etc/services - sync with NetBSD-8
[minix.git] / external / bsd / llvm / dist / clang / lib / AST / Expr.cpp
blob712de5056e8ddba645420ea29d4daa3e7e53e303
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstring>
37 using namespace clang;
39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40 const Expr *E = ignoreParenBaseCasts();
42 QualType DerivedType = E->getType();
43 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44 DerivedType = PTy->getPointeeType();
46 if (DerivedType->isDependentType())
47 return nullptr;
49 const RecordType *Ty = DerivedType->castAs<RecordType>();
50 Decl *D = Ty->getDecl();
51 return cast<CXXRecordDecl>(D);
54 const Expr *Expr::skipRValueSubobjectAdjustments(
55 SmallVectorImpl<const Expr *> &CommaLHSs,
56 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57 const Expr *E = this;
58 while (true) {
59 E = E->IgnoreParens();
61 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62 if ((CE->getCastKind() == CK_DerivedToBase ||
63 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64 E->getType()->isRecordType()) {
65 E = CE->getSubExpr();
66 CXXRecordDecl *Derived
67 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69 continue;
72 if (CE->getCastKind() == CK_NoOp) {
73 E = CE->getSubExpr();
74 continue;
76 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77 if (!ME->isArrow()) {
78 assert(ME->getBase()->getType()->isRecordType());
79 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81 E = ME->getBase();
82 Adjustments.push_back(SubobjectAdjustment(Field));
83 continue;
87 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88 if (BO->isPtrMemOp()) {
89 assert(BO->getRHS()->isRValue());
90 E = BO->getLHS();
91 const MemberPointerType *MPT =
92 BO->getRHS()->getType()->getAs<MemberPointerType>();
93 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94 continue;
95 } else if (BO->getOpcode() == BO_Comma) {
96 CommaLHSs.push_back(BO->getLHS());
97 E = BO->getRHS();
98 continue;
102 // Nothing changed.
103 break;
105 return E;
108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
110 /// but also int expressions which are produced by things like comparisons in
111 /// C.
112 bool Expr::isKnownToHaveBooleanValue() const {
113 const Expr *E = IgnoreParens();
115 // If this value has _Bool type, it is obvious 0/1.
116 if (E->getType()->isBooleanType()) return true;
117 // If this is a non-scalar-integer type, we don't care enough to try.
118 if (!E->getType()->isIntegralOrEnumerationType()) return false;
120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
121 switch (UO->getOpcode()) {
122 case UO_Plus:
123 return UO->getSubExpr()->isKnownToHaveBooleanValue();
124 case UO_LNot:
125 return true;
126 default:
127 return false;
131 // Only look through implicit casts. If the user writes
132 // '(int) (a && b)' treat it as an arbitrary int.
133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
134 return CE->getSubExpr()->isKnownToHaveBooleanValue();
136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
137 switch (BO->getOpcode()) {
138 default: return false;
139 case BO_LT: // Relational operators.
140 case BO_GT:
141 case BO_LE:
142 case BO_GE:
143 case BO_EQ: // Equality operators.
144 case BO_NE:
145 case BO_LAnd: // AND operator.
146 case BO_LOr: // Logical OR operator.
147 return true;
149 case BO_And: // Bitwise AND operator.
150 case BO_Xor: // Bitwise XOR operator.
151 case BO_Or: // Bitwise OR operator.
152 // Handle things like (x==2)|(y==12).
153 return BO->getLHS()->isKnownToHaveBooleanValue() &&
154 BO->getRHS()->isKnownToHaveBooleanValue();
156 case BO_Comma:
157 case BO_Assign:
158 return BO->getRHS()->isKnownToHaveBooleanValue();
162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
164 CO->getFalseExpr()->isKnownToHaveBooleanValue();
166 return false;
169 // Amusing macro metaprogramming hack: check whether a class provides
170 // a more specific implementation of getExprLoc().
172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
173 namespace {
174 /// This implementation is used when a class provides a custom
175 /// implementation of getExprLoc.
176 template <class E, class T>
177 SourceLocation getExprLocImpl(const Expr *expr,
178 SourceLocation (T::*v)() const) {
179 return static_cast<const E*>(expr)->getExprLoc();
182 /// This implementation is used when a class doesn't provide
183 /// a custom implementation of getExprLoc. Overload resolution
184 /// should pick it over the implementation above because it's
185 /// more specialized according to function template partial ordering.
186 template <class E>
187 SourceLocation getExprLocImpl(const Expr *expr,
188 SourceLocation (Expr::*v)() const) {
189 return static_cast<const E*>(expr)->getLocStart();
193 SourceLocation Expr::getExprLoc() const {
194 switch (getStmtClass()) {
195 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
196 #define ABSTRACT_STMT(type)
197 #define STMT(type, base) \
198 case Stmt::type##Class: break;
199 #define EXPR(type, base) \
200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201 #include "clang/AST/StmtNodes.inc"
203 llvm_unreachable("unknown expression kind");
206 //===----------------------------------------------------------------------===//
207 // Primary Expressions.
208 //===----------------------------------------------------------------------===//
210 /// \brief Compute the type-, value-, and instantiation-dependence of a
211 /// declaration reference
212 /// based on the declaration being referenced.
213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
214 QualType T, bool &TypeDependent,
215 bool &ValueDependent,
216 bool &InstantiationDependent) {
217 TypeDependent = false;
218 ValueDependent = false;
219 InstantiationDependent = false;
221 // (TD) C++ [temp.dep.expr]p3:
222 // An id-expression is type-dependent if it contains:
224 // and
226 // (VD) C++ [temp.dep.constexpr]p2:
227 // An identifier is value-dependent if it is:
229 // (TD) - an identifier that was declared with dependent type
230 // (VD) - a name declared with a dependent type,
231 if (T->isDependentType()) {
232 TypeDependent = true;
233 ValueDependent = true;
234 InstantiationDependent = true;
235 return;
236 } else if (T->isInstantiationDependentType()) {
237 InstantiationDependent = true;
240 // (TD) - a conversion-function-id that specifies a dependent type
241 if (D->getDeclName().getNameKind()
242 == DeclarationName::CXXConversionFunctionName) {
243 QualType T = D->getDeclName().getCXXNameType();
244 if (T->isDependentType()) {
245 TypeDependent = true;
246 ValueDependent = true;
247 InstantiationDependent = true;
248 return;
251 if (T->isInstantiationDependentType())
252 InstantiationDependent = true;
255 // (VD) - the name of a non-type template parameter,
256 if (isa<NonTypeTemplateParmDecl>(D)) {
257 ValueDependent = true;
258 InstantiationDependent = true;
259 return;
262 // (VD) - a constant with integral or enumeration type and is
263 // initialized with an expression that is value-dependent.
264 // (VD) - a constant with literal type and is initialized with an
265 // expression that is value-dependent [C++11].
266 // (VD) - FIXME: Missing from the standard:
267 // - an entity with reference type and is initialized with an
268 // expression that is value-dependent [C++11]
269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
270 if ((Ctx.getLangOpts().CPlusPlus11 ?
271 Var->getType()->isLiteralType(Ctx) :
272 Var->getType()->isIntegralOrEnumerationType()) &&
273 (Var->getType().isConstQualified() ||
274 Var->getType()->isReferenceType())) {
275 if (const Expr *Init = Var->getAnyInitializer())
276 if (Init->isValueDependent()) {
277 ValueDependent = true;
278 InstantiationDependent = true;
282 // (VD) - FIXME: Missing from the standard:
283 // - a member function or a static data member of the current
284 // instantiation
285 if (Var->isStaticDataMember() &&
286 Var->getDeclContext()->isDependentContext()) {
287 ValueDependent = true;
288 InstantiationDependent = true;
289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
290 if (TInfo->getType()->isIncompleteArrayType())
291 TypeDependent = true;
294 return;
297 // (VD) - FIXME: Missing from the standard:
298 // - a member function or a static data member of the current
299 // instantiation
300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
301 ValueDependent = true;
302 InstantiationDependent = true;
306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
307 bool TypeDependent = false;
308 bool ValueDependent = false;
309 bool InstantiationDependent = false;
310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
311 ValueDependent, InstantiationDependent);
313 ExprBits.TypeDependent |= TypeDependent;
314 ExprBits.ValueDependent |= ValueDependent;
315 ExprBits.InstantiationDependent |= InstantiationDependent;
317 // Is the declaration a parameter pack?
318 if (getDecl()->isParameterPack())
319 ExprBits.ContainsUnexpandedParameterPack = true;
322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
323 NestedNameSpecifierLoc QualifierLoc,
324 SourceLocation TemplateKWLoc,
325 ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
326 const DeclarationNameInfo &NameInfo,
327 NamedDecl *FoundD,
328 const TemplateArgumentListInfo *TemplateArgs,
329 QualType T, ExprValueKind VK)
330 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
331 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
332 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
333 if (QualifierLoc) {
334 getInternalQualifierLoc() = QualifierLoc;
335 auto *NNS = QualifierLoc.getNestedNameSpecifier();
336 if (NNS->isInstantiationDependent())
337 ExprBits.InstantiationDependent = true;
338 if (NNS->containsUnexpandedParameterPack())
339 ExprBits.ContainsUnexpandedParameterPack = true;
341 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
342 if (FoundD)
343 getInternalFoundDecl() = FoundD;
344 DeclRefExprBits.HasTemplateKWAndArgsInfo
345 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
346 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
347 RefersToEnclosingVariableOrCapture;
348 if (TemplateArgs) {
349 bool Dependent = false;
350 bool InstantiationDependent = false;
351 bool ContainsUnexpandedParameterPack = false;
352 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
353 Dependent,
354 InstantiationDependent,
355 ContainsUnexpandedParameterPack);
356 assert(!Dependent && "built a DeclRefExpr with dependent template args");
357 ExprBits.InstantiationDependent |= InstantiationDependent;
358 ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
359 } else if (TemplateKWLoc.isValid()) {
360 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
362 DeclRefExprBits.HadMultipleCandidates = 0;
364 computeDependence(Ctx);
367 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
368 NestedNameSpecifierLoc QualifierLoc,
369 SourceLocation TemplateKWLoc,
370 ValueDecl *D,
371 bool RefersToEnclosingVariableOrCapture,
372 SourceLocation NameLoc,
373 QualType T,
374 ExprValueKind VK,
375 NamedDecl *FoundD,
376 const TemplateArgumentListInfo *TemplateArgs) {
377 return Create(Context, QualifierLoc, TemplateKWLoc, D,
378 RefersToEnclosingVariableOrCapture,
379 DeclarationNameInfo(D->getDeclName(), NameLoc),
380 T, VK, FoundD, TemplateArgs);
383 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
384 NestedNameSpecifierLoc QualifierLoc,
385 SourceLocation TemplateKWLoc,
386 ValueDecl *D,
387 bool RefersToEnclosingVariableOrCapture,
388 const DeclarationNameInfo &NameInfo,
389 QualType T,
390 ExprValueKind VK,
391 NamedDecl *FoundD,
392 const TemplateArgumentListInfo *TemplateArgs) {
393 // Filter out cases where the found Decl is the same as the value refenenced.
394 if (D == FoundD)
395 FoundD = nullptr;
397 std::size_t Size = sizeof(DeclRefExpr);
398 if (QualifierLoc)
399 Size += sizeof(NestedNameSpecifierLoc);
400 if (FoundD)
401 Size += sizeof(NamedDecl *);
402 if (TemplateArgs)
403 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
404 else if (TemplateKWLoc.isValid())
405 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
407 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
408 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
409 RefersToEnclosingVariableOrCapture,
410 NameInfo, FoundD, TemplateArgs, T, VK);
413 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
414 bool HasQualifier,
415 bool HasFoundDecl,
416 bool HasTemplateKWAndArgsInfo,
417 unsigned NumTemplateArgs) {
418 std::size_t Size = sizeof(DeclRefExpr);
419 if (HasQualifier)
420 Size += sizeof(NestedNameSpecifierLoc);
421 if (HasFoundDecl)
422 Size += sizeof(NamedDecl *);
423 if (HasTemplateKWAndArgsInfo)
424 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
426 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
427 return new (Mem) DeclRefExpr(EmptyShell());
430 SourceLocation DeclRefExpr::getLocStart() const {
431 if (hasQualifier())
432 return getQualifierLoc().getBeginLoc();
433 return getNameInfo().getLocStart();
435 SourceLocation DeclRefExpr::getLocEnd() const {
436 if (hasExplicitTemplateArgs())
437 return getRAngleLoc();
438 return getNameInfo().getLocEnd();
441 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
442 StringLiteral *SL)
443 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
444 FNTy->isDependentType(), FNTy->isDependentType(),
445 FNTy->isInstantiationDependentType(),
446 /*ContainsUnexpandedParameterPack=*/false),
447 Loc(L), Type(IT), FnName(SL) {}
449 StringLiteral *PredefinedExpr::getFunctionName() {
450 return cast_or_null<StringLiteral>(FnName);
453 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
454 switch (IT) {
455 case Func:
456 return "__func__";
457 case Function:
458 return "__FUNCTION__";
459 case FuncDName:
460 return "__FUNCDNAME__";
461 case LFunction:
462 return "L__FUNCTION__";
463 case PrettyFunction:
464 return "__PRETTY_FUNCTION__";
465 case FuncSig:
466 return "__FUNCSIG__";
467 case PrettyFunctionNoVirtual:
468 break;
470 llvm_unreachable("Unknown ident type for PredefinedExpr");
473 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
474 // expr" policy instead.
475 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
476 ASTContext &Context = CurrentDecl->getASTContext();
478 if (IT == PredefinedExpr::FuncDName) {
479 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
480 std::unique_ptr<MangleContext> MC;
481 MC.reset(Context.createMangleContext());
483 if (MC->shouldMangleDeclName(ND)) {
484 SmallString<256> Buffer;
485 llvm::raw_svector_ostream Out(Buffer);
486 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
487 MC->mangleCXXCtor(CD, Ctor_Base, Out);
488 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
489 MC->mangleCXXDtor(DD, Dtor_Base, Out);
490 else
491 MC->mangleName(ND, Out);
493 Out.flush();
494 if (!Buffer.empty() && Buffer.front() == '\01')
495 return Buffer.substr(1);
496 return Buffer.str();
497 } else
498 return ND->getIdentifier()->getName();
500 return "";
502 if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
503 std::unique_ptr<MangleContext> MC;
504 MC.reset(Context.createMangleContext());
505 SmallString<256> Buffer;
506 llvm::raw_svector_ostream Out(Buffer);
507 auto DC = CurrentDecl->getDeclContext();
508 if (DC->isFileContext())
509 MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
510 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
511 MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
512 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
513 MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
514 else
515 MC->mangleBlock(DC, BD, Out);
516 return Out.str();
518 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
519 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
520 return FD->getNameAsString();
522 SmallString<256> Name;
523 llvm::raw_svector_ostream Out(Name);
525 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
526 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
527 Out << "virtual ";
528 if (MD->isStatic())
529 Out << "static ";
532 PrintingPolicy Policy(Context.getLangOpts());
533 std::string Proto;
534 llvm::raw_string_ostream POut(Proto);
536 const FunctionDecl *Decl = FD;
537 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
538 Decl = Pattern;
539 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
540 const FunctionProtoType *FT = nullptr;
541 if (FD->hasWrittenPrototype())
542 FT = dyn_cast<FunctionProtoType>(AFT);
544 if (IT == FuncSig) {
545 switch (FT->getCallConv()) {
546 case CC_C: POut << "__cdecl "; break;
547 case CC_X86StdCall: POut << "__stdcall "; break;
548 case CC_X86FastCall: POut << "__fastcall "; break;
549 case CC_X86ThisCall: POut << "__thiscall "; break;
550 case CC_X86VectorCall: POut << "__vectorcall "; break;
551 // Only bother printing the conventions that MSVC knows about.
