
3510 initArgsAndSelLocs(Args
, SelLocs
, SelLocsK
);
3511 setReceiverPointer(Receiver
);
3514 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef
<Expr
*> Args
,
3515 ArrayRef
<SourceLocation
> SelLocs
,
3516 SelectorLocationsKind SelLocsK
) {
3517 setNumArgs(Args
.size());
3518 Expr
**MyArgs
= getArgs();
3519 for (unsigned I
= 0; I
!= Args
.size(); ++I
) {
3520 if (Args
[I
]->isTypeDependent())
3521 ExprBits
.TypeDependent
= true;
3522 if (Args
[I
]->isValueDependent())
3523 ExprBits
.ValueDependent
= true;
3524 if (Args
[I
]->isInstantiationDependent())
3525 ExprBits
.InstantiationDependent
= true;
3526 if (Args
[I
]->containsUnexpandedParameterPack())
3527 ExprBits
.ContainsUnexpandedParameterPack
= true;
3529 MyArgs
[I
] = Args
[I
];
3532 SelLocsKind
= SelLocsK
;
3533 if (!isImplicit()) {
3534 if (SelLocsK
== SelLoc_NonStandard
)
3535 std::copy(SelLocs
.begin(), SelLocs
.end(), getStoredSelLocs());
3539 ObjCMessageExpr
*ObjCMessageExpr::Create(const ASTContext
&Context
, QualType T
,
3541 SourceLocation LBracLoc
,
3542 SourceLocation SuperLoc
,
3543 bool IsInstanceSuper
,
3546 ArrayRef
<SourceLocation
> SelLocs
,
3547 ObjCMethodDecl
*Method
,
3548 ArrayRef
<Expr
*> Args
,
3549 SourceLocation RBracLoc
,
3551 assert((!SelLocs
.empty() || isImplicit
) &&
3552 "No selector locs for non-implicit message");
3553 ObjCMessageExpr
*Mem
;
3554 SelectorLocationsKind SelLocsK
= SelectorLocationsKind();
3556 Mem
= alloc(Context
, Args
.size(), 0);
3558 Mem
= alloc(Context
, Args
, RBracLoc
, SelLocs
, Sel
, SelLocsK
);
3559 return new (Mem
) ObjCMessageExpr(T
, VK
, LBracLoc
, SuperLoc
, IsInstanceSuper
,
3560 SuperType
, Sel
, SelLocs
, SelLocsK
,
3561 Method
, Args
, RBracLoc
, isImplicit
);
3564 ObjCMessageExpr
*ObjCMessageExpr::Create(const ASTContext
&Context
, QualType T
,
3566 SourceLocation LBracLoc
,
3567 TypeSourceInfo
*Receiver
,
3569 ArrayRef
<SourceLocation
> SelLocs
,
3570 ObjCMethodDecl
*Method
,
3571 ArrayRef
<Expr
*> Args
,
3572 SourceLocation RBracLoc
,
3574 assert((!SelLocs
.empty() || isImplicit
) &&
3575 "No selector locs for non-implicit message");
3576 ObjCMessageExpr
*Mem
;
3577 SelectorLocationsKind SelLocsK
= SelectorLocationsKind();
3579 Mem
= alloc(Context
, Args
.size(), 0);
3581 Mem
= alloc(Context
, Args
, RBracLoc
, SelLocs
, Sel
, SelLocsK
);
3582 return new (Mem
) ObjCMessageExpr(T
, VK
, LBracLoc
, Receiver
, Sel
,
3583 SelLocs
, SelLocsK
, Method
, Args
, RBracLoc
,
3587 ObjCMessageExpr
*ObjCMessageExpr::Create(const ASTContext
&Context
, QualType T
,
3589 SourceLocation LBracLoc
,
3592 ArrayRef
<SourceLocation
> SelLocs
,
3593 ObjCMethodDecl
*Method
,
3594 ArrayRef
<Expr
*> Args
,
3595 SourceLocation RBracLoc
,
3597 assert((!SelLocs
.empty() || isImplicit
) &&
3598 "No selector locs for non-implicit message");
3599 ObjCMessageExpr
*Mem
;
3600 SelectorLocationsKind SelLocsK
= SelectorLocationsKind();
3602 Mem
= alloc(Context
, Args
.size(), 0);
3604 Mem
= alloc(Context
, Args
, RBracLoc
, SelLocs
, Sel
, SelLocsK
);
3605 return new (Mem
) ObjCMessageExpr(T
, VK
, LBracLoc
, Receiver
, Sel
,
3606 SelLocs
, SelLocsK
, Method
, Args
, RBracLoc
,
3610 ObjCMessageExpr
*ObjCMessageExpr::CreateEmpty(const ASTContext
&Context
,
3612 unsigned NumStoredSelLocs
) {
3613 ObjCMessageExpr
*Mem
= alloc(Context
, NumArgs
, NumStoredSelLocs
);
3614 return new (Mem
) ObjCMessageExpr(EmptyShell(), NumArgs
);
3617 ObjCMessageExpr
*ObjCMessageExpr::alloc(const ASTContext
&C
,
3618 ArrayRef
<Expr