552 default: break;
556 FD->printQualifiedName(POut, Policy);
558 POut << "(";
559 if (FT) {
560 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
561 if (i) POut << ", ";
562 POut << Decl->getParamDecl(i)->getType().stream(Policy);
565 if (FT->isVariadic()) {
566 if (FD->getNumParams()) POut << ", ";
567 POut << "...";
570 POut << ")";
572 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
573 const FunctionType *FT = MD->getType()->castAs<FunctionType>();
574 if (FT->isConst())
575 POut << " const";
576 if (FT->isVolatile())
577 POut << " volatile";
578 RefQualifierKind Ref = MD->getRefQualifier();
579 if (Ref == RQ_LValue)
580 POut << " &";
581 else if (Ref == RQ_RValue)
582 POut << " &&";
585 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
586 SpecsTy Specs;
587 const DeclContext *Ctx = FD->getDeclContext();
588 while (Ctx && isa<NamedDecl>(Ctx)) {
589 const ClassTemplateSpecializationDecl *Spec
590 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
591 if (Spec && !Spec->isExplicitSpecialization())
592 Specs.push_back(Spec);
593 Ctx = Ctx->getParent();
596 std::string TemplateParams;
597 llvm::raw_string_ostream TOut(TemplateParams);
598 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
599 I != E; ++I) {
600 const TemplateParameterList *Params
601 = (*I)->getSpecializedTemplate()->getTemplateParameters();
602 const TemplateArgumentList &Args = (*I)->getTemplateArgs();
603 assert(Params->size() == Args.size());
604 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
605 StringRef Param = Params->getParam(i)->getName();
606 if (Param.empty()) continue;
607 TOut << Param << " = ";
608 Args.get(i).print(Policy, TOut);
609 TOut << ", ";
613 FunctionTemplateSpecializationInfo *FSI
614 = FD->getTemplateSpecializationInfo();
615 if (FSI && !FSI->isExplicitSpecialization()) {
616 const TemplateParameterList* Params
617 = FSI->getTemplate()->getTemplateParameters();
618 const TemplateArgumentList* Args = FSI->TemplateArguments;
619 assert(Params->size() == Args->size());
620 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
621 StringRef Param = Params->getParam(i)->getName();
622 if (Param.empty()) continue;
623 TOut << Param << " = ";
624 Args->get(i).print(Policy, TOut);
625 TOut << ", ";
629 TOut.flush();
630 if (!TemplateParams.empty()) {
631 // remove the trailing comma and space
632 TemplateParams.resize(TemplateParams.size() - 2);
633 POut << " [" << TemplateParams << "]";
636 POut.flush();
638 // Print "auto" for all deduced return types. This includes C++1y return
639 // type deduction and lambdas. For trailing return types resolve the
640 // decltype expression. Otherwise print the real type when this is
641 // not a constructor or destructor.
642 if (isa<CXXMethodDecl>(FD) &&
643 cast<CXXMethodDecl>(FD)->getParent()->isLambda())
644 Proto = "auto " + Proto;
645 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
646 FT->getReturnType()
647 ->getAs<DecltypeType>()
648 ->getUnderlyingType()
649 .getAsStringInternal(Proto, Policy);
650 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
651 AFT->getReturnType().getAsStringInternal(Proto, Policy);
653 Out << Proto;
655 Out.flush();
656 return Name.str().str();
658 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
659 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
660 // Skip to its enclosing function or method, but not its enclosing
661 // CapturedDecl.
662 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
663 const Decl *D = Decl::castFromDeclContext(DC);
664 return ComputeName(IT, D);
666 llvm_unreachable("CapturedDecl not inside a function or method");
668 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
669 SmallString<256> Name;
670 llvm::raw_svector_ostream Out(Name);
671 Out << (MD->isInstanceMethod() ? '-' : '+');
672 Out << '[';
674 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
675 // a null check to avoid a crash.
676 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
677 Out << *ID;
679 if (const ObjCCategoryImplDecl *CID =
680 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
681 Out << '(' << *CID << ')';
683 Out << ' ';
684 MD->getSelector().print(Out);
685 Out << ']';
687 Out.flush();
688 return Name.str().str();
690 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
691 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
692 return "top level";
694 return "";
697 void APNumericStorage::setIntValue(const ASTContext &C,
698 const llvm::APInt &Val) {
699 if (hasAllocation())
700 C.Deallocate(pVal);
702 BitWidth = Val.getBitWidth();
703 unsigned NumWords = Val.getNumWords();
704 const uint64_t* Words = Val.getRawData();
705 if (NumWords > 1) {
706 pVal = new (C) uint64_t[NumWords];
707 std::copy(Words, Words + NumWords, pVal);
708 } else if (NumWords == 1)
709 VAL = Words[0];
710 else
711 VAL = 0;
714 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
715 QualType type, SourceLocation l)
716 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
717 false, false),
718 Loc(l) {
719 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
720 assert(V.getBitWidth() == C.getIntWidth(type) &&
721 "Integer type is not the correct size for constant.");
722 setValue(C, V);
725 IntegerLiteral *
726 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
727 QualType type, SourceLocation l) {
728 return new (C) IntegerLiteral(C, V, type, l);
731 IntegerLiteral *
732 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
733 return new (C) IntegerLiteral(Empty);
736 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
737 bool isexact, QualType Type, SourceLocation L)
738 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
739 false, false), Loc(L) {
740 setSemantics(V.getSemantics());
741 FloatingLiteralBits.IsExact = isexact;
742 setValue(C, V);
745 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
746 : Expr(FloatingLiteralClass, Empty) {
747 setRawSemantics(IEEEhalf);
748 FloatingLiteralBits.IsExact = false;
751 FloatingLiteral *
752 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
753 bool isexact, QualType Type, SourceLocation L) {
754 return new (C) FloatingLiteral(C, V, isexact, Type, L);
757 FloatingLiteral *
758 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
759 return new (C) FloatingLiteral(C, Empty);
762 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
763 switch(FloatingLiteralBits.Semantics) {
764 case IEEEhalf:
765 return llvm::APFloat::IEEEhalf;
766 case IEEEsingle:
767 return llvm::APFloat::IEEEsingle;
768 case IEEEdouble:
769 return llvm::APFloat::IEEEdouble;
770 case x87DoubleExtended:
771 return llvm::APFloat::x87DoubleExtended;
772 case IEEEquad:
773 return llvm::APFloat::IEEEquad;
774 case PPCDoubleDouble:
775 return llvm::APFloat::PPCDoubleDouble;
777 llvm_unreachable("Unrecognised floating semantics");
780 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
781 if (&Sem == &llvm::APFloat::IEEEhalf)
782 FloatingLiteralBits.Semantics = IEEEhalf;
783 else if (&Sem == &llvm::APFloat::IEEEsingle)
784 FloatingLiteralBits.Semantics = IEEEsingle;
785 else if (&Sem == &llvm::APFloat::IEEEdouble)
786 FloatingLiteralBits.Semantics = IEEEdouble;
787 else if (&Sem == &llvm::APFloat::x87DoubleExtended)
788 FloatingLiteralBits.Semantics = x87DoubleExtended;
789 else if (&Sem == &llvm::APFloat::IEEEquad)
790 FloatingLiteralBits.Semantics = IEEEquad;
791 else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
792 FloatingLiteralBits.Semantics = PPCDoubleDouble;
793 else
794 llvm_unreachable("Unknown floating semantics");
797 /// getValueAsApproximateDouble - This returns the value as an inaccurate
798 /// double. Note that this may cause loss of precision, but is useful for
799 /// debugging dumps, etc.
800 double FloatingLiteral::getValueAsApproximateDouble() const {
801 llvm::APFloat V = getValue();
802 bool ignored;
803 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
804 &ignored);
805 return V.convertToDouble();
808 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
809 int CharByteWidth = 0;
810 switch(k) {
811 case Ascii:
812 case UTF8:
813 CharByteWidth = target.getCharWidth();
814 break;
815 case Wide:
816 CharByteWidth = target.getWCharWidth();
817 break;
818 case UTF16:
819 CharByteWidth = target.getChar16Width();
820 break;
821 case UTF32:
822 CharByteWidth = target.getChar32Width();
823 break;
825 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
826 CharByteWidth /= 8;
827 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
828 && "character byte widths supported are 1, 2, and 4 only");
829 return CharByteWidth;
832 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
833 StringKind Kind, bool Pascal, QualType Ty,
834 const SourceLocation *Loc,
835 unsigned NumStrs) {
836 assert(C.getAsConstantArrayType(Ty) &&
837 "StringLiteral must be of constant array type!");
839 // Allocate enough space for the StringLiteral plus an array of locations for
840 // any concatenated string tokens.
841 void *Mem = C.Allocate(sizeof(StringLiteral)+
842 sizeof(SourceLocation)*(NumStrs-1),
843 llvm::alignOf<StringLiteral>());
844 StringLiteral *SL = new (Mem) StringLiteral(Ty);
846 // OPTIMIZE: could allocate this appended to the StringLiteral.
847 SL->setString(C,Str,Kind,Pascal);
849 SL->TokLocs[0] = Loc[0];
850 SL->NumConcatenated = NumStrs;
852 if (NumStrs != 1)
853 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
854 return SL;
857 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
858 unsigned NumStrs) {
859 void *Mem = C.Allocate(sizeof(StringLiteral)+
860 sizeof(SourceLocation)*(NumStrs-1),
861 llvm::alignOf<StringLiteral>());
862 StringLiteral *SL = new (Mem) StringLiteral(QualType());
863 SL->CharByteWidth = 0;
864 SL->Length = 0;
865 SL->NumConcatenated = NumStrs;
866 return SL;
869 void StringLiteral::outputString(raw_ostream &OS) const {
870 switch (getKind()) {
871 case Ascii: break; // no prefix.
872 case Wide: OS << 'L'; break;
873 case UTF8: OS << "u8"; break;
874 case UTF16: OS << 'u'; break;
875 case UTF32: OS << 'U'; break;
877 OS << '"';
878 static const char Hex[] = "0123456789ABCDEF";
880 unsigned LastSlashX = getLength();
881 for (unsigned I = 0, N = getLength(); I != N; ++I) {
882 switch (uint32_t Char = getCodeUnit(I)) {
883 default:
884 // FIXME: Convert UTF-8 back to codepoints before rendering.
886 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
887 // Leave invalid surrogates alone; we'll use \x for those.
888 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
889 Char <= 0xdbff) {
890 uint32_t Trail = getCodeUnit(I + 1);
891 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
892 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
893 ++I;
897 if (Char > 0xff) {
898 // If this is a wide string, output characters over 0xff using \x
899 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
900 // codepoint: use \x escapes for invalid codepoints.
901 if (getKind() == Wide ||
902 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
903 // FIXME: Is this the best way to print wchar_t?
904 OS << "\\x";
905 int Shift = 28;
906 while ((Char >> Shift) == 0)
907 Shift -= 4;
908 for (/**/; Shift >= 0; Shift -= 4)
909 OS << Hex[(Char >> Shift) & 15];
910 LastSlashX = I;
911 break;
914 if (Char > 0xffff)
915 OS << "\\U00"
916 << Hex[(Char >> 20) & 15]
917 << Hex[(Char >> 16) & 15];
918 else
919 OS << "\\u";
920 OS << Hex[(Char >> 12) & 15]
921 << Hex[(Char >> 8) & 15]
922 << Hex[(Char >> 4) & 15]
923 << Hex[(Char >> 0) & 15];
924 break;
927 // If we used \x... for the previous character, and this character is a
928 // hexadecimal digit, prevent it being slurped as part of the \x.
929 if (LastSlashX + 1 == I) {
930 switch (Char) {
931 case '0': case '1': case '2': case '3': case '4':
932 case '5': case '6': case '7': case '8': case '9':
933 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
934 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
935 OS << "\"\"";
939 assert(Char <= 0xff &&
940 "Characters above 0xff should already have been handled.");
942 if (isPrintable(Char))
943 OS << (char)Char;
944 else // Output anything hard as an octal escape.
945 OS << '\\'
946 << (char)('0' + ((Char >> 6) & 7))
947 << (char)('0' + ((Char >> 3) & 7))
948 << (char)('0' + ((Char >> 0) & 7));
949 break;
950 // Handle some common non-printable cases to make dumps prettier.
951 case '\\': OS << "\\\\"; break;
952 case '"': OS << "\\\""; break;
953 case '\n': OS << "\\n"; break;
954 case '\t': OS << "\\t"; break;
955 case '\a': OS << "\\a"; break;
956 case '\b': OS << "\\b"; break;
959 OS << '"';
962 void StringLiteral::setString(const ASTContext &C, StringRef Str,
963 StringKind Kind, bool IsPascal) {
964 //FIXME: we assume that the string data comes from a target that uses the same
965 // code unit size and endianess for the type of string.
966 this->Kind = Kind;
967 this->IsPascal = IsPascal;
969 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
970 assert((Str.size()%CharByteWidth == 0)
971 && "size of data must be multiple of CharByteWidth");
972 Length = Str.size()/CharByteWidth;
974 switch(CharByteWidth) {
975 case 1: {
976 char *AStrData = new (C) char[Length];
977 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
978 StrData.asChar = AStrData;
979 break;
981 case 2: {
982 uint16_t *AStrData = new (C) uint16_t[Length];
983 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
984 StrData.asUInt16 = AStrData;
985 break;
987 case 4: {
988 uint32_t *AStrData = new (C) uint32_t[Length];
989 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
990 StrData.asUInt32 = AStrData;
991 break;
993 default:
994 assert(false && "unsupported CharByteWidth");
998 /// getLocationOfByte - Return a source location that points to the specified
999 /// byte of this string literal.
1001 /// Strings are amazingly complex. They can be formed from multiple tokens and
1002 /// can have escape sequences in them in addition to the usual trigraph and
1003 /// escaped newline business. This routine handles this complexity.
1005 SourceLocation StringLiteral::
1006 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1007 const LangOptions &Features, const TargetInfo &Target) const {
1008 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
1009 "Only narrow string literals are currently supported");
1011 // Loop over all of the tokens in this string until we find the one that
1012 // contains the byte we're looking for.
1013 unsigned TokNo = 0;
1014 while (1) {
1015 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1016 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1018 // Get the spelling of the string so that we can get the data that makes up
1019 // the string literal, not the identifier for the macro it is potentially
1020 // expanded through.
1021 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1023 // Re-lex the token to get its length and original spelling.
1024 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
1025 bool Invalid = false;
1026 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1027 if (Invalid)
1028 return StrTokSpellingLoc;
1030 const char *StrData = Buffer.data()+LocInfo.second;
1032 // Create a lexer starting at the beginning of this token.
1033 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1034 Buffer.begin(), StrData, Buffer.end());
1035 Token TheTok;
1036 TheLexer.LexFromRawLexer(TheTok);
1038 // Use the StringLiteralParser to compute the length of the string in bytes.
1039 StringLiteralParser SLP(TheTok, SM, Features, Target);
1040 unsigned TokNumBytes = SLP.GetStringLength();
1042 // If the byte is in this token, return the location of the byte.
1043 if (ByteNo < TokNumBytes ||
1044 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1045 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1047 // Now that we know the offset of the token in the spelling, use the
1048 // preprocessor to get the offset in the original source.
1049 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1052 // Move to the next string token.
1053 ++TokNo;
1054 ByteNo -= TokNumBytes;
1060 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1061 /// corresponds to, e.g. "sizeof" or "[pre]++".
1062 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1063 switch (Op) {
1064 case UO_PostInc: return "++";
1065 case UO_PostDec: return "--";
1066 case UO_PreInc: return "++";
1067 case UO_PreDec: return "--";
1068 case UO_AddrOf: return "&";
1069 case UO_Deref: return "*";
1070 case UO_Plus: return "+";
1071 case UO_Minus: return "-";
1072 case UO_Not: return "~";
1073 case UO_LNot: return "!";
1074 case UO_Real: return "__real";
1075 case UO_Imag: return "__imag";
1076 case UO_Extension: return "__extension__";
1078 llvm_unreachable("Unknown unary operator");
1081 UnaryOperatorKind
1082 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1083 switch (OO) {
1084 default: llvm_unreachable("No unary operator for overloaded function");
1085 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1086 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1087 case OO_Amp: return UO_AddrOf;
1088 case OO_Star: return UO_Deref;
1089 case OO_Plus: return UO_Plus;
1090 case OO_Minus: return UO_Minus;
1091 case OO_Tilde: return UO_Not;
1092 case OO_Exclaim: return UO_LNot;
1096 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1097 switch (Opc) {
1098 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1099 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1100 case UO_AddrOf: return OO_Amp;
1101 case UO_Deref: return OO_Star;
1102 case UO_Plus: return OO_Plus;
1103 case UO_Minus: return OO_Minus;
1104 case UO_Not: return OO_Tilde;
1105 case UO_LNot: return OO_Exclaim;
1106 default: return OO_None;
1111 //===----------------------------------------------------------------------===//
1112 // Postfix Operators.
1113 //===----------------------------------------------------------------------===//
1115 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
1116 unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
1117 ExprValueKind VK, SourceLocation rparenloc)
1118 : Expr(SC, t, VK, OK_Ordinary,
1119 fn->isTypeDependent(),
1120 fn->isValueDependent(),
1121 fn->isInstantiationDependent(),
1122 fn->containsUnexpandedParameterPack()),
1123 NumArgs(args.size()) {
1125 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1126 SubExprs[FN] = fn;
1127 for (unsigned i = 0; i != args.size(); ++i) {
1128 if (args[i]->isTypeDependent())
1129 ExprBits.TypeDependent = true;
1130 if (args[i]->isValueDependent())
1131 ExprBits.ValueDependent = true;
1132 if (args[i]->isInstantiationDependent())
1133 ExprBits.InstantiationDependent = true;
1134 if (args[i]->containsUnexpandedParameterPack())
1135 ExprBits.ContainsUnexpandedParameterPack = true;
1137 SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1140 CallExprBits.NumPreArgs = NumPreArgs;
1141 RParenLoc = rparenloc;
1144 CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1145 QualType t, ExprValueKind VK, SourceLocation rparenloc)
1146 : Expr(CallExprClass, t, VK, OK_Ordinary,
1147 fn->isTypeDependent(),
1148 fn->isValueDependent(),
1149 fn->isInstantiationDependent(),
1150 fn->containsUnexpandedParameterPack()),
1151 NumArgs(args.size()) {
1153 SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1154 SubExprs[FN] = fn;
1155 for (unsigned i = 0; i != args.size(); ++i) {
1156 if (args[i]->isTypeDependent())
1157 ExprBits.TypeDependent = true;
1158 if (args[i]->isValueDependent())
1159 ExprBits.ValueDependent = true;
1160 if (args[i]->isInstantiationDependent())
1161 ExprBits.InstantiationDependent = true;
1162 if (args[i]->containsUnexpandedParameterPack())
1163 ExprBits.ContainsUnexpandedParameterPack = true;
1165 SubExprs[i+PREARGS_START] = args[i];
1168 CallExprBits.NumPreArgs = 0;
1169 RParenLoc = rparenloc;
1172 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1173 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1174 // FIXME: Why do we allocate this?
1175 SubExprs = new (C) Stmt*[PREARGS_START];
1176 CallExprBits.NumPreArgs = 0;
1179 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1180 EmptyShell Empty)
1181 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1182 // FIXME: Why do we allocate this?
1183 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1184 CallExprBits.NumPreArgs = NumPreArgs;
1187 Decl *CallExpr::getCalleeDecl() {
1188 Expr *CEE = getCallee()->IgnoreParenImpCasts();
1190 while (SubstNonTypeTemplateParmExpr *NTTP
1191 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1192 CEE = NTTP->getReplacement()->IgnoreParenCasts();
1195 // If we're calling a dereference, look at the pointer instead.
1196 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1197 if (BO->isPtrMemOp())
1198 CEE = BO->getRHS()->IgnoreParenCasts();
1199 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1200 if (UO->getOpcode() == UO_Deref)
1201 CEE = UO->getSubExpr()->IgnoreParenCasts();
1203 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1204 return DRE->getDecl();
1205 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1206 return ME->getMemberDecl();
1208 return nullptr;
1211 FunctionDecl *CallExpr::getDirectCallee() {
1212 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1215 /// setNumArgs - This changes the number of arguments present in this call.
1216 /// Any orphaned expressions are deleted by this, and any new operands are set
1217 /// to null.
1218 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1219 // No change, just return.
1220 if (NumArgs == getNumArgs()) return;
1222 // If shrinking # arguments, just delete the extras and forgot them.
1223 if (NumArgs < getNumArgs()) {
1224 this->NumArgs = NumArgs;
1225 return;
1228 // Otherwise, we are growing the # arguments. New an bigger argument array.
1229 unsigned NumPreArgs = getNumPreArgs();
1230 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1231 // Copy over args.
1232 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1233 NewSubExprs[i] = SubExprs[i];
1234 // Null out new args.
1235 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1236 i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1237 NewSubExprs[i] = nullptr;
1239 if (SubExprs) C.Deallocate(SubExprs);
1240 SubExprs = NewSubExprs;
1241 this->NumArgs = NumArgs;
1244 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1245 /// not, return 0.
1246 unsigned CallExpr::getBuiltinCallee() const {
1247 // All simple function calls (e.g. func()) are implicitly cast to pointer to
1248 // function. As a result, we try and obtain the DeclRefExpr from the
1249 // ImplicitCastExpr.
1250 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1251 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1252 return 0;
1254 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1255 if (!DRE)
1256 return 0;
1258 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1259 if (!FDecl)
1260 return 0;
1262 if (!FDecl->getIdentifier())
1263 return 0;
1265 return FDecl->getBuiltinID();
1268 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1269 if (unsigned BI = getBuiltinCallee())
1270 return Ctx.BuiltinInfo.isUnevaluated(BI);
1271 return false;
1274 QualType CallExpr::getCallReturnType() const {
1275 QualType CalleeType = getCallee()->getType();
1276 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1277 CalleeType = FnTypePtr->getPointeeType();
1278 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1279 CalleeType = BPT->getPointeeType();
1280 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1281 // This should never be overloaded and so should never return null.
1282 CalleeType = Expr::findBoundMemberType(getCallee());
1284 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1285 return FnType->getReturnType();
1288 SourceLocation CallExpr::getLocStart() const {
1289 if (isa<CXXOperatorCallExpr>(this))
1290 return cast<CXXOperatorCallExpr>(this)->getLocStart();
1292 SourceLocation begin = getCallee()->getLocStart();
1293 if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1294 begin = getArg(0)->getLocStart();
1295 return begin;
1297 SourceLocation CallExpr::getLocEnd() const {
1298 if (isa<CXXOperatorCallExpr>(this))
1299 return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1301 SourceLocation end = getRParenLoc();
1302 if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1303 end = getArg(getNumArgs() - 1)->getLocEnd();
1304 return end;
1307 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1308 SourceLocation OperatorLoc,
1309 TypeSourceInfo *tsi,
1310 ArrayRef<OffsetOfNode> comps,
1311 ArrayRef<Expr*> exprs,
1312 SourceLocation RParenLoc) {
1313 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1314 sizeof(OffsetOfNode) * comps.size() +
1315 sizeof(Expr*) * exprs.size());
1317 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1318 RParenLoc);
1321 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1322 unsigned numComps, unsigned numExprs) {
1323 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1324 sizeof(OffsetOfNode) * numComps +
1325 sizeof(Expr*) * numExprs);
1326 return new (Mem) OffsetOfExpr(numComps, numExprs);
1329 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1330 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1331 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1332 SourceLocation RParenLoc)
1333 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1334 /*TypeDependent=*/false,
1335 /*ValueDependent=*/tsi->getType()->isDependentType(),
1336 tsi->getType()->isInstantiationDependentType(),
1337 tsi->getType()->containsUnexpandedParameterPack()),
1338 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1339 NumComps(comps.size()), NumExprs(exprs.size())
1341 for (unsigned i = 0; i != comps.size(); ++i) {
1342 setComponent(i, comps[i]);
1345 for (unsigned i = 0; i != exprs.size(); ++i) {
1346 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1347 ExprBits.ValueDependent = true;
1348 if (exprs[i]->containsUnexpandedParameterPack())
1349 ExprBits.ContainsUnexpandedParameterPack = true;
1351 setIndexExpr(i, exprs[i]);
1355 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1356 assert(getKind() == Field || getKind() == Identifier);
1357 if (getKind() == Field)
1358 return getField()->getIdentifier();
1360 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1363 MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow,
1364 NestedNameSpecifierLoc QualifierLoc,
1365 SourceLocation TemplateKWLoc,
1366 ValueDecl *memberdecl,
1367 DeclAccessPair founddecl,
1368 DeclarationNameInfo nameinfo,
1369 const TemplateArgumentListInfo *targs,
1370 QualType ty,
1371 ExprValueKind vk,
1372 ExprObjectKind ok) {
1373 std::size_t Size = sizeof(MemberExpr);
1375 bool hasQualOrFound = (QualifierLoc ||
1376 founddecl.getDecl() != memberdecl ||
1377 founddecl.getAccess() != memberdecl->getAccess());
1378 if (hasQualOrFound)
1379 Size += sizeof(MemberNameQualifier);
1381 if (targs)
1382 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1383 else if (TemplateKWLoc.isValid())
1384 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1386 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1387 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1388 ty, vk, ok);
1390 if (hasQualOrFound) {
1391 // FIXME: Wrong. We should be looking at the member declaration we found.
1392 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1393 E->setValueDependent(true);
1394 E->setTypeDependent(true);
1395 E->setInstantiationDependent(true);
1397 else if (QualifierLoc &&
1398 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1399 E->setInstantiationDependent(true);
1401 E->HasQualifierOrFoundDecl = true;
1403 MemberNameQualifier *NQ = E->getMemberQualifier();
1404 NQ->QualifierLoc = QualifierLoc;
1405 NQ->FoundDecl = founddecl;
1408 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1410 if (targs) {
1411 bool Dependent = false;
1412 bool InstantiationDependent = false;
1413 bool ContainsUnexpandedParameterPack = false;
1414 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1415 Dependent,
1416 InstantiationDependent,
1417 ContainsUnexpandedParameterPack);
1418 if (InstantiationDependent)
1419 E->setInstantiationDependent(true);
1420 } else if (TemplateKWLoc.isValid()) {
1421 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1424 return E;
1427 SourceLocation MemberExpr::getLocStart() const {
1428 if (isImplicitAccess()) {
1429 if (hasQualifier())
1430 return getQualifierLoc().getBeginLoc();
1431 return MemberLoc;
1434 // FIXME: We don't want this to happen. Rather, we should be able to
1435 // detect all kinds of implicit accesses more cleanly.
1436 SourceLocation BaseStartLoc = getBase()->getLocStart();
1437 if (BaseStartLoc.isValid())
1438 return BaseStartLoc;
1439 return MemberLoc;
1441 SourceLocation MemberExpr::getLocEnd() const {
1442 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1443 if (hasExplicitTemplateArgs())
1444 EndLoc = getRAngleLoc();
1445 else if (EndLoc.isInvalid())
1446 EndLoc = getBase()->getLocEnd();
1447 return EndLoc;
1450 bool CastExpr::CastConsistency() const {
1451 switch (getCastKind()) {
1452 case CK_DerivedToBase:
1453 case CK_UncheckedDerivedToBase:
1454 case CK_DerivedToBaseMemberPointer:
1455 case CK_BaseToDerived:
1456 case CK_BaseToDerivedMemberPointer:
1457 assert(!path_empty() && "Cast kind should have a base path!");
1458 break;
1460 case CK_CPointerToObjCPointerCast:
1461 assert(getType()->isObjCObjectPointerType());
1462 assert(getSubExpr()->getType()->isPointerType());
1463 goto CheckNoBasePath;
1465 case CK_BlockPointerToObjCPointerCast:
1466 assert(getType()->isObjCObjectPointerType());
1467 assert(getSubExpr()->getType()->isBlockPointerType());
1468 goto CheckNoBasePath;
1470 case CK_ReinterpretMemberPointer:
1471 assert(getType()->isMemberPointerType());
1472 assert(getSubExpr()->getType()->isMemberPointerType());
1473 goto CheckNoBasePath;
1475 case CK_BitCast:
1476 // Arbitrary casts to C pointer types count as bitcasts.
1477 // Otherwise, we should only have block and ObjC pointer casts
1478 // here if they stay within the type kind.
1479 if (!getType()->isPointerType()) {
1480 assert(getType()->isObjCObjectPointerType() ==
1481 getSubExpr()->getType()->isObjCObjectPointerType());
1482 assert(getType()->isBlockPointerType() ==
1483 getSubExpr()->getType()->isBlockPointerType());
1485 goto CheckNoBasePath;
1487 case CK_AnyPointerToBlockPointerCast:
1488 assert(getType()->isBlockPointerType());
1489 assert(getSubExpr()->getType()->isAnyPointerType() &&
1490 !getSubExpr()->getType()->isBlockPointerType());
1491 goto CheckNoBasePath;
1493 case CK_CopyAndAutoreleaseBlockObject:
1494 assert(getType()->isBlockPointerType());
1495 assert(getSubExpr()->getType()->isBlockPointerType());
1496 goto CheckNoBasePath;
1498 case CK_FunctionToPointerDecay:
1499 assert(getType()->isPointerType());
1500 assert(getSubExpr()->getType()->isFunctionType());
1501 goto CheckNoBasePath;
1503 case CK_AddressSpaceConversion:
1504 assert(getType()->isPointerType());
1505 assert(getSubExpr()->getType()->isPointerType());
1506 assert(getType()->getPointeeType().getAddressSpace() !=
1507 getSubExpr()->getType()->getPointeeType().getAddressSpace());
1508 // These should not have an inheritance path.