*> Args
,
3619 SourceLocation RBraceLoc
,
3620 ArrayRef
<SourceLocation
> SelLocs
,
3622 SelectorLocationsKind
&SelLocsK
) {
3623 SelLocsK
= hasStandardSelectorLocs(Sel
, SelLocs
, Args
, RBraceLoc
);
3624 unsigned NumStoredSelLocs
= (SelLocsK
== SelLoc_NonStandard
) ? SelLocs
.size()
3626 return alloc(C
, Args
.size(), NumStoredSelLocs
);
3629 ObjCMessageExpr
*ObjCMessageExpr::alloc(const ASTContext
&C
,
3631 unsigned NumStoredSelLocs
) {
3632 unsigned Size
= sizeof(ObjCMessageExpr
) + sizeof(void *) +
3633 NumArgs
* sizeof(Expr
*) + NumStoredSelLocs
* sizeof(SourceLocation
);
3634 return (ObjCMessageExpr
*)C
.Allocate(Size
,
3635 llvm::AlignOf
<ObjCMessageExpr
>::Alignment
);
3638 void ObjCMessageExpr::getSelectorLocs(
3639 SmallVectorImpl
<SourceLocation
> &SelLocs
) const {
3640 for (unsigned i
= 0, e
= getNumSelectorLocs(); i
!= e
; ++i
)
3641 SelLocs
.push_back(getSelectorLoc(i
));
3644 SourceRange
ObjCMessageExpr::getReceiverRange() const {
3645 switch (getReceiverKind()) {
3647 return getInstanceReceiver()->getSourceRange();
3650 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3654 return getSuperLoc();
3657 llvm_unreachable("Invalid ReceiverKind!");
3660 Selector
ObjCMessageExpr::getSelector() const {
3662 return reinterpret_cast<const ObjCMethodDecl
*>(SelectorOrMethod
)
3664 return Selector(SelectorOrMethod
);
3667 QualType
ObjCMessageExpr::getReceiverType() const {
3668 switch (getReceiverKind()) {
3670 return getInstanceReceiver()->getType();
3672 return getClassReceiver();
3675 return getSuperType();
3678 llvm_unreachable("unexpected receiver kind");
3681 ObjCInterfaceDecl
*ObjCMessageExpr::getReceiverInterface() const {
3682 QualType T
= getReceiverType();
3684 if (const ObjCObjectPointerType
*Ptr
= T
->getAs
<ObjCObjectPointerType
>())
3685 return Ptr
->getInterfaceDecl();
3687 if (const ObjCObjectType
*Ty
= T
->getAs
<ObjCObjectType
>())
3688 return Ty
->getInterface();
3693 StringRef
ObjCBridgedCastExpr::getBridgeKindName() const {
3694 switch (getBridgeKind()) {
3697 case OBC_BridgeTransfer
:
3698 return "__bridge_transfer";
3699 case OBC_BridgeRetained
:
3700 return "__bridge_retained";
3703 llvm_unreachable("Invalid BridgeKind!");
3706 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext
&C
, ArrayRef
<Expr
*> args
,
3707 QualType Type
, SourceLocation BLoc
,
3709 : Expr(ShuffleVectorExprClass
, Type
, VK_RValue
, OK_Ordinary
,
3710 Type
->isDependentType(), Type
->isDependentType(),
3711 Type
->isInstantiationDependentType(),
3712 Type
->containsUnexpandedParameterPack()),
3713 BuiltinLoc(BLoc
), RParenLoc(RP
), NumExprs(args
.size())
3715 SubExprs
= new (C
) Stmt
*[args
.size()];
3716 for (unsigned i
= 0; i
!= args
.size(); i
++) {
3717 if (args
[i
]->isTypeDependent())
3718 ExprBits
.TypeDependent
= true;
3719 if (args
[i
]->isValueDependent())
3720 ExprBits
.ValueDependent
= true;
3721 if (args
[i
]->isInstantiationDependent())
3722 ExprBits
.InstantiationDependent
= true;
3723 if (args
[i
]->containsUnexpandedParameterPack())
3724 ExprBits
.ContainsUnexpandedParameterPack
= true;
3726 SubExprs
[i
] = args
[i
];
3730 void ShuffleVectorExpr::setExprs(const ASTContext
&C
, ArrayRef
<Expr
*> Exprs
) {
3731 if (SubExprs
) C
.Deallocate(SubExprs
);
3733 this->NumExprs
= Exprs
.size();
3734 SubExprs
= new (C
) Stmt
*[NumExprs
];
3735 memcpy(SubExprs
, Exprs
.data(), sizeof(Expr
*) * Exprs
.size());
3738 GenericSelectionExpr::GenericSelectionExpr(const ASTContext
&Context
,
3739 SourceLocation GenericLoc
, Expr
*ControllingExpr
,
3740 ArrayRef
<TypeSourceInfo
*> AssocTypes
,
3741 ArrayRef
<Expr
*> AssocExprs
,
3742 SourceLocation DefaultLoc
,
3743 SourceLocation RParenLoc
,
3744 bool ContainsUnexpandedParameterPack
,
3745 unsigned ResultIndex
)
3746 : Expr(GenericSelectionExprClass
,
3747 AssocExprs
[ResultIndex
]->getType(),
3748 AssocExprs
[ResultIndex
]->getValueKind(),
3749 AssocExprs
[ResultIndex
]->getObjectKind(),
3750 AssocExprs
[ResultIndex
]->isTypeDependent(),
3751 AssocExprs
[ResultIndex
]->isValueDependent(),
3752 AssocExprs
[ResultIndex
]->isInstantiationDependent(),
3753 ContainsUnexpandedParameterPack
),
3754 AssocTypes(new (Context
) TypeSourceInfo
*[AssocTypes
.size()]),
3755 SubExprs(new (Context
) Stmt
*[END_EXPR
+AssocExprs
.size()]),
3756 NumAssocs(AssocExprs
.size()), ResultIndex(ResultIndex
),
3757 GenericLoc(GenericLoc
), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
3758 SubExprs
[CONTROLLING
] = ControllingExpr
;
3759 assert(AssocTypes
.size() == AssocExprs
.size());
3760 std::copy(AssocTypes
.begin(), AssocTypes
.end(), this->AssocTypes
);
3761 std::copy(AssocExprs
.begin(), AssocExprs
.end(), SubExprs
+END_EXPR
);
3764 GenericSelectionExpr::GenericSelectionExpr(const ASTContext
&Context
,
3765 SourceLocation GenericLoc
, Expr
*ControllingExpr
,
3766 ArrayRef
<TypeSourceInfo
*> AssocTypes
,
3767 ArrayRef
<Expr
*> AssocExprs
,
3768 SourceLocation DefaultLoc
,
3769 SourceLocation RParenLoc
,
3770 bool ContainsUnexpandedParameterPack
)
3771 : Expr(GenericSelectionExprClass
,
3772 Context
.DependentTy
,
3775 /*isTypeDependent=*/true,
3776 /*isValueDependent=*/true,
3777 /*isInstantiationDependent=*/true,
3778 ContainsUnexpandedParameterPack
),
3779 AssocTypes(new (Context
) TypeSourceInfo
*[AssocTypes
.size()]),
3780 SubExprs(new (Context
) Stmt
*[END_EXPR
+AssocExprs
.size()]),
3781 NumAssocs(AssocExprs
.size()), ResultIndex(-1U), GenericLoc(GenericLoc
),
3782 DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
3783 SubExprs
[CONTROLLING
] = ControllingExpr
;
3784 assert(AssocTypes
.size() == AssocExprs
.size());
3785 std::copy(AssocTypes
.begin(), AssocTypes
.end(), this->AssocTypes
);
3786 std::copy(AssocExprs
.begin(), AssocExprs
.end(), SubExprs
+END_EXPR
);
3789 //===----------------------------------------------------------------------===//
3790 // DesignatedInitExpr
3791 //===----------------------------------------------------------------------===//
3793 IdentifierInfo
*DesignatedInitExpr::Designator::getFieldName() const {
3794 assert(Kind
== FieldDesignator
&& "Only valid on a field designator");
3795 if (Field
.NameOrField
& 0x01)
3796 return reinterpret_cast<IdentifierInfo
*>(Field
.NameOrField
&~0x01);
3798 return getField()->getIdentifier();
3801 DesignatedInitExpr::DesignatedInitExpr(const ASTContext
&C
, QualType Ty
,
3802 unsigned NumDesignators
,
3803 const Designator
*Designators
,
3804 SourceLocation EqualOrColonLoc
,
3806 ArrayRef
<Expr
*> IndexExprs
,
3808 : Expr(DesignatedInitExprClass
, Ty
,
3809 Init
->getValueKind(), Init
->getObjectKind(),
3810 Init
->isTypeDependent(), Init
->isValueDependent(),
3811 Init
->isInstantiationDependent(),
3812 Init
->containsUnexpandedParameterPack()),
3813 EqualOrColonLoc(EqualOrColonLoc
), GNUSyntax(GNUSyntax
),
3814 NumDesignators(NumDesignators
), NumSubExprs(IndexExprs
.size() + 1) {
3815 this->Designators
= new (C
) Designator
[NumDesignators
];
3817 // Record the initializer itself.