1509 case CK_Dynamic:
1510 case CK_ToUnion:
1511 case CK_ArrayToPointerDecay:
1512 case CK_NullToMemberPointer:
1513 case CK_NullToPointer:
1514 case CK_ConstructorConversion:
1515 case CK_IntegralToPointer:
1516 case CK_PointerToIntegral:
1517 case CK_ToVoid:
1518 case CK_VectorSplat:
1519 case CK_IntegralCast:
1520 case CK_IntegralToFloating:
1521 case CK_FloatingToIntegral:
1522 case CK_FloatingCast:
1523 case CK_ObjCObjectLValueCast:
1524 case CK_FloatingRealToComplex:
1525 case CK_FloatingComplexToReal:
1526 case CK_FloatingComplexCast:
1527 case CK_FloatingComplexToIntegralComplex:
1528 case CK_IntegralRealToComplex:
1529 case CK_IntegralComplexToReal:
1530 case CK_IntegralComplexCast:
1531 case CK_IntegralComplexToFloatingComplex:
1532 case CK_ARCProduceObject:
1533 case CK_ARCConsumeObject:
1534 case CK_ARCReclaimReturnedObject:
1535 case CK_ARCExtendBlockObject:
1536 case CK_ZeroToOCLEvent:
1537 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1538 goto CheckNoBasePath;
1540 case CK_Dependent:
1541 case CK_LValueToRValue:
1542 case CK_NoOp:
1543 case CK_AtomicToNonAtomic:
1544 case CK_NonAtomicToAtomic:
1545 case CK_PointerToBoolean:
1546 case CK_IntegralToBoolean:
1547 case CK_FloatingToBoolean:
1548 case CK_MemberPointerToBoolean:
1549 case CK_FloatingComplexToBoolean:
1550 case CK_IntegralComplexToBoolean:
1551 case CK_LValueBitCast: // -> bool&
1552 case CK_UserDefinedConversion: // operator bool()
1553 case CK_BuiltinFnToFnPtr:
1554 CheckNoBasePath:
1555 assert(path_empty() && "Cast kind should not have a base path!");
1556 break;
1558 return true;
1561 const char *CastExpr::getCastKindName() const {
1562 switch (getCastKind()) {
1563 case CK_Dependent:
1564 return "Dependent";
1565 case CK_BitCast:
1566 return "BitCast";
1567 case CK_LValueBitCast:
1568 return "LValueBitCast";
1569 case CK_LValueToRValue:
1570 return "LValueToRValue";
1571 case CK_NoOp:
1572 return "NoOp";
1573 case CK_BaseToDerived:
1574 return "BaseToDerived";
1575 case CK_DerivedToBase:
1576 return "DerivedToBase";
1577 case CK_UncheckedDerivedToBase:
1578 return "UncheckedDerivedToBase";
1579 case CK_Dynamic:
1580 return "Dynamic";
1581 case CK_ToUnion:
1582 return "ToUnion";
1583 case CK_ArrayToPointerDecay:
1584 return "ArrayToPointerDecay";
1585 case CK_FunctionToPointerDecay:
1586 return "FunctionToPointerDecay";
1587 case CK_NullToMemberPointer:
1588 return "NullToMemberPointer";
1589 case CK_NullToPointer:
1590 return "NullToPointer";
1591 case CK_BaseToDerivedMemberPointer:
1592 return "BaseToDerivedMemberPointer";
1593 case CK_DerivedToBaseMemberPointer:
1594 return "DerivedToBaseMemberPointer";
1595 case CK_ReinterpretMemberPointer:
1596 return "ReinterpretMemberPointer";
1597 case CK_UserDefinedConversion:
1598 return "UserDefinedConversion";
1599 case CK_ConstructorConversion:
1600 return "ConstructorConversion";
1601 case CK_IntegralToPointer:
1602 return "IntegralToPointer";
1603 case CK_PointerToIntegral:
1604 return "PointerToIntegral";
1605 case CK_PointerToBoolean:
1606 return "PointerToBoolean";
1607 case CK_ToVoid:
1608 return "ToVoid";
1609 case CK_VectorSplat:
1610 return "VectorSplat";
1611 case CK_IntegralCast:
1612 return "IntegralCast";
1613 case CK_IntegralToBoolean:
1614 return "IntegralToBoolean";
1615 case CK_IntegralToFloating:
1616 return "IntegralToFloating";
1617 case CK_FloatingToIntegral:
1618 return "FloatingToIntegral";
1619 case CK_FloatingCast:
1620 return "FloatingCast";
1621 case CK_FloatingToBoolean:
1622 return "FloatingToBoolean";
1623 case CK_MemberPointerToBoolean:
1624 return "MemberPointerToBoolean";
1625 case CK_CPointerToObjCPointerCast:
1626 return "CPointerToObjCPointerCast";
1627 case CK_BlockPointerToObjCPointerCast:
1628 return "BlockPointerToObjCPointerCast";
1629 case CK_AnyPointerToBlockPointerCast:
1630 return "AnyPointerToBlockPointerCast";
1631 case CK_ObjCObjectLValueCast:
1632 return "ObjCObjectLValueCast";
1633 case CK_FloatingRealToComplex:
1634 return "FloatingRealToComplex";
1635 case CK_FloatingComplexToReal:
1636 return "FloatingComplexToReal";
1637 case CK_FloatingComplexToBoolean:
1638 return "FloatingComplexToBoolean";
1639 case CK_FloatingComplexCast:
1640 return "FloatingComplexCast";
1641 case CK_FloatingComplexToIntegralComplex:
1642 return "FloatingComplexToIntegralComplex";
1643 case CK_IntegralRealToComplex:
1644 return "IntegralRealToComplex";
1645 case CK_IntegralComplexToReal:
1646 return "IntegralComplexToReal";
1647 case CK_IntegralComplexToBoolean:
1648 return "IntegralComplexToBoolean";
1649 case CK_IntegralComplexCast:
1650 return "IntegralComplexCast";
1651 case CK_IntegralComplexToFloatingComplex:
1652 return "IntegralComplexToFloatingComplex";
1653 case CK_ARCConsumeObject:
1654 return "ARCConsumeObject";
1655 case CK_ARCProduceObject:
1656 return "ARCProduceObject";
1657 case CK_ARCReclaimReturnedObject:
1658 return "ARCReclaimReturnedObject";
1659 case CK_ARCExtendBlockObject:
1660 return "ARCExtendBlockObject";
1661 case CK_AtomicToNonAtomic:
1662 return "AtomicToNonAtomic";
1663 case CK_NonAtomicToAtomic:
1664 return "NonAtomicToAtomic";
1665 case CK_CopyAndAutoreleaseBlockObject:
1666 return "CopyAndAutoreleaseBlockObject";
1667 case CK_BuiltinFnToFnPtr:
1668 return "BuiltinFnToFnPtr";
1669 case CK_ZeroToOCLEvent:
1670 return "ZeroToOCLEvent";
1671 case CK_AddressSpaceConversion:
1672 return "AddressSpaceConversion";
1675 llvm_unreachable("Unhandled cast kind!");
1678 Expr *CastExpr::getSubExprAsWritten() {
1679 Expr *SubExpr = nullptr;
1680 CastExpr *E = this;
1681 do {
1682 SubExpr = E->getSubExpr();
1684 // Skip through reference binding to temporary.
1685 if (MaterializeTemporaryExpr *Materialize
1686 = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1687 SubExpr = Materialize->GetTemporaryExpr();
1689 // Skip any temporary bindings; they're implicit.
1690 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1691 SubExpr = Binder->getSubExpr();
1693 // Conversions by constructor and conversion functions have a
1694 // subexpression describing the call; strip it off.
1695 if (E->getCastKind() == CK_ConstructorConversion)
1696 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1697 else if (E->getCastKind() == CK_UserDefinedConversion)
1698 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1700 // If the subexpression we're left with is an implicit cast, look
1701 // through that, too.
1702 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1704 return SubExpr;
1707 CXXBaseSpecifier **CastExpr::path_buffer() {
1708 switch (getStmtClass()) {
1709 #define ABSTRACT_STMT(x)
1710 #define CASTEXPR(Type, Base) \
1711 case Stmt::Type##Class: \
1712 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1713 #define STMT(Type, Base)
1714 #include "clang/AST/StmtNodes.inc"
1715 default:
1716 llvm_unreachable("non-cast expressions not possible here");
1720 void CastExpr::setCastPath(const CXXCastPath &Path) {
1721 assert(Path.size() == path_size());
1722 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1725 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1726 CastKind Kind, Expr *Operand,
1727 const CXXCastPath *BasePath,
1728 ExprValueKind VK) {
1729 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1730 void *Buffer =
1731 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1732 ImplicitCastExpr *E =
1733 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1734 if (PathSize) E->setCastPath(*BasePath);
1735 return E;
1738 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1739 unsigned PathSize) {
1740 void *Buffer =
1741 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1742 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1746 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1747 ExprValueKind VK, CastKind K, Expr *Op,
1748 const CXXCastPath *BasePath,
1749 TypeSourceInfo *WrittenTy,
1750 SourceLocation L, SourceLocation R) {
1751 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1752 void *Buffer =
1753 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1754 CStyleCastExpr *E =
1755 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1756 if (PathSize) E->setCastPath(*BasePath);
1757 return E;
1760 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1761 unsigned PathSize) {
1762 void *Buffer =
1763 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1764 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1767 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1768 /// corresponds to, e.g. "<<=".
1769 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1770 switch (Op) {
1771 case BO_PtrMemD: return ".*";
1772 case BO_PtrMemI: return "->*";
1773 case BO_Mul: return "*";
1774 case BO_Div: return "/";
1775 case BO_Rem: return "%";
1776 case BO_Add: return "+";
1777 case BO_Sub: return "-";
1778 case BO_Shl: return "<<";
1779 case BO_Shr: return ">>";
1780 case BO_LT: return "<";
1781 case BO_GT: return ">";
1782 case BO_LE: return "<=";
1783 case BO_GE: return ">=";
1784 case BO_EQ: return "==";
1785 case BO_NE: return "!=";
1786 case BO_And: return "&";
1787 case BO_Xor: return "^";
1788 case BO_Or: return "|";
1789 case BO_LAnd: return "&&";
1790 case BO_LOr: return "||";
1791 case BO_Assign: return "=";
1792 case BO_MulAssign: return "*=";
1793 case BO_DivAssign: return "/=";
1794 case BO_RemAssign: return "%=";
1795 case BO_AddAssign: return "+=";
1796 case BO_SubAssign: return "-=";
1797 case BO_ShlAssign: return "<<=";
1798 case BO_ShrAssign: return ">>=";
1799 case BO_AndAssign: return "&=";
1800 case BO_XorAssign: return "^=";
1801 case BO_OrAssign: return "|=";
1802 case BO_Comma: return ",";
1805 llvm_unreachable("Invalid OpCode!");
1808 BinaryOperatorKind
1809 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1810 switch (OO) {
1811 default: llvm_unreachable("Not an overloadable binary operator");
1812 case OO_Plus: return BO_Add;
1813 case OO_Minus: return BO_Sub;
1814 case OO_Star: return BO_Mul;
1815 case OO_Slash: return BO_Div;
1816 case OO_Percent: return BO_Rem;
1817 case OO_Caret: return BO_Xor;
1818 case OO_Amp: return BO_And;
1819 case OO_Pipe: return BO_Or;
1820 case OO_Equal: return BO_Assign;
1821 case OO_Less: return BO_LT;
1822 case OO_Greater: return BO_GT;
1823 case OO_PlusEqual: return BO_AddAssign;
1824 case OO_MinusEqual: return BO_SubAssign;
1825 case OO_StarEqual: return BO_MulAssign;
1826 case OO_SlashEqual: return BO_DivAssign;
1827 case OO_PercentEqual: return BO_RemAssign;
1828 case OO_CaretEqual: return BO_XorAssign;
1829 case OO_AmpEqual: return BO_AndAssign;
1830 case OO_PipeEqual: return BO_OrAssign;
1831 case OO_LessLess: return BO_Shl;
1832 case OO_GreaterGreater: return BO_Shr;
1833 case OO_LessLessEqual: return BO_ShlAssign;
1834 case OO_GreaterGreaterEqual: return BO_ShrAssign;
1835 case OO_EqualEqual: return BO_EQ;
1836 case OO_ExclaimEqual: return BO_NE;
1837 case OO_LessEqual: return BO_LE;
1838 case OO_GreaterEqual: return BO_GE;
1839 case OO_AmpAmp: return BO_LAnd;
1840 case OO_PipePipe: return BO_LOr;
1841 case OO_Comma: return BO_Comma;
1842 case OO_ArrowStar: return BO_PtrMemI;
1846 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1847 static const OverloadedOperatorKind OverOps[] = {
1848 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1849 OO_Star, OO_Slash, OO_Percent,
1850 OO_Plus, OO_Minus,
1851 OO_LessLess, OO_GreaterGreater,
1852 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1853 OO_EqualEqual, OO_ExclaimEqual,
1854 OO_Amp,
1855 OO_Caret,
1856 OO_Pipe,
1857 OO_AmpAmp,
1858 OO_PipePipe,
1859 OO_Equal, OO_StarEqual,
1860 OO_SlashEqual, OO_PercentEqual,
1861 OO_PlusEqual, OO_MinusEqual,
1862 OO_LessLessEqual, OO_GreaterGreaterEqual,
1863 OO_AmpEqual, OO_CaretEqual,
1864 OO_PipeEqual,
1865 OO_Comma
1867 return OverOps[Opc];
1870 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1871 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1872 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1873 false, false),
1874 InitExprs(C, initExprs.size()),
1875 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1877 sawArrayRangeDesignator(false);
1878 for (unsigned I = 0; I != initExprs.size(); ++I) {
1879 if (initExprs[I]->isTypeDependent())
1880 ExprBits.TypeDependent = true;
1881 if (initExprs[I]->isValueDependent())
1882 ExprBits.ValueDependent = true;
1883 if (initExprs[I]->isInstantiationDependent())
1884 ExprBits.InstantiationDependent = true;
1885 if (initExprs[I]->containsUnexpandedParameterPack())
1886 ExprBits.ContainsUnexpandedParameterPack = true;
1889 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1892 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1893 if (NumInits > InitExprs.size())
1894 InitExprs.reserve(C, NumInits);
1897 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1898 InitExprs.resize(C, NumInits, nullptr);
1901 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1902 if (Init >= InitExprs.size()) {
1903 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1904 setInit(Init, expr);
1905 return nullptr;
1908 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1909 setInit(Init, expr);
1910 return Result;
1913 void InitListExpr::setArrayFiller(Expr *filler) {
1914 assert(!hasArrayFiller() && "Filler already set!");
1915 ArrayFillerOrUnionFieldInit = filler;
1916 // Fill out any "holes" in the array due to designated initializers.
1917 Expr **inits = getInits();
1918 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1919 if (inits[i] == nullptr)
1920 inits[i] = filler;
1923 bool InitListExpr::isStringLiteralInit() const {
1924 if (getNumInits() != 1)
1925 return false;
1926 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1927 if (!AT || !AT->getElementType()->isIntegerType())
1928 return false;
1929 // It is possible for getInit() to return null.
1930 const Expr *Init = getInit(0);
1931 if (!Init)
1932 return false;
1933 Init = Init->IgnoreParens();
1934 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1937 SourceLocation InitListExpr::getLocStart() const {
1938 if (InitListExpr *SyntacticForm = getSyntacticForm())
1939 return SyntacticForm->getLocStart();
1940 SourceLocation Beg = LBraceLoc;
1941 if (Beg.isInvalid()) {
1942 // Find the first non-null initializer.
1943 for (InitExprsTy::const_iterator I = InitExprs.begin(),
1944 E = InitExprs.end();
1945 I != E; ++I) {
1946 if (Stmt *S = *I) {
1947 Beg = S->getLocStart();
1948 break;
1952 return Beg;
1955 SourceLocation InitListExpr::getLocEnd() const {
1956 if (InitListExpr *SyntacticForm = getSyntacticForm())
1957 return SyntacticForm->getLocEnd();
1958 SourceLocation End = RBraceLoc;
1959 if (End.isInvalid()) {
1960 // Find the first non-null initializer from the end.
1961 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1962 E = InitExprs.rend();
1963 I != E; ++I) {
1964 if (Stmt *S = *I) {
1965 End = S->getLocEnd();
1966 break;
1970 return End;
1973 /// getFunctionType - Return the underlying function type for this block.
1975 const FunctionProtoType *BlockExpr::getFunctionType() const {
1976 // The block pointer is never sugared, but the function type might be.
1977 return cast<BlockPointerType>(getType())
1978 ->getPointeeType()->castAs<FunctionProtoType>();
1981 SourceLocation BlockExpr::getCaretLocation() const {
1982 return TheBlock->getCaretLocation();
1984 const Stmt *BlockExpr::getBody() const {
1985 return TheBlock->getBody();
1987 Stmt *BlockExpr::getBody() {
1988 return TheBlock->getBody();
1992 //===----------------------------------------------------------------------===//
1993 // Generic Expression Routines
1994 //===----------------------------------------------------------------------===//
1996 /// isUnusedResultAWarning - Return true if this immediate expression should
1997 /// be warned about if the result is unused. If so, fill in Loc and Ranges
1998 /// with location to warn on and the source range[s] to report with the
1999 /// warning.
2000 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2001 SourceRange &R1, SourceRange &R2,
2002 ASTContext &Ctx) const {
2003 // Don't warn if the expr is type dependent. The type could end up
2004 // instantiating to void.
2005 if (isTypeDependent())
2006 return false;
2008 switch (getStmtClass()) {
2009 default:
2010 if (getType()->isVoidType())
2011 return false;
2012 WarnE = this;
2013 Loc = getExprLoc();
2014 R1 = getSourceRange();
2015 return true;
2016 case ParenExprClass:
2017 return cast<ParenExpr>(this)->getSubExpr()->
2018 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2019 case GenericSelectionExprClass:
2020 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2021 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2022 case ChooseExprClass:
2023 return cast<ChooseExpr>(this)->getChosenSubExpr()->
2024 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2025 case UnaryOperatorClass: {
2026 const UnaryOperator *UO = cast<UnaryOperator>(this);
2028 switch (UO->getOpcode()) {
2029 case UO_Plus:
2030 case UO_Minus:
2031 case UO_AddrOf:
2032 case UO_Not:
2033 case UO_LNot:
2034 case UO_Deref:
2035 break;
2036 case UO_PostInc:
2037 case UO_PostDec:
2038 case UO_PreInc:
2039 case UO_PreDec: // ++/--
2040 return false; // Not a warning.
2041 case UO_Real:
2042 case UO_Imag:
2043 // accessing a piece of a volatile complex is a side-effect.
2044 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2045 .isVolatileQualified())
2046 return false;
2047 break;
2048 case UO_Extension:
2049 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2051 WarnE = this;
2052 Loc = UO->getOperatorLoc();
2053 R1 = UO->getSubExpr()->getSourceRange();
2054 return true;
2056 case BinaryOperatorClass: {
2057 const BinaryOperator *BO = cast<BinaryOperator>(this);
2058 switch (BO->getOpcode()) {
2059 default:
2060 break;
2061 // Consider the RHS of comma for side effects. LHS was checked by
2062 // Sema::CheckCommaOperands.
2063 case BO_Comma:
2064 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2065 // lvalue-ness) of an assignment written in a macro.
2066 if (IntegerLiteral *IE =
2067 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2068 if (IE->getValue() == 0)
2069 return false;
2070 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2071 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2072 case BO_LAnd:
2073 case BO_LOr:
2074 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2075 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2076 return false;
2077 break;
2079 if (BO->isAssignmentOp())
2080 return false;
2081 WarnE = this;
2082 Loc = BO->getOperatorLoc();
2083 R1 = BO->getLHS()->getSourceRange();
2084 R2 = BO->getRHS()->getSourceRange();
2085 return true;
2087 case CompoundAssignOperatorClass:
2088 case VAArgExprClass:
2089 case AtomicExprClass:
2090 return false;
2092 case ConditionalOperatorClass: {
2093 // If only one of the LHS or RHS is a warning, the operator might
2094 // be being used for control flow. Only warn if both the LHS and
2095 // RHS are warnings.
2096 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2097 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2098 return false;
2099 if (!Exp->getLHS())
2100 return true;
2101 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2104 case MemberExprClass:
2105 WarnE = this;
2106 Loc = cast<MemberExpr>(this)->getMemberLoc();
2107 R1 = SourceRange(Loc, Loc);
2108 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2109 return true;
2111 case ArraySubscriptExprClass:
2112 WarnE = this;
2113 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2114 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2115 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2116 return true;
2118 case CXXOperatorCallExprClass: {
2119 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2120 // overloads as there is no reasonable way to define these such that they
2121 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2122 // warning: operators == and != are commonly typo'ed, and so warning on them
2123 // provides additional value as well. If this list is updated,
2124 // DiagnoseUnusedComparison should be as well.
2125 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2126 switch (Op->getOperator()) {
2127 default:
2128 break;
2129 case OO_EqualEqual:
2130 case OO_ExclaimEqual:
2131 case OO_Less:
2132 case OO_Greater:
2133 case OO_GreaterEqual:
2134 case OO_LessEqual:
2135 if (Op->getCallReturnType()->isReferenceType() ||
2136 Op->getCallReturnType()->isVoidType())
2137 break;
2138 WarnE = this;
2139 Loc = Op->getOperatorLoc();
2140 R1 = Op->getSourceRange();
2141 return true;
2144 // Fallthrough for generic call handling.
2146 case CallExprClass:
2147 case CXXMemberCallExprClass:
2148 case UserDefinedLiteralClass: {
2149 // If this is a direct call, get the callee.
2150 const CallExpr *CE = cast<CallExpr>(this);
2151 if (const Decl *FD = CE->getCalleeDecl()) {
2152 // If the callee has attribute pure, const, or warn_unused_result, warn
2153 // about it. void foo() { strlen("bar"); } should warn.
2155 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2156 // updated to match for QoI.
2157 if (FD->hasAttr<WarnUnusedResultAttr>() ||
2158 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2159 WarnE = this;
2160 Loc = CE->getCallee()->getLocStart();
2161 R1 = CE->getCallee()->getSourceRange();
2163 if (unsigned NumArgs = CE->getNumArgs())
2164 R2 = SourceRange(CE->getArg(0)->getLocStart(),
2165 CE->getArg(NumArgs-1)->getLocEnd());
2166 return true;
2169 return false;
2172 // If we don't know precisely what we're looking at, let's not warn.
2173 case UnresolvedLookupExprClass:
2174 case CXXUnresolvedConstructExprClass:
2175 return false;
2177 case CXXTemporaryObjectExprClass:
2178 case CXXConstructExprClass: {
2179 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2180 if (Type->hasAttr<WarnUnusedAttr>()) {
2181 WarnE = this;
2182 Loc = getLocStart();
2183 R1 = getSourceRange();
2184 return true;
2187 return false;
2190 case ObjCMessageExprClass: {
2191 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2192 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2193 ME->isInstanceMessage() &&
2194 !ME->getType()->isVoidType() &&
2195 ME->getMethodFamily() == OMF_init) {
2196 WarnE = this;
2197 Loc = getExprLoc();
2198 R1 = ME->getSourceRange();
2199 return true;
2202 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2203 if (MD->hasAttr<WarnUnusedResultAttr>() ||
2204 (MD->isPropertyAccessor() && !MD->getReturnType()->isVoidType() &&
2205 !ME->getReceiverType()->isObjCIdType())) {
2206 WarnE = this;
2207 Loc = getExprLoc();
2208 return true;
2211 return false;
2214 case ObjCPropertyRefExprClass:
2215 WarnE = this;
2216 Loc = getExprLoc();
2217 R1 = getSourceRange();
2218 return true;
2220 case PseudoObjectExprClass: {
2221 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2223 // Only complain about things that have the form of a getter.
2224 if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2225 isa<BinaryOperator>(PO->getSyntacticForm()))
2226 return false;
2228 WarnE = this;
2229 Loc = getExprLoc();
2230 R1 = getSourceRange();
2231 return true;
2234 case StmtExprClass: {
2235 // Statement exprs don't logically have side effects themselves, but are
2236 // sometimes used in macros in ways that give them a type that is unused.
2237 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2238 // however, if the result of the stmt expr is dead, we don't want to emit a
2239 // warning.
2240 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2241 if (!CS->body_empty()) {
2242 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2243 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2244 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2245 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2246 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2249 if (getType()->isVoidType())
2250 return false;
2251 WarnE = this;
2252 Loc = cast<StmtExpr>(this)->getLParenLoc();
2253 R1 = getSourceRange();
2254 return true;
2256 case CXXFunctionalCastExprClass:
2257 case CStyleCastExprClass: {
2258 // Ignore an explicit cast to void unless the operand is a non-trivial
2259 // volatile lvalue.
2260 const CastExpr *CE = cast<CastExpr>(this);
2261 if (CE->getCastKind() == CK_ToVoid) {
2262 if (CE->getSubExpr()->isGLValue() &&
2263 CE->getSubExpr()->getType().isVolatileQualified()) {
2264 const DeclRefExpr *DRE =
2265 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2266 if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2267 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2268 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2269 R1, R2, Ctx);
2272 return false;
2275 // If this is a cast to a constructor conversion, check the operand.
2276 // Otherwise, the result of the cast is unused.
2277 if (CE->getCastKind() == CK_ConstructorConversion)
2278 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2280 WarnE = this;
2281 if (const CXXFunctionalCastExpr *CXXCE =
2282 dyn_cast<CXXFunctionalCastExpr>(this)) {
2283 Loc = CXXCE->getLocStart();
2284 R1 = CXXCE->getSubExpr()->getSourceRange();
2285 } else {
2286 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2287 Loc = CStyleCE->getLParenLoc();
2288 R1 = CStyleCE->getSubExpr()->getSourceRange();
2290 return true;
2292 case ImplicitCastExprClass: {
2293 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2295 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2296 if (ICE->getCastKind() == CK_LValueToRValue &&
2297 ICE->getSubExpr()->getType().isVolatileQualified())
2298 return false;
2300 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2302 case CXXDefaultArgExprClass:
2303 return (cast<CXXDefaultArgExpr>(this)
2304 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2305 case CXXDefaultInitExprClass:
2306 return (cast<CXXDefaultInitExpr>(this)
2307 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2309 case CXXNewExprClass:
2310 // FIXME: In theory, there might be new expressions that don't have side
2311 // effects (e.g. a placement new with an uninitialized POD).
2312 case CXXDeleteExprClass:
2313 return false;
2314 case CXXBindTemporaryExprClass:
2315 return (cast<CXXBindTemporaryExpr>(this)
2316 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2317 case ExprWithCleanupsClass:
2318 return (cast<ExprWithCleanups>(this)
2319 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2323 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2324 /// returns true, if it is; false otherwise.
2325 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2326 const Expr *E = IgnoreParens();
2327 switch (E->getStmtClass()) {
2328 default:
2329 return false;
2330 case ObjCIvarRefExprClass:
2331 return true;
2332 case Expr::UnaryOperatorClass:
2333 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2334 case ImplicitCastExprClass:
2335 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2336 case MaterializeTemporaryExprClass:
2337 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2338 ->isOBJCGCCandidate(Ctx);
2339 case CStyleCastExprClass:
2340 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2341 case DeclRefExprClass: {
2342 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2344 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2345 if (VD->hasGlobalStorage())
2346 return true;
2347 QualType T = VD->getType();
2348 // dereferencing to a pointer is always a gc'able candidate,
2349 // unless it is __weak.
2350 return T->isPointerType() &&
2351 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2353 return false;
2355 case MemberExprClass: {
2356 const MemberExpr *M = cast<MemberExpr>(E);
2357 return M->getBase()->isOBJCGCCandidate(Ctx);
2359 case ArraySubscriptExprClass:
2360 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2364 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2365 if (isTypeDependent())
2366 return false;
2367 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2370 QualType Expr::findBoundMemberType(const Expr *expr) {
2371 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2373 // Bound member expressions are always one of these possibilities:
2374 // x->m x.m x->*y x.*y
2375 // (possibly parenthesized)
2377 expr = expr->IgnoreParens();
2378 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2379 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2380 return mem->getMemberDecl()->getType();
2383 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2384 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2385 ->getPointeeType();
2386 assert(type->isFunctionType());
2387 return type;
2390 assert(isa<UnresolvedMemberExpr>(expr));
2391 return QualType();
2394 Expr* Expr::IgnoreParens() {
2395 Expr* E = this;
2396 while (true) {
2397 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2398 E = P->getSubExpr();
2399 continue;
2401 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2402 if (P->getOpcode() == UO_Extension) {
2403 E = P->getSubExpr();
2404 continue;
2407 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2408 if (!P->isResultDependent()) {
2409 E = P->getResultExpr();
2410 continue;
2413 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2414 if (!P->isConditionDependent()) {
2415 E = P->getChosenSubExpr();
2416 continue;
2419 return E;
2423 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2424 /// or CastExprs or ImplicitCastExprs, returning their operand.
2425 Expr *Expr::IgnoreParenCasts() {
2426 Expr *E = this;
2427 while (true) {
2428 E = E->IgnoreParens();
2429 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2430 E = P->getSubExpr();
2431 continue;
2433 if (MaterializeTemporaryExpr *Materialize
2434 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2435 E = Materialize->GetTemporaryExpr();
2436 continue;
2438 if (SubstNonTypeTemplateParmExpr *NTTP
2439 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2440 E = NTTP->getReplacement();
2441 continue;
2443 return E;
2447 Expr *Expr::IgnoreCasts() {
2448 Expr *E = this;
2449 while (true) {
2450 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2451 E = P->getSubExpr();
2452 continue;
2454 if (MaterializeTemporaryExpr *Materialize
2455 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2456 E = Materialize->GetTemporaryExpr();
2457 continue;
2459 if (SubstNonTypeTemplateParmExpr *NTTP
2460 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2461 E = NTTP->getReplacement();
2462 continue;
2464 return E;
2468 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2469 /// casts. This is intended purely as a temporary workaround for code
2470 /// that hasn't yet been rewritten to do the right thing about those
2471 /// casts, and may disappear along with the last internal use.
2472 Expr *Expr::IgnoreParenLValueCasts() {
2473 Expr *E = this;
2474 while (true) {
2475 E = E->IgnoreParens();
2476 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2477 if (P->getCastKind() == CK_LValueToRValue) {
2478 E = P->getSubExpr();
2479 continue;
2481 } else if (MaterializeTemporaryExpr *Materialize
2482 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2483 E = Materialize->GetTemporaryExpr();
2484 continue;
2485 } else if (SubstNonTypeTemplateParmExpr *NTTP
2486 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2487 E = NTTP->getReplacement();
2488 continue;
2490 break;
2492 return E;
2495 Expr *Expr::ignoreParenBaseCasts() {
2496 Expr *E = this;
2497 while (true) {
2498 E = E->IgnoreParens();
2499 if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2500 if (CE->getCastKind() == CK_DerivedToBase ||
2501 CE->getCastKind() == CK_UncheckedDerivedToBase ||
2502 CE->getCastKind() == CK_NoOp) {
2503 E = CE->getSubExpr();
2504 continue;
2508 return E;
2512 Expr *Expr::IgnoreParenImpCasts() {
2513 Expr *E = this;
2514 while (true) {
2515 E = E->IgnoreParens();
2516 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2517 E = P->getSubExpr();
2518 continue;
2520 if (MaterializeTemporaryExpr *Materialize
2521 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2522 E = Materialize->GetTemporaryExpr();
2523 continue;
2525 if (SubstNonTypeTemplateParmExpr *NTTP
2526 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2527 E = NTTP->getReplacement();
2528 continue;
2530 return E;
2534 Expr *Expr::IgnoreConversionOperator() {
2535 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2536 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2537 return MCE->getImplicitObjectArgument();
2539 return this;
2542 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2543 /// value (including ptr->int casts of the same size). Strip off any
2544 /// ParenExpr or CastExprs, returning their operand.
2545 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2546 Expr *E = this;
2547 while (true) {
2548 E = E->IgnoreParens();
2550 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2551 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2552 // ptr<->int casts of the same width. We also ignore all identity casts.
2553 Expr *SE = P->getSubExpr();
2555 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2556 E = SE;
2557 continue;
2560 if ((E->getType()->isPointerType() ||
2561 E->getType()->isIntegralType(Ctx)) &&
2562 (SE->getType()->isPointerType() ||
2563 SE->getType()->isIntegralType(Ctx)) &&
2564 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2565 E = SE;
2566 continue;
2570 if (SubstNonTypeTemplateParmExpr *NTTP
2571 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2572 E = NTTP->getReplacement();
2573 continue;
2576 return E;
2580 bool Expr::isDefaultArgument() const {
2581 const Expr *E = this;
2582 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2583 E = M->GetTemporaryExpr();
2585 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2586 E = ICE->getSubExprAsWritten();
2588 return isa<CXXDefaultArgExpr>(E);
2591 /// \brief Skip over any no-op casts and any temporary-binding
2592 /// expressions.
2593 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2594 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2595 E = M->GetTemporaryExpr();
2597 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2598 if (ICE->getCastKind() == CK_NoOp)
2599 E = ICE->getSubExpr();
2600 else
2601 break;
2604 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2605 E = BE->getSubExpr();
2607 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2608 if (ICE->getCastKind() == CK_NoOp)
2609 E = ICE->getSubExpr();
2610 else
2611 break;
2614 return E->IgnoreParens();
2617 /// isTemporaryObject - Determines if this expression produces a
2618 /// temporary of the given class type.
2619 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2620 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2621 return false;
2623 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2625 // Temporaries are by definition pr-values of class type.
2626 if (!E->Classify(C).isPRValue()) {
2627 // In this context, property reference is a message call and is pr-value.
2628 if (!isa<ObjCPropertyRefExpr>(E))
2629 return false;
2632 // Black-list a few cases which yield pr-values of class type that don't
2633 // refer to temporaries of that type:
2635 // - implicit derived-to-base conversions
2636 if (isa<ImplicitCastExpr>(E)) {
2637 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2638 case CK_DerivedToBase:
2639 case CK_UncheckedDerivedToBase:
2640 return false;
2641 default:
2642 break;
2646 // - member expressions (all)
2647 if (isa<MemberExpr>(E))
2648 return false;
2650 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2651 if (BO->isPtrMemOp())
2652 return false;
2654 // - opaque values (all)
2655 if (isa<OpaqueValueExpr>(E))
2656 return false;
2658 return true;
2661 bool Expr::isImplicitCXXThis() const {
2662 const Expr *E = this;
2664 // Strip away parentheses and casts we don't care about.
2665 while (true) {
2666 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2667 E = Paren->getSubExpr();
2668 continue;
2671 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2672 if (ICE->getCastKind() == CK_NoOp ||
2673 ICE->getCastKind() == CK_LValueToRValue ||
2674 ICE->getCastKind() == CK_DerivedToBase ||
2675 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2676 E = ICE->getSubExpr();
2677 continue;
2681 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2682 if (UnOp->getOpcode() == UO_Extension) {
2683 E = UnOp->getSubExpr();
2684 continue;
2688 if (const MaterializeTemporaryExpr *M
2689 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2690 E = M->GetTemporaryExpr();
2691 continue;
2694 break;
2697 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2698 return This->isImplicit();
2700 return false;
2703 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2704 /// in Exprs is type-dependent.
2705 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2706 for (unsigned I = 0; I < Exprs.size(); ++I)
2707 if (Exprs[I]->isTypeDependent())
2708 return true;
2710 return false;
2713 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2714 const Expr **Culprit) const {
2715 // This function is attempting whether an expression is an initializer
2716 // which can be evaluated at compile-time. It very closely parallels
2717 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2718 // will lead to unexpected results. Like ConstExprEmitter, it falls back
2719 // to isEvaluatable most of the time.