3818 child_range Child
= children();
3821 // Copy the designators and their subexpressions, computing
3822 // value-dependence along the way.
3823 unsigned IndexIdx
= 0;
3824 for (unsigned I
= 0; I
!= NumDesignators
; ++I
) {
3825 this->Designators
[I
] = Designators
[I
];
3827 if (this->Designators
[I
].isArrayDesignator()) {
3828 // Compute type- and value-dependence.
3829 Expr
*Index
= IndexExprs
[IndexIdx
];
3830 if (Index
->isTypeDependent() || Index
->isValueDependent())
3831 ExprBits
.TypeDependent
= ExprBits
.ValueDependent
= true;
3832 if (Index
->isInstantiationDependent())
3833 ExprBits
.InstantiationDependent
= true;
3834 // Propagate unexpanded parameter packs.
3835 if (Index
->containsUnexpandedParameterPack())
3836 ExprBits
.ContainsUnexpandedParameterPack
= true;
3838 // Copy the index expressions into permanent storage.
3839 *Child
++ = IndexExprs
[IndexIdx
++];
3840 } else if (this->Designators
[I
].isArrayRangeDesignator()) {
3841 // Compute type- and value-dependence.
3842 Expr
*Start
= IndexExprs
[IndexIdx
];
3843 Expr
*End
= IndexExprs
[IndexIdx
+ 1];
3844 if (Start
->isTypeDependent() || Start
->isValueDependent() ||
3845 End
->isTypeDependent() || End
->isValueDependent()) {
3846 ExprBits
.TypeDependent
= ExprBits
.ValueDependent
= true;
3847 ExprBits
.InstantiationDependent
= true;
3848 } else if (Start
->isInstantiationDependent() ||
3849 End
->isInstantiationDependent()) {
3850 ExprBits
.InstantiationDependent
= true;
3853 // Propagate unexpanded parameter packs.
3854 if (Start
->containsUnexpandedParameterPack() ||
3855 End
->containsUnexpandedParameterPack())
3856 ExprBits
.ContainsUnexpandedParameterPack
= true;
3858 // Copy the start/end expressions into permanent storage.
3859 *Child
++ = IndexExprs
[IndexIdx
++];
3860 *Child
++ = IndexExprs
[IndexIdx
++];
3864 assert(IndexIdx
== IndexExprs
.size() && "Wrong number of index expressions");
3867 DesignatedInitExpr
*
3868 DesignatedInitExpr::Create(const ASTContext
&C
, Designator
*Designators
,
3869 unsigned NumDesignators
,
3870 ArrayRef
<Expr
*> IndexExprs
,
3871 SourceLocation ColonOrEqualLoc
,
3872 bool UsesColonSyntax
, Expr
*Init
) {
3873 void *Mem
= C
.Allocate(sizeof(DesignatedInitExpr
) +
3874 sizeof(Stmt
*) * (IndexExprs
.size() + 1), 8);
3875 return new (Mem
) DesignatedInitExpr(C
, C
.VoidTy
, NumDesignators
, Designators
,
3876 ColonOrEqualLoc
, UsesColonSyntax
,
3880 DesignatedInitExpr
*DesignatedInitExpr::CreateEmpty(const ASTContext
&C
,
3881 unsigned NumIndexExprs
) {
3882 void *Mem
= C
.Allocate(sizeof(DesignatedInitExpr
) +
3883 sizeof(Stmt
*) * (NumIndexExprs
+ 1), 8);
3884 return new (Mem
) DesignatedInitExpr(NumIndexExprs
+ 1);
3887 void DesignatedInitExpr::setDesignators(const ASTContext
&C
,
3888 const Designator
*Desigs
,
3889 unsigned NumDesigs
) {
3890 Designators
= new (C
) Designator
[NumDesigs
];
3891 NumDesignators
= NumDesigs
;
3892 for (unsigned I
= 0; I
!= NumDesigs
; ++I
)
3893 Designators
[I
] = Desigs
[I
];
3896 SourceRange
DesignatedInitExpr::getDesignatorsSourceRange() const {
3897 DesignatedInitExpr
*DIE
= const_cast<DesignatedInitExpr
*>(this);
3899 return DIE
->getDesignator(0)->getSourceRange();
3900 return SourceRange(DIE
->getDesignator(0)->getLocStart(),
3901 DIE
->getDesignator(size()-1)->getLocEnd());
3904 SourceLocation
DesignatedInitExpr::getLocStart() const {
3905 SourceLocation StartLoc
;
3907 *const_cast<DesignatedInitExpr
*>(this)->designators_begin();
3908 if (First
.isFieldDesignator()) {
3910 StartLoc
= SourceLocation::getFromRawEncoding(First
.Field
.FieldLoc
);
3912 StartLoc
= SourceLocation::getFromRawEncoding(First
.Field
.DotLoc
);
3915 SourceLocation::getFromRawEncoding(First
.ArrayOrRange
.LBracketLoc
);
3919 SourceLocation
DesignatedInitExpr::getLocEnd() const {
3920 return getInit()->getLocEnd();
3923 Expr
*DesignatedInitExpr::getArrayIndex(const Designator
& D
) const {
3924 assert(D
.Kind
== Designator::ArrayDesignator
&& "Requires array designator");
3925 Stmt
*const *SubExprs
= reinterpret_cast<Stmt
*const *>(this + 1);
3926 return cast
<Expr
>(*(SubExprs
+ D
.ArrayOrRange
.Index
+ 1));
3929 Expr
*DesignatedInitExpr::getArrayRangeStart(const Designator
&D
) const {
3930 assert(D
.Kind
== Designator::ArrayRangeDesignator
&&
3931 "Requires array range designator");
3932 Stmt
*const *SubExprs
= reinterpret_cast<Stmt
*const *>(this + 1);
3933 return cast
<Expr
>(*(SubExprs
+ D
.ArrayOrRange
.Index
+ 1));
3936 Expr
*DesignatedInitExpr::getArrayRangeEnd(const Designator
&D
) const {
3937 assert(D
.Kind
== Designator::ArrayRangeDesignator
&&
3938 "Requires array range designator");
3939 Stmt
*const *SubExprs
= reinterpret_cast<Stmt
*const *>(this + 1);
3940 return cast
<Expr
>(*(SubExprs
+ D
.ArrayOrRange
.Index
+ 2));
3943 /// \brief Replaces the designator at index @p Idx with the series
3944 /// of designators in [First, Last).
3945 void DesignatedInitExpr::ExpandDesignator(const ASTContext
&C
, unsigned Idx
,
3946 const Designator
*First
,
3947 const Designator
*Last
) {
3948 unsigned NumNewDesignators
= Last
- First
;
3949 if (NumNewDesignators
== 0) {
3950 std::copy_backward(Designators
+ Idx
+ 1,
3951 Designators
+ NumDesignators
,
3953 --NumNewDesignators
;
3955 } else if (NumNewDesignators
== 1) {
3956 Designators
[Idx
] = *First
;
3960 Designator
*NewDesignators
3961 = new (C
) Designator
[NumDesignators
- 1 + NumNewDesignators
];
3962 std::copy(Designators
, Designators
+ Idx
, NewDesignators
);
3963 std::copy(First
, Last
, NewDesignators
+ Idx
);
3964 std::copy(Designators
+ Idx
+ 1, Designators
+ NumDesignators
,
3965 NewDesignators
+ Idx
+ NumNewDesignators
);
3966 Designators
= NewDesignators
;
3967 NumDesignators
= NumDesignators
- 1 + NumNewDesignators
;
3970 ParenListExpr::ParenListExpr(const ASTContext
& C
, SourceLocation lparenloc
,
3971 ArrayRef
<Expr
*> exprs
,
3972 SourceLocation rparenloc
)
3973 : Expr(ParenListExprClass
, QualType(), VK_RValue
, OK_Ordinary
,
3974 false, false, false, false),
3975 NumExprs(exprs
.size()), LParenLoc(lparenloc
), RParenLoc(rparenloc
) {
3976 Exprs
= new (C
) Stmt
*[exprs
.size()];
3977 for (unsigned i
= 0; i
!= exprs
.size(); ++i
) {
3978 if (exprs
[i
]->isTypeDependent())
3979 ExprBits
.TypeDependent
= true;
3980 if (exprs
[i
]->isValueDependent())
3981 ExprBits
.ValueDependent
= true;
3982 if (exprs
[i
]->isInstantiationDependent())
3983 ExprBits
.InstantiationDependent
= true;
3984 if (exprs
[i
]->containsUnexpandedParameterPack())
3985 ExprBits
.ContainsUnexpandedParameterPack
= true;
3987 Exprs
[i
] = exprs
[i
];
3991 const OpaqueValueExpr
*OpaqueValueExpr::findInCopyConstruct(const Expr
*e
) {
3992 if (const ExprWithCleanups
*ewc
= dyn_cast
<ExprWithCleanups
>(e
))
3993 e
= ewc
->getSubExpr();
3994 if (const MaterializeTemporaryExpr
*m
= dyn_cast
<MaterializeTemporaryExpr
>(e
))
3995 e
= m
->GetTemporaryExpr();
3996 e
= cast
<CXXConstructExpr
>(e
)->getArg(0);
3997 while (const ImplicitCastExpr
*ice
= dyn_cast
<ImplicitCastExpr
>(e
))
3998 e
= ice
->getSubExpr();
3999 return cast
<OpaqueValueExpr
>(e
);
4002 PseudoObjectExpr