2721 // If we ever capture reference-binding directly in the AST, we can
2722 // kill the second parameter.
2724 if (IsForRef) {
2725 EvalResult Result;
2726 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2727 return true;
2728 if (Culprit)
2729 *Culprit = this;
2730 return false;
2733 switch (getStmtClass()) {
2734 default: break;
2735 case StringLiteralClass:
2736 case ObjCEncodeExprClass:
2737 return true;
2738 case CXXTemporaryObjectExprClass:
2739 case CXXConstructExprClass: {
2740 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2742 if (CE->getConstructor()->isTrivial() &&
2743 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2744 // Trivial default constructor
2745 if (!CE->getNumArgs()) return true;
2747 // Trivial copy constructor
2748 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2749 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2752 break;
2754 case CompoundLiteralExprClass: {
2755 // This handles gcc's extension that allows global initializers like
2756 // "struct x {int x;} x = (struct x) {};".
2757 // FIXME: This accepts other cases it shouldn't!
2758 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2759 return Exp->isConstantInitializer(Ctx, false, Culprit);
2761 case InitListExprClass: {
2762 const InitListExpr *ILE = cast<InitListExpr>(this);
2763 if (ILE->getType()->isArrayType()) {
2764 unsigned numInits = ILE->getNumInits();
2765 for (unsigned i = 0; i < numInits; i++) {
2766 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2767 return false;
2769 return true;
2772 if (ILE->getType()->isRecordType()) {
2773 unsigned ElementNo = 0;
2774 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2775 for (const auto *Field : RD->fields()) {
2776 // If this is a union, skip all the fields that aren't being initialized.
2777 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2778 continue;
2780 // Don't emit anonymous bitfields, they just affect layout.
2781 if (Field->isUnnamedBitfield())
2782 continue;
2784 if (ElementNo < ILE->getNumInits()) {
2785 const Expr *Elt = ILE->getInit(ElementNo++);
2786 if (Field->isBitField()) {
2787 // Bitfields have to evaluate to an integer.
2788 llvm::APSInt ResultTmp;
2789 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2790 if (Culprit)
2791 *Culprit = Elt;
2792 return false;
2794 } else {
2795 bool RefType = Field->getType()->isReferenceType();
2796 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2797 return false;
2801 return true;
2804 break;
2806 case ImplicitValueInitExprClass:
2807 return true;
2808 case ParenExprClass:
2809 return cast<ParenExpr>(this)->getSubExpr()
2810 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2811 case GenericSelectionExprClass:
2812 return cast<GenericSelectionExpr>(this)->getResultExpr()
2813 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2814 case ChooseExprClass:
2815 if (cast<ChooseExpr>(this)->isConditionDependent()) {
2816 if (Culprit)
2817 *Culprit = this;
2818 return false;
2820 return cast<ChooseExpr>(this)->getChosenSubExpr()
2821 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2822 case UnaryOperatorClass: {
2823 const UnaryOperator* Exp = cast<UnaryOperator>(this);
2824 if (Exp->getOpcode() == UO_Extension)
2825 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2826 break;
2828 case CXXFunctionalCastExprClass:
2829 case CXXStaticCastExprClass:
2830 case ImplicitCastExprClass:
2831 case CStyleCastExprClass:
2832 case ObjCBridgedCastExprClass:
2833 case CXXDynamicCastExprClass:
2834 case CXXReinterpretCastExprClass:
2835 case CXXConstCastExprClass: {
2836 const CastExpr *CE = cast<CastExpr>(this);
2838 // Handle misc casts we want to ignore.
2839 if (CE->getCastKind() == CK_NoOp ||
2840 CE->getCastKind() == CK_LValueToRValue ||
2841 CE->getCastKind() == CK_ToUnion ||
2842 CE->getCastKind() == CK_ConstructorConversion ||
2843 CE->getCastKind() == CK_NonAtomicToAtomic ||
2844 CE->getCastKind() == CK_AtomicToNonAtomic)
2845 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2847 break;
2849 case MaterializeTemporaryExprClass:
2850 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2851 ->isConstantInitializer(Ctx, false, Culprit);
2853 case SubstNonTypeTemplateParmExprClass:
2854 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2855 ->isConstantInitializer(Ctx, false, Culprit);
2856 case CXXDefaultArgExprClass:
2857 return cast<CXXDefaultArgExpr>(this)->getExpr()
2858 ->isConstantInitializer(Ctx, false, Culprit);
2859 case CXXDefaultInitExprClass:
2860 return cast<CXXDefaultInitExpr>(this)->getExpr()
2861 ->isConstantInitializer(Ctx, false, Culprit);
2863 if (isEvaluatable(Ctx))
2864 return true;
2865 if (Culprit)
2866 *Culprit = this;
2867 return false;
2870 bool Expr::HasSideEffects(const ASTContext &Ctx,
2871 bool IncludePossibleEffects) const {
2872 // In circumstances where we care about definite side effects instead of
2873 // potential side effects, we want to ignore expressions that are part of a
2874 // macro expansion as a potential side effect.
2875 if (!IncludePossibleEffects && getExprLoc().isMacroID())
2876 return false;
2878 if (isInstantiationDependent())
2879 return IncludePossibleEffects;
2881 switch (getStmtClass()) {
2882 case NoStmtClass:
2883 #define ABSTRACT_STMT(Type)
2884 #define STMT(Type, Base) case Type##Class:
2885 #define EXPR(Type, Base)
2886 #include "clang/AST/StmtNodes.inc"
2887 llvm_unreachable("unexpected Expr kind");
2889 case DependentScopeDeclRefExprClass:
2890 case CXXUnresolvedConstructExprClass:
2891 case CXXDependentScopeMemberExprClass:
2892 case UnresolvedLookupExprClass:
2893 case UnresolvedMemberExprClass:
2894 case PackExpansionExprClass:
2895 case SubstNonTypeTemplateParmPackExprClass:
2896 case FunctionParmPackExprClass:
2897 case TypoExprClass:
2898 case CXXFoldExprClass:
2899 llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2901 case DeclRefExprClass:
2902 case ObjCIvarRefExprClass:
2903 case PredefinedExprClass:
2904 case IntegerLiteralClass:
2905 case FloatingLiteralClass:
2906 case ImaginaryLiteralClass:
2907 case StringLiteralClass:
2908 case CharacterLiteralClass:
2909 case OffsetOfExprClass:
2910 case ImplicitValueInitExprClass:
2911 case UnaryExprOrTypeTraitExprClass:
2912 case AddrLabelExprClass:
2913 case GNUNullExprClass:
2914 case CXXBoolLiteralExprClass:
2915 case CXXNullPtrLiteralExprClass:
2916 case CXXThisExprClass:
2917 case CXXScalarValueInitExprClass:
2918 case TypeTraitExprClass:
2919 case ArrayTypeTraitExprClass:
2920 case ExpressionTraitExprClass:
2921 case CXXNoexceptExprClass:
2922 case SizeOfPackExprClass:
2923 case ObjCStringLiteralClass:
2924 case ObjCEncodeExprClass:
2925 case ObjCBoolLiteralExprClass:
2926 case CXXUuidofExprClass:
2927 case OpaqueValueExprClass:
2928 // These never have a side-effect.
2929 return false;
2931 case CallExprClass:
2932 case CXXOperatorCallExprClass:
2933 case CXXMemberCallExprClass:
2934 case CUDAKernelCallExprClass:
2935 case BlockExprClass:
2936 case CXXBindTemporaryExprClass:
2937 case UserDefinedLiteralClass:
2938 // We don't know a call definitely has side effects, but we can check the
2939 // call's operands.
2940 if (!IncludePossibleEffects)
2941 break;
2942 return true;
2944 case MSPropertyRefExprClass:
2945 case CompoundAssignOperatorClass:
2946 case VAArgExprClass:
2947 case AtomicExprClass:
2948 case StmtExprClass:
2949 case CXXThrowExprClass:
2950 case CXXNewExprClass:
2951 case CXXDeleteExprClass:
2952 case ExprWithCleanupsClass:
2953 // These always have a side-effect.
2954 return true;
2956 case ParenExprClass:
2957 case ArraySubscriptExprClass:
2958 case MemberExprClass:
2959 case ConditionalOperatorClass:
2960 case BinaryConditionalOperatorClass:
2961 case CompoundLiteralExprClass:
2962 case ExtVectorElementExprClass:
2963 case DesignatedInitExprClass:
2964 case ParenListExprClass:
2965 case CXXPseudoDestructorExprClass:
2966 case CXXStdInitializerListExprClass:
2967 case SubstNonTypeTemplateParmExprClass:
2968 case MaterializeTemporaryExprClass:
2969 case ShuffleVectorExprClass:
2970 case ConvertVectorExprClass:
2971 case AsTypeExprClass:
2972 // These have a side-effect if any subexpression does.
2973 break;
2975 case UnaryOperatorClass:
2976 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2977 return true;
2978 break;
2980 case BinaryOperatorClass:
2981 if (cast<BinaryOperator>(this)->isAssignmentOp())
2982 return true;
2983 break;
2985 case InitListExprClass:
2986 // FIXME: The children for an InitListExpr doesn't include the array filler.
2987 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2988 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
2989 return true;
2990 break;
2992 case GenericSelectionExprClass:
2993 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2994 HasSideEffects(Ctx, IncludePossibleEffects);
2996 case ChooseExprClass:
2997 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
2998 Ctx, IncludePossibleEffects);
3000 case CXXDefaultArgExprClass:
3001 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3002 Ctx, IncludePossibleEffects);
3004 case CXXDefaultInitExprClass: {
3005 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3006 if (const Expr *E = FD->getInClassInitializer())
3007 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3008 // If we've not yet parsed the initializer, assume it has side-effects.
3009 return true;
3012 case CXXDynamicCastExprClass: {
3013 // A dynamic_cast expression has side-effects if it can throw.
3014 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3015 if (DCE->getTypeAsWritten()->isReferenceType() &&
3016 DCE->getCastKind() == CK_Dynamic)
3017 return true;
3018 } // Fall through.
3019 case ImplicitCastExprClass:
3020 case CStyleCastExprClass:
3021 case CXXStaticCastExprClass:
3022 case CXXReinterpretCastExprClass:
3023 case CXXConstCastExprClass:
3024 case CXXFunctionalCastExprClass: {
3025 // While volatile reads are side-effecting in both C and C++, we treat them
3026 // as having possible (not definite) side-effects. This allows idiomatic
3027 // code to behave without warning, such as sizeof(*v) for a volatile-
3028 // qualified pointer.
3029 if (!IncludePossibleEffects)
3030 break;
3032 const CastExpr *CE = cast<CastExpr>(this);
3033 if (CE->getCastKind() == CK_LValueToRValue &&
3034 CE->getSubExpr()->getType().isVolatileQualified())
3035 return true;
3036 break;
3039 case CXXTypeidExprClass:
3040 // typeid might throw if its subexpression is potentially-evaluated, so has
3041 // side-effects in that case whether or not its subexpression does.
3042 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3044 case CXXConstructExprClass:
3045 case CXXTemporaryObjectExprClass: {
3046 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3047 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3048 return true;
3049 // A trivial constructor does not add any side-effects of its own. Just look
3050 // at its arguments.
3051 break;
3054 case LambdaExprClass: {
3055 const LambdaExpr *LE = cast<LambdaExpr>(this);
3056 for (LambdaExpr::capture_iterator I = LE->capture_begin(),
3057 E = LE->capture_end(); I != E; ++I)
3058 if (I->getCaptureKind() == LCK_ByCopy)
3059 // FIXME: Only has a side-effect if the variable is volatile or if
3060 // the copy would invoke a non-trivial copy constructor.
3061 return true;
3062 return false;
3065 case PseudoObjectExprClass: {
3066 // Only look for side-effects in the semantic form, and look past
3067 // OpaqueValueExpr bindings in that form.
3068 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3069 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3070 E = PO->semantics_end();
3071 I != E; ++I) {
3072 const Expr *Subexpr = *I;
3073 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3074 Subexpr = OVE->getSourceExpr();
3075 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3076 return true;
3078 return false;
3081 case ObjCBoxedExprClass:
3082 case ObjCArrayLiteralClass:
3083 case ObjCDictionaryLiteralClass:
3084 case ObjCSelectorExprClass:
3085 case ObjCProtocolExprClass:
3086 case ObjCIsaExprClass:
3087 case ObjCIndirectCopyRestoreExprClass:
3088 case ObjCSubscriptRefExprClass:
3089 case ObjCBridgedCastExprClass:
3090 case ObjCMessageExprClass:
3091 case ObjCPropertyRefExprClass:
3092 // FIXME: Classify these cases better.
3093 if (IncludePossibleEffects)
3094 return true;
3095 break;
3098 // Recurse to children.
3099 for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
3100 if (const Stmt *S = *SubStmts)
3101 if (cast<Expr>(S)->HasSideEffects(Ctx, IncludePossibleEffects))
3102 return true;
3104 return false;
3107 namespace {
3108 /// \brief Look for a call to a non-trivial function within an expression.
3109 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
3111 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3113 bool NonTrivial;
3115 public:
3116 explicit NonTrivialCallFinder(ASTContext &Context)
3117 : Inherited(Context), NonTrivial(false) { }
3119 bool hasNonTrivialCall() const { return NonTrivial; }
3121 void VisitCallExpr(CallExpr *E) {
3122 if (CXXMethodDecl *Method
3123 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
3124 if (Method->isTrivial()) {
3125 // Recurse to children of the call.
3126 Inherited::VisitStmt(E);
3127 return;
3131 NonTrivial = true;
3134 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3135 if (E->getConstructor()->isTrivial()) {
3136 // Recurse to children of the call.
3137 Inherited::VisitStmt(E);
3138 return;
3141 NonTrivial = true;
3144 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3145 if (E->getTemporary()->getDestructor()->isTrivial()) {
3146 Inherited::VisitStmt(E);
3147 return;
3150 NonTrivial = true;
3155 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
3156 NonTrivialCallFinder Finder(Ctx);
3157 Finder.Visit(this);
3158 return Finder.hasNonTrivialCall();
3161 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3162 /// pointer constant or not, as well as the specific kind of constant detected.
3163 /// Null pointer constants can be integer constant expressions with the
3164 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3165 /// (a GNU extension).
3166 Expr::NullPointerConstantKind
3167 Expr::isNullPointerConstant(ASTContext &Ctx,
3168 NullPointerConstantValueDependence NPC) const {
3169 if (isValueDependent() &&
3170 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3171 switch (NPC) {
3172 case NPC_NeverValueDependent:
3173 llvm_unreachable("Unexpected value dependent expression!");
3174 case NPC_ValueDependentIsNull:
3175 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3176 return NPCK_ZeroExpression;
3177 else
3178 return NPCK_NotNull;
3180 case NPC_ValueDependentIsNotNull:
3181 return NPCK_NotNull;
3185 // Strip off a cast to void*, if it exists. Except in C++.
3186 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3187 if (!Ctx.getLangOpts().CPlusPlus) {
3188 // Check that it is a cast to void*.
3189 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3190 QualType Pointee = PT->getPointeeType();
3191 if (!Pointee.hasQualifiers() &&
3192 Pointee->isVoidType() && // to void*
3193 CE->getSubExpr()->getType()->isIntegerType()) // from int.
3194 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3197 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3198 // Ignore the ImplicitCastExpr type entirely.
3199 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3200 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3201 // Accept ((void*)0) as a null pointer constant, as many other
3202 // implementations do.
3203 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3204 } else if (const GenericSelectionExpr *GE =
3205 dyn_cast<GenericSelectionExpr>(this)) {
3206 if (GE->isResultDependent())
3207 return NPCK_NotNull;
3208 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3209 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3210 if (CE->isConditionDependent())
3211 return NPCK_NotNull;
3212 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3213 } else if (const CXXDefaultArgExpr *DefaultArg
3214 = dyn_cast<CXXDefaultArgExpr>(this)) {
3215 // See through default argument expressions.
3216 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3217 } else if (const CXXDefaultInitExpr *DefaultInit
3218 = dyn_cast<CXXDefaultInitExpr>(this)) {
3219 // See through default initializer expressions.