*PseudoObjectExpr::Create(const ASTContext
&Context
,
4004 unsigned numSemanticExprs
) {
4005 void *buffer
= Context
.Allocate(sizeof(PseudoObjectExpr
) +
4006 (1 + numSemanticExprs
) * sizeof(Expr
*),
4007 llvm::alignOf
<PseudoObjectExpr
>());
4008 return new(buffer
) PseudoObjectExpr(sh
, numSemanticExprs
);
4011 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell
, unsigned numSemanticExprs
)
4012 : Expr(PseudoObjectExprClass
, shell
) {
4013 PseudoObjectExprBits
.NumSubExprs
= numSemanticExprs
+ 1;
4016 PseudoObjectExpr
*PseudoObjectExpr::Create(const ASTContext
&C
, Expr
*syntax
,
4017 ArrayRef
<Expr
*> semantics
,
4018 unsigned resultIndex
) {
4019 assert(syntax
&& "no syntactic expression!");
4020 assert(semantics
.size() && "no semantic expressions!");
4024 if (resultIndex
== NoResult
) {
4028 assert(resultIndex
< semantics
.size());
4029 type
= semantics
[resultIndex
]->getType();
4030 VK
= semantics
[resultIndex
]->getValueKind();
4031 assert(semantics
[resultIndex
]->getObjectKind() == OK_Ordinary
);
4034 void *buffer
= C
.Allocate(sizeof(PseudoObjectExpr
) +
4035 (1 + semantics
.size()) * sizeof(Expr
*),
4036 llvm::alignOf
<PseudoObjectExpr
>());
4037 return new(buffer
) PseudoObjectExpr(type
, VK
, syntax
, semantics
,
4041 PseudoObjectExpr::PseudoObjectExpr(QualType type
, ExprValueKind VK
,
4042 Expr
*syntax
, ArrayRef
<Expr
*> semantics
,
4043 unsigned resultIndex
)
4044 : Expr(PseudoObjectExprClass
, type
, VK
, OK_Ordinary
,
4045 /*filled in at end of ctor*/ false, false, false, false) {
4046 PseudoObjectExprBits
.NumSubExprs
= semantics
.size() + 1;
4047 PseudoObjectExprBits
.ResultIndex
= resultIndex
+ 1;
4049 for (unsigned i
= 0, e
= semantics
.size() + 1; i
!= e
; ++i
) {
4050 Expr
*E
= (i
== 0 ? syntax
: semantics
[i
-1]);
4051 getSubExprsBuffer()[i
] = E
;
4053 if (E
->isTypeDependent())
4054 ExprBits
.TypeDependent
= true;
4055 if (E
->isValueDependent())
4056 ExprBits
.ValueDependent
= true;
4057 if (E
->isInstantiationDependent())
4058 ExprBits
.InstantiationDependent
= true;
4059 if (E
->containsUnexpandedParameterPack())
4060 ExprBits
.ContainsUnexpandedParameterPack
= true;
4062 if (isa
<OpaqueValueExpr
>(E
))
4063 assert(cast
<OpaqueValueExpr
>(E
)->getSourceExpr() != nullptr &&
4064 "opaque-value semantic expressions for pseudo-object "
4065 "operations must have sources");
4069 //===----------------------------------------------------------------------===//
4071 //===----------------------------------------------------------------------===//
4073 Expr
* ExprIterator::operator[](size_t idx
) { return cast
<Expr
>(I
[idx
]); }
4074 Expr
* ExprIterator::operator*() const { return cast
<Expr
>(*I
); }
4075 Expr
* ExprIterator::operator->() const { return cast
<Expr
>(*I
); }
4076 const Expr
* ConstExprIterator::operator[](size_t idx
) const {
4077 return cast
<Expr
>(I
[idx
]);
4079 const Expr
* ConstExprIterator::operator*() const { return cast
<Expr
>(*I
); }
4080 const Expr
* ConstExprIterator::operator->() const { return cast
<Expr
>(*I
); }
4082 //===----------------------------------------------------------------------===//
4083 // Child Iterators for iterating over subexpressions/substatements
4084 //===----------------------------------------------------------------------===//
4086 // UnaryExprOrTypeTraitExpr
4087 Stmt::child_range
UnaryExprOrTypeTraitExpr::children() {
4088 // If this is of a type and the type is a VLA type (and not a typedef), the
4089 // size expression of the VLA needs to be treated as an executable expression.
4090 // Why isn't this weirdness documented better in StmtIterator?
4091 if (isArgumentType()) {
4092 if (const VariableArrayType
* T
= dyn_cast
<VariableArrayType
>(
4093 getArgumentType().getTypePtr()))
4094 return child_range(child_iterator(T
), child_iterator());
4095 return child_range();
4097 return child_range(&Argument
.Ex
, &Argument
.Ex
+ 1);
4101 Stmt::child_range
ObjCMessageExpr::children() {
4103 if (getReceiverKind() == Instance
)
4104 begin
= reinterpret_cast<Stmt
**>(this + 1);
4106 begin
= reinterpret_cast<Stmt
**>(getArgs());
4107 return child_range(begin
,
4108 reinterpret_cast<Stmt
**>(getArgs() + getNumArgs()));
4111 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef
<Expr
*> Elements
,
4112 QualType T
, ObjCMethodDecl
*Method
,
4114 : Expr(ObjCArrayLiteralClass
, T
, VK_RValue
, OK_Ordinary
,
4115 false, false, false, false),
4116 NumElements(Elements
.size()), Range(SR
), ArrayWithObjectsMethod(Method
)
4118 Expr
**SaveElements
= getElements();
4119 for (unsigned I
= 0, N
= Elements
.size(); I
!= N
; ++I
) {
4120 if (Elements
[I
]->isTypeDependent() || Elements
[I
]->isValueDependent())
4121 ExprBits
.ValueDependent
= true;
4122 if (Elements
[I
]->isInstantiationDependent())
4123 ExprBits
.InstantiationDependent
= true;
4124 if (Elements
[I
]->containsUnexpandedParameterPack())
4125 ExprBits
.ContainsUnexpandedParameterPack
= true;
4127 SaveElements
[I
] = Elements
[I
];
4131 ObjCArrayLiteral
*ObjCArrayLiteral::Create(const ASTContext
&C
,
4132 ArrayRef
<Expr
*> Elements
,
4133 QualType T
, ObjCMethodDecl
* Method
,
4135 void *Mem
= C
.Allocate(sizeof(ObjCArrayLiteral
)
4136 + Elements
.size() * sizeof(Expr
*));
4137 return new (Mem
) ObjCArrayLiteral(Elements
, T
, Method
, SR
);
4140 ObjCArrayLiteral
*ObjCArrayLiteral::CreateEmpty(const ASTContext
&C
,
4141 unsigned NumElements
) {
4143 void *Mem
= C
.Allocate(sizeof(ObjCArrayLiteral
)
4144 + NumElements
* sizeof(Expr
*));
4145 return new (Mem
) ObjCArrayLiteral(EmptyShell(), NumElements
);
4148 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
4149 ArrayRef
<ObjCDictionaryElement
> VK
,
4150 bool HasPackExpansions
,
4151 QualType T
, ObjCMethodDecl
*method
,
4153 : Expr(ObjCDictionaryLiteralClass
, T
, VK_RValue
, OK_Ordinary
, false, false,
4155 NumElements(VK
.size()), HasPackExpansions(HasPackExpansions
), Range(SR
),
4156 DictWithObjectsMethod(method
)
4158 KeyValuePair
*KeyValues
= getKeyValues();
4159 ExpansionData
*Expansions
= getExpansionData();
4160 for (unsigned I
= 0; I
< NumElements
; I
++) {
4161 if (VK
[I
].Key
->isTypeDependent() || VK
[I
].Key
->isValueDependent() ||
4162 VK
[I
].Value
->isTypeDependent() || VK
[I
].Value
->isValueDependent())
4163 ExprBits
.ValueDependent
= true;
4164 if (VK
[I
].Key
->isInstantiationDependent() ||
4165 VK
[I
].Value
->isInstantiationDependent())
4166 ExprBits
.InstantiationDependent
= true;
4167 if (VK
[I
].EllipsisLoc
.isInvalid() &&
4168 (VK
[I
].Key
->containsUnexpandedParameterPack() ||
4169 VK
[I
].Value
->containsUnexpandedParameterPack()))
4170 ExprBits
.ContainsUnexpandedParameterPack
= true;
4172 KeyValues
[I
].Key
= VK
[I
].Key
;
4173 KeyValues
[I
].Value
= VK
[I
].Value
;
4175 Expansions
[I
].EllipsisLoc
= VK
[I
].EllipsisLoc
;
4176 if (VK
[I
].NumExpansions
)
4177 Expansions
[I
].NumExpansionsPlusOne
= *VK
[I
].NumExpansions
+ 1;
4179 Expansions
[I
].NumExpansionsPlusOne
= 0;