3220 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3221 } else if (isa<GNUNullExpr>(this)) {
3222 // The GNU __null extension is always a null pointer constant.
3223 return NPCK_GNUNull;
3224 } else if (const MaterializeTemporaryExpr *M
3225 = dyn_cast<MaterializeTemporaryExpr>(this)) {
3226 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3227 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3228 if (const Expr *Source = OVE->getSourceExpr())
3229 return Source->isNullPointerConstant(Ctx, NPC);
3232 // C++11 nullptr_t is always a null pointer constant.
3233 if (getType()->isNullPtrType())
3234 return NPCK_CXX11_nullptr;
3236 if (const RecordType *UT = getType()->getAsUnionType())
3237 if (!Ctx.getLangOpts().CPlusPlus11 &&
3238 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3239 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3240 const Expr *InitExpr = CLE->getInitializer();
3241 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3242 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3244 // This expression must be an integer type.
3245 if (!getType()->isIntegerType() ||
3246 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3247 return NPCK_NotNull;
3249 if (Ctx.getLangOpts().CPlusPlus11) {
3250 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3251 // value zero or a prvalue of type std::nullptr_t.
3252 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3253 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3254 if (Lit && !Lit->getValue())
3255 return NPCK_ZeroLiteral;
3256 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3257 return NPCK_NotNull;
3258 } else {
3259 // If we have an integer constant expression, we need to *evaluate* it and
3260 // test for the value 0.
3261 if (!isIntegerConstantExpr(Ctx))
3262 return NPCK_NotNull;
3265 if (EvaluateKnownConstInt(Ctx) != 0)
3266 return NPCK_NotNull;
3268 if (isa<IntegerLiteral>(this))
3269 return NPCK_ZeroLiteral;
3270 return NPCK_ZeroExpression;
3273 /// \brief If this expression is an l-value for an Objective C
3274 /// property, find the underlying property reference expression.
3275 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3276 const Expr *E = this;
3277 while (true) {
3278 assert((E->getValueKind() == VK_LValue &&
3279 E->getObjectKind() == OK_ObjCProperty) &&
3280 "expression is not a property reference");
3281 E = E->IgnoreParenCasts();
3282 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3283 if (BO->getOpcode() == BO_Comma) {
3284 E = BO->getRHS();
3285 continue;
3289 break;
3292 return cast<ObjCPropertyRefExpr>(E);
3295 bool Expr::isObjCSelfExpr() const {
3296 const Expr *E = IgnoreParenImpCasts();
3298 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3299 if (!DRE)
3300 return false;
3302 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3303 if (!Param)
3304 return false;
3306 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3307 if (!M)
3308 return false;
3310 return M->getSelfDecl() == Param;
3313 FieldDecl *Expr::getSourceBitField() {
3314 Expr *E = this->IgnoreParens();
3316 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3317 if (ICE->getCastKind() == CK_LValueToRValue ||
3318 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3319 E = ICE->getSubExpr()->IgnoreParens();
3320 else
3321 break;
3324 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3325 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3326 if (Field->isBitField())
3327 return Field;
3329 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3330 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3331 if (Ivar->isBitField())
3332 return Ivar;
3334 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3335 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3336 if (Field->isBitField())
3337 return Field;
3339 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3340 if (BinOp->isAssignmentOp() && BinOp->getLHS())
3341 return BinOp->getLHS()->getSourceBitField();
3343 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3344 return BinOp->getRHS()->getSourceBitField();
3347 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3348 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3349 return UnOp->getSubExpr()->getSourceBitField();
3351 return nullptr;
3354 bool Expr::refersToVectorElement() const {
3355 const Expr *E = this->IgnoreParens();
3357 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3358 if (ICE->getValueKind() != VK_RValue &&
3359 ICE->getCastKind() == CK_NoOp)
3360 E = ICE->getSubExpr()->IgnoreParens();
3361 else
3362 break;
3365 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3366 return ASE->getBase()->getType()->isVectorType();
3368 if (isa<ExtVectorElementExpr>(E))
3369 return true;
3371 return false;
3374 /// isArrow - Return true if the base expression is a pointer to vector,
3375 /// return false if the base expression is a vector.
3376 bool ExtVectorElementExpr::isArrow() const {
3377 return getBase()->getType()->isPointerType();
3380 unsigned ExtVectorElementExpr::getNumElements() const {
3381 if (const VectorType *VT = getType()->getAs<VectorType>())
3382 return VT->getNumElements();
3383 return 1;
3386 /// containsDuplicateElements - Return true if any element access is repeated.
3387 bool ExtVectorElementExpr::containsDuplicateElements() const {
3388 // FIXME: Refactor this code to an accessor on the AST node which returns the
3389 // "type" of component access, and share with code below and in Sema.
3390 StringRef Comp = Accessor->getName();
3392 // Halving swizzles do not contain duplicate elements.
3393 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3394 return false;
3396 // Advance past s-char prefix on hex swizzles.
3397 if (Comp[0] == 's' || Comp[0] == 'S')
3398 Comp = Comp.substr(1);
3400 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3401 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3402 return true;
3404 return false;
3407 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3408 void ExtVectorElementExpr::getEncodedElementAccess(
3409 SmallVectorImpl<unsigned> &Elts) const {
3410 StringRef Comp = Accessor->getName();
3411 if (Comp[0] == 's' || Comp[0] == 'S')
3412 Comp = Comp.substr(1);
3414 bool isHi = Comp == "hi";
3415 bool isLo = Comp == "lo";
3416 bool isEven = Comp == "even";
3417 bool isOdd = Comp == "odd";
3419 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3420 uint64_t Index;
3422 if (isHi)
3423 Index = e + i;
3424 else if (isLo)
3425 Index = i;
3426 else if (isEven)
3427 Index = 2 * i;
3428 else if (isOdd)
3429 Index = 2 * i + 1;
3430 else
3431 Index = ExtVectorType::getAccessorIdx(Comp[i]);
3433 Elts.push_back(Index);
3437 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3438 ExprValueKind VK,
3439 SourceLocation LBracLoc,
3440 SourceLocation SuperLoc,
3441 bool IsInstanceSuper,
3442 QualType SuperType,
3443 Selector Sel,
3444 ArrayRef<SourceLocation> SelLocs,
3445 SelectorLocationsKind SelLocsK,
3446 ObjCMethodDecl *Method,
3447 ArrayRef<Expr *> Args,
3448 SourceLocation RBracLoc,
3449 bool isImplicit)
3450 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3451 /*TypeDependent=*/false, /*ValueDependent=*/false,
3452 /*InstantiationDependent=*/false,
3453 /*ContainsUnexpandedParameterPack=*/false),
3454 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3455 : Sel.getAsOpaquePtr())),
3456 Kind(IsInstanceSuper? SuperInstance : SuperClass),
3457 HasMethod(Method != nullptr), IsDelegateInitCall(false),
3458 IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
3459 RBracLoc(RBracLoc)
3461 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3462 setReceiverPointer(SuperType.getAsOpaquePtr());
3465 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3466 ExprValueKind VK,
3467 SourceLocation LBracLoc,
3468 TypeSourceInfo *Receiver,
3469 Selector Sel,
3470 ArrayRef<SourceLocation> SelLocs,
3471 SelectorLocationsKind SelLocsK,
3472 ObjCMethodDecl *Method,
3473 ArrayRef<Expr *> Args,
3474 SourceLocation RBracLoc,
3475 bool isImplicit)
3476 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3477 T->isDependentType(), T->isInstantiationDependentType(),
3478 T->containsUnexpandedParameterPack()),
3479 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3480 : Sel.getAsOpaquePtr())),
3481 Kind(Class),
3482 HasMethod(Method != nullptr), IsDelegateInitCall(false),
3483 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3485 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3486 setReceiverPointer(Receiver);
3489 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3490 ExprValueKind VK,
3491 SourceLocation LBracLoc,
3492 Expr *Receiver,
3493 Selector Sel,
3494 ArrayRef<SourceLocation> SelLocs,
3495 SelectorLocationsKind SelLocsK,
3496 ObjCMethodDecl *Method,
3497 ArrayRef<Expr *> Args,
3498 SourceLocation RBracLoc,
3499 bool isImplicit)
3500 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3501 Receiver->isTypeDependent(),
3502 Receiver->isInstantiationDependent(),
3503 Receiver->containsUnexpandedParameterPack()),
3504 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3505 : Sel.getAsOpaquePtr())),
3506 Kind(Instance),
3507 HasMethod(Method != nullptr), IsDelegateInitCall(false),
3508 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3510 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3511 setReceiverPointer(Receiver);
3514 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3515 ArrayRef<SourceLocation> SelLocs,
3516 SelectorLocationsKind SelLocsK) {
3517 setNumArgs(Args.size());
3518 Expr **MyArgs = getArgs();
3519 for (unsigned I = 0; I != Args.size(); ++I) {
3520 if (Args[I]->isTypeDependent())
3521 ExprBits.TypeDependent = true;
3522 if (Args[I]->isValueDependent())
3523 ExprBits.ValueDependent = true;
3524 if (Args[I]->isInstantiationDependent())
3525 ExprBits.InstantiationDependent = true;
3526 if (Args[I]->containsUnexpandedParameterPack())
3527 ExprBits.ContainsUnexpandedParameterPack = true;
3529 MyArgs[I] = Args[I];
3532 SelLocsKind = SelLocsK;
3533 if (!isImplicit()) {
3534 if (SelLocsK == SelLoc_NonStandard)
3535 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3539 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3540 ExprValueKind VK,
3541 SourceLocation LBracLoc,
3542 SourceLocation SuperLoc,
3543 bool IsInstanceSuper,
3544 QualType SuperType,
3545 Selector Sel,
3546 ArrayRef<SourceLocation> SelLocs,
3547 ObjCMethodDecl *Method,
3548 ArrayRef<Expr *> Args,
3549 SourceLocation RBracLoc,
3550 bool isImplicit) {
3551 assert((!SelLocs.empty() || isImplicit) &&
3552 "No selector locs for non-implicit message");
3553 ObjCMessageExpr *Mem;
3554 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3555 if (isImplicit)
3556 Mem = alloc(Context, Args.size(), 0);
3557 else
3558 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3559 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3560 SuperType, Sel, SelLocs, SelLocsK,
3561 Method, Args, RBracLoc, isImplicit);
3564 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3565 ExprValueKind VK,
3566 SourceLocation LBracLoc,
3567 TypeSourceInfo *Receiver,
3568 Selector Sel,
3569 ArrayRef<SourceLocation> SelLocs,
3570 ObjCMethodDecl *Method,
3571 ArrayRef<Expr *> Args,
3572 SourceLocation RBracLoc,
3573 bool isImplicit) {
3574 assert((!SelLocs.empty() || isImplicit) &&
3575 "No selector locs for non-implicit message");
3576 ObjCMessageExpr *Mem;
3577 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3578 if (isImplicit)
3579 Mem = alloc(Context, Args.size(), 0);
3580 else
3581 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3582 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3583 SelLocs, SelLocsK, Method, Args, RBracLoc,
3584 isImplicit);
3587 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3588 ExprValueKind VK,
3589 SourceLocation LBracLoc,
3590 Expr *Receiver,
3591 Selector Sel,
3592 ArrayRef<SourceLocation> SelLocs,
3593 ObjCMethodDecl *Method,
3594 ArrayRef<Expr *> Args,
3595 SourceLocation RBracLoc,
3596 bool isImplicit) {
3597 assert((!SelLocs.empty() || isImplicit) &&
3598 "No selector locs for non-implicit message");
3599 ObjCMessageExpr *Mem;
3600 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3601 if (isImplicit)
3602 Mem = alloc(Context, Args.size(), 0);
3603 else
3604 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3605 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3606 SelLocs, SelLocsK, Method, Args, RBracLoc,
3607 isImplicit);
3610 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
3611 unsigned NumArgs,
3612 unsigned NumStoredSelLocs) {
3613 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3614 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3617 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3618 ArrayRef<Expr *> Args,
3619 SourceLocation RBraceLoc,
3620 ArrayRef<SourceLocation> SelLocs,
3621 Selector Sel,
3622 SelectorLocationsKind &SelLocsK) {
3623 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3624 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3625 : 0;
3626 return alloc(C, Args.size(), NumStoredSelLocs);
3629 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3630 unsigned NumArgs,
3631 unsigned NumStoredSelLocs) {
3632 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3633 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3634 return (ObjCMessageExpr *)C.Allocate(Size,
3635 llvm::AlignOf<ObjCMessageExpr>::Alignment);
3638 void ObjCMessageExpr::getSelectorLocs(
3639 SmallVectorImpl<SourceLocation> &SelLocs) const {
3640 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3641 SelLocs.push_back(getSelectorLoc(i));
3644 SourceRange ObjCMessageExpr::getReceiverRange() const {
3645 switch (getReceiverKind()) {
3646 case Instance:
3647 return getInstanceReceiver()->getSourceRange();
3649 case Class:
3650 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3652 case SuperInstance:
3653 case SuperClass:
3654 return getSuperLoc();
3657 llvm_unreachable("Invalid ReceiverKind!");
3660 Selector ObjCMessageExpr::getSelector() const {
3661 if (HasMethod)
3662 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3663 ->getSelector();
3664 return Selector(SelectorOrMethod);
3667 QualType ObjCMessageExpr::getReceiverType() const {
3668 switch (getReceiverKind()) {
3669 case Instance:
3670 return getInstanceReceiver()->getType();
3671 case Class:
3672 return getClassReceiver();
3673 case SuperInstance:
3674 case SuperClass:
3675 return getSuperType();
3678 llvm_unreachable("unexpected receiver kind");
3681 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3682 QualType T = getReceiverType();
3684 if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3685 return Ptr->getInterfaceDecl();
3687 if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3688 return Ty->getInterface();
3690 return nullptr;
3693 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3694 switch (getBridgeKind()) {
3695 case OBC_Bridge:
3696 return "__bridge";
3697 case OBC_BridgeTransfer:
3698 return "__bridge_transfer";
3699 case OBC_BridgeRetained:
3700 return "__bridge_retained";
3703 llvm_unreachable("Invalid BridgeKind!");
3706 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3707 QualType Type, SourceLocation BLoc,
3708 SourceLocation RP)
3709 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3710 Type->isDependentType(), Type->isDependentType(),
3711 Type->isInstantiationDependentType(),
3712 Type->containsUnexpandedParameterPack()),
3713 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3715 SubExprs = new (C) Stmt*[args.size()];
3716 for (unsigned i = 0; i != args.size(); i++) {
3717 if (args[i]->isTypeDependent())
3718 ExprBits.TypeDependent = true;
3719 if (args[i]->isValueDependent())
3720 ExprBits.ValueDependent = true;
3721 if (args[i]->isInstantiationDependent())
3722 ExprBits.InstantiationDependent = true;
3723 if (args[i]->containsUnexpandedParameterPack())
3724 ExprBits.ContainsUnexpandedParameterPack = true;
3726 SubExprs[i] = args[i];
3730 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3731 if (SubExprs) C.Deallocate(SubExprs);
3733 this->NumExprs = Exprs.size();
3734 SubExprs = new (C) Stmt*[NumExprs];
3735 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3738 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3739 SourceLocation GenericLoc, Expr *ControllingExpr,
3740 ArrayRef<TypeSourceInfo*> AssocTypes,
3741 ArrayRef<Expr*> AssocExprs,
3742 SourceLocation DefaultLoc,
3743 SourceLocation RParenLoc,
3744 bool ContainsUnexpandedParameterPack,
3745 unsigned ResultIndex)
3746 : Expr(GenericSelectionExprClass,
3747 AssocExprs[ResultIndex]->getType(),
3748 AssocExprs[ResultIndex]->getValueKind(),
3749 AssocExprs[ResultIndex]->getObjectKind(),
3750 AssocExprs[ResultIndex]->isTypeDependent(),
3751 AssocExprs[ResultIndex]->isValueDependent(),
3752 AssocExprs[ResultIndex]->isInstantiationDependent(),
3753 ContainsUnexpandedParameterPack),
3754 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3755 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3756 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3757 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3758 SubExprs[CONTROLLING] = ControllingExpr;
3759 assert(AssocTypes.size() == AssocExprs.size());
3760 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3761 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3764 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3765 SourceLocation GenericLoc, Expr *ControllingExpr,
3766 ArrayRef<TypeSourceInfo*> AssocTypes,
3767 ArrayRef<Expr*> AssocExprs,
3768 SourceLocation DefaultLoc,
3769 SourceLocation RParenLoc,
3770 bool ContainsUnexpandedParameterPack)
3771 : Expr(GenericSelectionExprClass,
3772 Context.DependentTy,
3773 VK_RValue,
3774 OK_Ordinary,
3775 /*isTypeDependent=*/true,
3776 /*isValueDependent=*/true,
3777 /*isInstantiationDependent=*/true,
3778 ContainsUnexpandedParameterPack),
3779 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3780 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3781 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3782 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3783 SubExprs[CONTROLLING] = ControllingExpr;
3784 assert(AssocTypes.size() == AssocExprs.size());
3785 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3786 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3789 //===----------------------------------------------------------------------===//
3790 // DesignatedInitExpr
3791 //===----------------------------------------------------------------------===//
3793 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3794 assert(Kind == FieldDesignator && "Only valid on a field designator");
3795 if (Field.NameOrField & 0x01)
3796 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3797 else
3798 return getField()->getIdentifier();
3801 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3802 unsigned NumDesignators,
3803 const Designator *Designators,
3804 SourceLocation EqualOrColonLoc,
3805 bool GNUSyntax,
3806 ArrayRef<Expr*> IndexExprs,
3807 Expr *Init)
3808 : Expr(DesignatedInitExprClass, Ty,
3809 Init->getValueKind(), Init->getObjectKind(),
3810 Init->isTypeDependent(), Init->isValueDependent(),
3811 Init->isInstantiationDependent(),
3812 Init->containsUnexpandedParameterPack()),
3813 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3814 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3815 this->Designators = new (C) Designator[NumDesignators];
3817 // Record the initializer itself.
3818 child_range Child = children();
3819 *Child++ = Init;
3821 // Copy the designators and their subexpressions, computing
3822 // value-dependence along the way.
3823 unsigned IndexIdx = 0;
3824 for (unsigned I = 0; I != NumDesignators; ++I) {
3825 this->Designators[I] = Designators[I];
3827 if (this->Designators[I].isArrayDesignator()) {
3828 // Compute type- and value-dependence.
3829 Expr *Index = IndexExprs[IndexIdx];
3830 if (Index->isTypeDependent() || Index->isValueDependent())
3831 ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3832 if (Index->isInstantiationDependent())
3833 ExprBits.InstantiationDependent = true;
3834 // Propagate unexpanded parameter packs.
3835 if (Index->containsUnexpandedParameterPack())
3836 ExprBits.ContainsUnexpandedParameterPack = true;
3838 // Copy the index expressions into permanent storage.
3839 *Child++ = IndexExprs[IndexIdx++];
3840 } else if (this->Designators[I].isArrayRangeDesignator()) {
3841 // Compute type- and value-dependence.
3842 Expr *Start = IndexExprs[IndexIdx];
3843 Expr *End = IndexExprs[IndexIdx + 1];
3844 if (Start->isTypeDependent() || Start->isValueDependent() ||
3845 End->isTypeDependent() || End->isValueDependent()) {
3846 ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3847 ExprBits.InstantiationDependent = true;
3848 } else if (Start->isInstantiationDependent() ||
3849 End->isInstantiationDependent()) {
3850 ExprBits.InstantiationDependent = true;
3853 // Propagate unexpanded parameter packs.
3854 if (Start->containsUnexpandedParameterPack() ||
3855 End->containsUnexpandedParameterPack())
3856 ExprBits.ContainsUnexpandedParameterPack = true;
3858 // Copy the start/end expressions into permanent storage.
3859 *Child++ = IndexExprs[IndexIdx++];
3860 *Child++ = IndexExprs[IndexIdx++];
3864 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3867 DesignatedInitExpr *
3868 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
3869 unsigned NumDesignators,
3870 ArrayRef<Expr*> IndexExprs,
3871 SourceLocation ColonOrEqualLoc,
3872 bool UsesColonSyntax, Expr *Init) {
3873 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3874 sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3875 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3876 ColonOrEqualLoc, UsesColonSyntax,
3877 IndexExprs, Init);
3880 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3881 unsigned NumIndexExprs) {
3882 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3883 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3884 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3887 void DesignatedInitExpr::setDesignators(const ASTContext &C,
3888 const Designator *Desigs,
3889 unsigned NumDesigs) {
3890 Designators = new (C) Designator[NumDesigs];
3891 NumDesignators = NumDesigs;
3892 for (unsigned I = 0; I != NumDesigs; ++I)
3893 Designators[I] = Desigs[I];
3896 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3897 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3898 if (size() == 1)
3899 return DIE->getDesignator(0)->getSourceRange();
3900 return SourceRange(DIE->getDesignator(0)->getLocStart(),
3901 DIE->getDesignator(size()-1)->getLocEnd());
3904 SourceLocation DesignatedInitExpr::getLocStart() const {
3905 SourceLocation StartLoc;
3906 Designator &First =
3907 *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3908 if (First.isFieldDesignator()) {
3909 if (GNUSyntax)
3910 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3911 else
3912 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3913 } else
3914 StartLoc =
3915 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3916 return StartLoc;
3919 SourceLocation DesignatedInitExpr::getLocEnd() const {
3920 return getInit()->getLocEnd();
3923 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3924 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3925 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3926 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3929 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3930 assert(D.Kind == Designator::ArrayRangeDesignator &&
3931 "Requires array range designator");
3932 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3933 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3936 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3937 assert(D.Kind == Designator::ArrayRangeDesignator &&
3938 "Requires array range designator");
3939 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3940 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3943 /// \brief Replaces the designator at index @p Idx with the series
3944 /// of designators in [First, Last).
3945 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3946 const Designator *First,
3947 const Designator *Last) {
3948 unsigned NumNewDesignators = Last - First;
3949 if (NumNewDesignators == 0) {
3950 std::copy_backward(Designators + Idx + 1,
3951 Designators + NumDesignators,
3952 Designators + Idx);
3953 --NumNewDesignators;
3954 return;
3955 } else if (NumNewDesignators == 1) {
3956 Designators[Idx] = *First;
3957 return;
3960 Designator *NewDesignators
3961 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3962 std::copy(Designators, Designators + Idx, NewDesignators);
3963 std::copy(First, Last, NewDesignators + Idx);
3964 std::copy(Designators + Idx + 1, Designators + NumDesignators,
3965 NewDesignators + Idx + NumNewDesignators);
3966 Designators = NewDesignators;
3967 NumDesignators = NumDesignators - 1 + NumNewDesignators;
3970 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3971 ArrayRef<Expr*> exprs,
3972 SourceLocation rparenloc)
3973 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3974 false, false, false, false),
3975 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3976 Exprs = new (C) Stmt*[exprs.size()];
3977 for (unsigned i = 0; i != exprs.size(); ++i) {
3978 if (exprs[i]->isTypeDependent())
3979 ExprBits.TypeDependent = true;
3980 if (exprs[i]->isValueDependent())
3981 ExprBits.ValueDependent = true;
3982 if (exprs[i]->isInstantiationDependent())
3983 ExprBits.InstantiationDependent = true;
3984 if (exprs[i]->containsUnexpandedParameterPack())
3985 ExprBits.ContainsUnexpandedParameterPack = true;
3987 Exprs[i] = exprs[i];
3991 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3992 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3993 e = ewc->getSubExpr();
3994 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3995 e = m->GetTemporaryExpr();
3996 e = cast<CXXConstructExpr>(e)->getArg(0);
3997 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3998 e = ice->getSubExpr();
3999 return cast<OpaqueValueExpr>(e);
4002 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4003 EmptyShell sh,
4004 unsigned numSemanticExprs) {
4005 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
4006 (1 + numSemanticExprs) * sizeof(Expr*),
4007 llvm::alignOf<PseudoObjectExpr>());
4008 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4011 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4012 : Expr(PseudoObjectExprClass, shell) {
4013 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4016 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4017 ArrayRef<Expr*> semantics,
4018 unsigned resultIndex) {
4019 assert(syntax && "no syntactic expression!");
4020 assert(semantics.size() && "no semantic expressions!");
4022 QualType type;
4023 ExprValueKind VK;
4024 if (resultIndex == NoResult) {
4025 type = C.VoidTy;
4026 VK = VK_RValue;
4027 } else {
4028 assert(resultIndex < semantics.size());
4029 type = semantics[resultIndex]->getType();
4030 VK = semantics[resultIndex]->getValueKind();
4031 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4034 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
4035 (1 + semantics.size()) * sizeof(Expr*),
4036 llvm::alignOf<PseudoObjectExpr>());
4037 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4038 resultIndex);
4041 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4042 Expr *syntax, ArrayRef<Expr*> semantics,
4043 unsigned resultIndex)
4044 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4045 /*filled in at end of ctor*/ false, false, false, false) {
4046 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4047 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4049 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4050 Expr *E = (i == 0 ? syntax : semantics[i-1]);
4051 getSubExprsBuffer()[i] = E;
4053 if (E->isTypeDependent())
4054 ExprBits.TypeDependent = true;
4055 if (E->isValueDependent())
4056 ExprBits.ValueDependent = true;
4057 if (E->isInstantiationDependent())
4058 ExprBits.InstantiationDependent = true;
4059 if (E->containsUnexpandedParameterPack())
4060 ExprBits.ContainsUnexpandedParameterPack = true;
4062 if (isa<OpaqueValueExpr>(E))
4063 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4064 "opaque-value semantic expressions for pseudo-object "
4065 "operations must have sources");
4069 //===----------------------------------------------------------------------===//
4070 // ExprIterator.
4071 //===----------------------------------------------------------------------===//
4073 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
4074 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
4075 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
4076 const Expr* ConstExprIterator::operator[](size_t idx) const {
4077 return cast<Expr>(I[idx]);
4079 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
4080 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
4082 //===----------------------------------------------------------------------===//
4083 // Child Iterators for iterating over subexpressions/substatements
4084 //===----------------------------------------------------------------------===//
4086 // UnaryExprOrTypeTraitExpr
4087 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4088 // If this is of a type and the type is a VLA type (and not a typedef), the
4089 // size expression of the VLA needs to be treated as an executable expression.
4090 // Why isn't this weirdness documented better in StmtIterator?
4091 if (isArgumentType()) {
4092 if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
4093 getArgumentType().getTypePtr()))
4094 return child_range(child_iterator(T), child_iterator());
4095 return child_range();
4097 return child_range(&Argument.Ex, &Argument.Ex + 1);
4100 // ObjCMessageExpr
4101 Stmt::child_range ObjCMessageExpr::children() {
4102 Stmt **begin;
4103 if (getReceiverKind() == Instance)
4104 begin = reinterpret_cast<Stmt **>(this + 1);
4105 else
4106 begin = reinterpret_cast<Stmt **>(getArgs());
4107 return child_range(begin,
4108 reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
4111 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
4112 QualType T, ObjCMethodDecl *Method,
4113 SourceRange SR)
4114 : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
4115 false, false, false, false),
4116 NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
4118 Expr **SaveElements = getElements();
4119 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
4120 if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
4121 ExprBits.ValueDependent = true;
4122 if (Elements[I]->isInstantiationDependent())
4123 ExprBits.InstantiationDependent = true;
4124 if (Elements[I]->containsUnexpandedParameterPack())
4125 ExprBits.ContainsUnexpandedParameterPack = true;
4127 SaveElements[I] = Elements[I];
4131 ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
4132 ArrayRef<Expr *> Elements,
4133 QualType T, ObjCMethodDecl * Method,
4134 SourceRange SR) {
4135 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4136 + Elements.size() * sizeof(Expr *));
4137 return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
4140 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
4141 unsigned NumElements) {
4143 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4144 + NumElements * sizeof(Expr *));
4145 return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
4148 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
4149 ArrayRef<ObjCDictionaryElement> VK,
4150 bool HasPackExpansions,
4151 QualType T, ObjCMethodDecl *method,
4152 SourceRange SR)
4153 : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
4154 false, false),
4155 NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
4156 DictWithObjectsMethod(method)
4158 KeyValuePair *KeyValues = getKeyValues();
4159 ExpansionData *Expansions = getExpansionData();
4160 for (unsigned I = 0; I < NumElements; I++) {
4161 if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
4162 VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
4163 ExprBits.ValueDependent = true;
4164 if (VK[I].Key->isInstantiationDependent() ||
4165 VK[I].Value->isInstantiationDependent())
4166 ExprBits.InstantiationDependent = true;
4167 if (VK[I].EllipsisLoc.isInvalid() &&
4168 (VK[I].Key->containsUnexpandedParameterPack() ||
4169 VK[I].Value->containsUnexpandedParameterPack()))
4170 ExprBits.ContainsUnexpandedParameterPack = true;
4172 KeyValues[I].Key = VK[I].Key;
4173 KeyValues[I].Value = VK[I].Value;
4174 if (Expansions) {
4175 Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4176 if (VK[I].NumExpansions)
4177 Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4178 else
4179 Expansions[I].NumExpansionsPlusOne = 0;
4184 ObjCDictionaryLiteral *
4185 ObjCDictionaryLiteral::Create(const ASTContext &C,
4186 ArrayRef<ObjCDictionaryElement> VK,
4187 bool HasPackExpansions,
4188 QualType T, ObjCMethodDecl *method,
4189 SourceRange SR) {
4190 unsigned ExpansionsSize = 0;
4191 if (HasPackExpansions)
4192 ExpansionsSize = sizeof(ExpansionData) * VK.size();
4194 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4195 sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4196 return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4199 ObjCDictionaryLiteral *
4200 ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
4201 bool HasPackExpansions) {
4202 unsigned ExpansionsSize = 0;
4203 if (HasPackExpansions)
4204 ExpansionsSize = sizeof(ExpansionData) * NumElements;
4205 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4206 sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4207 return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4208 HasPackExpansions);
4211 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
4212 Expr *base,
4213 Expr *key, QualType T,
4214 ObjCMethodDecl *getMethod,
4215 ObjCMethodDecl *setMethod,
4216 SourceLocation RB) {
4217 void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4218 return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4219 OK_ObjCSubscript,
4220 getMethod, setMethod, RB);
4223 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4224 QualType t, AtomicOp op, SourceLocation RP)
4225 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4226 false, false, false, false),
4227 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4229 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4230 for (unsigned i = 0; i != args.size(); i++) {
4231 if (args[i]->isTypeDependent())
4232 ExprBits.TypeDependent = true;
4233 if (args[i]->isValueDependent())
4234 ExprBits.ValueDependent = true;
4235 if (args[i]->isInstantiationDependent())
4236 ExprBits.InstantiationDependent = true;
4237 if (args[i]->containsUnexpandedParameterPack())
4238 ExprBits.ContainsUnexpandedParameterPack = true;
4240 SubExprs[i] = args[i];
4244 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4245 switch (Op) {
4246 case AO__c11_atomic_init:
4247 case AO__c11_atomic_load:
4248 case AO__atomic_load_n:
4249 return 2;
4251 case AO__c11_atomic_store:
4252 case AO__c11_atomic_exchange:
4253 case AO__atomic_load:
4254 case AO__atomic_store:
4255 case AO__atomic_store_n:
4256 case AO__atomic_exchange_n:
4257 case AO__c11_atomic_fetch_add:
4258 case AO__c11_atomic_fetch_sub:
4259 case AO__c11_atomic_fetch_and:
4260 case AO__c11_atomic_fetch_or:
4261 case AO__c11_atomic_fetch_xor:
4262 case AO__atomic_fetch_add:
4263 case AO__atomic_fetch_sub:
4264 case AO__atomic_fetch_and:
4265 case AO__atomic_fetch_or:
4266 case AO__atomic_fetch_xor:
4267 case AO__atomic_fetch_nand:
4268 case AO__atomic_add_fetch:
4269 case AO__atomic_sub_fetch:
4270 case AO__atomic_and_fetch:
4271 case AO__atomic_or_fetch:
4272 case AO__atomic_xor_fetch:
4273 case AO__atomic_nand_fetch:
4274 return 3;
4276 case AO__atomic_exchange:
4277 return 4;
4279 case AO__c11_atomic_compare_exchange_strong:
4280 case AO__c11_atomic_compare_exchange_weak:
4281 return 5;
4283 case AO__atomic_compare_exchange:
4284 case AO__atomic_compare_exchange_n:
4285 return 6;
4287 llvm_unreachable("unknown atomic op");