4184 ObjCDictionaryLiteral
*
4185 ObjCDictionaryLiteral::Create(const ASTContext
&C
,
4186 ArrayRef
<ObjCDictionaryElement
> VK
,
4187 bool HasPackExpansions
,
4188 QualType T
, ObjCMethodDecl
*method
,
4190 unsigned ExpansionsSize
= 0;
4191 if (HasPackExpansions
)
4192 ExpansionsSize
= sizeof(ExpansionData
) * VK
.size();
4194 void *Mem
= C
.Allocate(sizeof(ObjCDictionaryLiteral
) +
4195 sizeof(KeyValuePair
) * VK
.size() + ExpansionsSize
);
4196 return new (Mem
) ObjCDictionaryLiteral(VK
, HasPackExpansions
, T
, method
, SR
);
4199 ObjCDictionaryLiteral
*
4200 ObjCDictionaryLiteral::CreateEmpty(const ASTContext
&C
, unsigned NumElements
,
4201 bool HasPackExpansions
) {
4202 unsigned ExpansionsSize
= 0;
4203 if (HasPackExpansions
)
4204 ExpansionsSize
= sizeof(ExpansionData
) * NumElements
;
4205 void *Mem
= C
.Allocate(sizeof(ObjCDictionaryLiteral
) +
4206 sizeof(KeyValuePair
) * NumElements
+ ExpansionsSize
);
4207 return new (Mem
) ObjCDictionaryLiteral(EmptyShell(), NumElements
,
4211 ObjCSubscriptRefExpr
*ObjCSubscriptRefExpr::Create(const ASTContext
&C
,
4213 Expr
*key
, QualType T
,
4214 ObjCMethodDecl
*getMethod
,
4215 ObjCMethodDecl
*setMethod
,
4216 SourceLocation RB
) {
4217 void *Mem
= C
.Allocate(sizeof(ObjCSubscriptRefExpr
));
4218 return new (Mem
) ObjCSubscriptRefExpr(base
, key
, T
, VK_LValue
,
4220 getMethod
, setMethod
, RB
);
4223 AtomicExpr::AtomicExpr(SourceLocation BLoc
, ArrayRef
<Expr
*> args
,
4224 QualType t
, AtomicOp op
, SourceLocation RP
)
4225 : Expr(AtomicExprClass
, t
, VK_RValue
, OK_Ordinary
,
4226 false, false, false, false),
4227 NumSubExprs(args
.size()), BuiltinLoc(BLoc
), RParenLoc(RP
), Op(op
)
4229 assert(args
.size() == getNumSubExprs(op
) && "wrong number of subexpressions");
4230 for (unsigned i
= 0; i
!= args
.size(); i
++) {
4231 if (args
[i
]->isTypeDependent())
4232 ExprBits
.TypeDependent
= true;
4233 if (args
[i
]->isValueDependent())
4234 ExprBits
.ValueDependent
= true;
4235 if (args
[i
]->isInstantiationDependent())
4236 ExprBits
.InstantiationDependent
= true;
4237 if (args
[i
]->containsUnexpandedParameterPack())
4238 ExprBits
.ContainsUnexpandedParameterPack
= true;
4240 SubExprs
[i
] = args
[i
];
4244 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op
) {
4246 case AO__c11_atomic_init
:
4247 case AO__c11_atomic_load
:
4248 case AO__atomic_load_n
:
4251 case AO__c11_atomic_store
:
4252 case AO__c11_atomic_exchange
:
4253 case AO__atomic_load
:
4254 case AO__atomic_store
:
4255 case AO__atomic_store_n
:
4256 case AO__atomic_exchange_n
:
4257 case AO__c11_atomic_fetch_add
:
4258 case AO__c11_atomic_fetch_sub
:
4259 case AO__c11_atomic_fetch_and
:
4260 case AO__c11_atomic_fetch_or
:
4261 case AO__c11_atomic_fetch_xor
:
4262 case AO__atomic_fetch_add
:
4263 case AO__atomic_fetch_sub
:
4264 case AO__atomic_fetch_and
:
4265 case AO__atomic_fetch_or
:
4266 case AO__atomic_fetch_xor
:
4267 case AO__atomic_fetch_nand
:
4268 case AO__atomic_add_fetch
:
4269 case AO__atomic_sub_fetch
:
4270 case AO__atomic_and_fetch
:
4271 case AO__atomic_or_fetch
:
4272 case AO__atomic_xor_fetch
:
4273 case AO__atomic_nand_fetch
:
4276 case AO__atomic_exchange
:
4279 case AO__c11_atomic_compare_exchange_strong
:
4280 case AO__c11_atomic_compare_exchange_weak
:
4283 case AO__atomic_compare_exchange
:
4284 case AO__atomic_compare_exchange_n
:
4287 llvm_unreachable("unknown atomic op");