etc/services - sync with NetBSD-8
[minix.git] / external / bsd / llvm / dist / clang / lib / AST / ItaniumMangle.cpp
blob156ad646fa6d9d05ae49ac88d8ac9b27361be89b
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
14 // http://mentorembedded.github.io/cxx-abi/abi.html#mangling
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
35 #define MANGLE_CHECKER 0
37 #if MANGLE_CHECKER
38 #include <cxxabi.h>
39 #endif
41 using namespace clang;
43 namespace {
45 /// \brief Retrieve the declaration context that should be used when mangling
46 /// the given declaration.
47 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48 // The ABI assumes that lambda closure types that occur within
49 // default arguments live in the context of the function. However, due to
50 // the way in which Clang parses and creates function declarations, this is
51 // not the case: the lambda closure type ends up living in the context
52 // where the function itself resides, because the function declaration itself
53 // had not yet been created. Fix the context here.
54 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55 if (RD->isLambda())
56 if (ParmVarDecl *ContextParam
57 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58 return ContextParam->getDeclContext();
61 // Perform the same check for block literals.
62 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63 if (ParmVarDecl *ContextParam
64 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65 return ContextParam->getDeclContext();
68 const DeclContext *DC = D->getDeclContext();
69 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70 return getEffectiveDeclContext(CD);
72 return DC;
75 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
76 return getEffectiveDeclContext(cast<Decl>(DC));
79 static bool isLocalContainerContext(const DeclContext *DC) {
80 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
83 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
84 const DeclContext *DC = getEffectiveDeclContext(D);
85 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
86 if (isLocalContainerContext(DC))
87 return dyn_cast<RecordDecl>(D);
88 D = cast<Decl>(DC);
89 DC = getEffectiveDeclContext(D);
91 return nullptr;
94 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
95 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
96 return ftd->getTemplatedDecl();
98 return fn;
101 static const NamedDecl *getStructor(const NamedDecl *decl) {
102 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
103 return (fn ? getStructor(fn) : decl);
106 static bool isLambda(const NamedDecl *ND) {
107 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
108 if (!Record)
109 return false;
111 return Record->isLambda();
114 static const unsigned UnknownArity = ~0U;
116 class ItaniumMangleContextImpl : public ItaniumMangleContext {
117 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
118 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
119 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
121 public:
122 explicit ItaniumMangleContextImpl(ASTContext &Context,
123 DiagnosticsEngine &Diags)
124 : ItaniumMangleContext(Context, Diags) {}
126 /// @name Mangler Entry Points
127 /// @{
129 bool shouldMangleCXXName(const NamedDecl *D) override;
130 bool shouldMangleStringLiteral(const StringLiteral *) override {
131 return false;
133 void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
134 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
135 raw_ostream &) override;
136 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
137 const ThisAdjustment &ThisAdjustment,
138 raw_ostream &) override;
139 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
140 raw_ostream &) override;
141 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
142 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
143 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
144 const CXXRecordDecl *Type, raw_ostream &) override;
145 void mangleCXXRTTI(QualType T, raw_ostream &) override;
146 void mangleCXXRTTIName(QualType T, raw_ostream &) override;
147 void mangleTypeName(QualType T, raw_ostream &) override;
148 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
149 raw_ostream &) override;
150 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
151 raw_ostream &) override;
153 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
154 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
155 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
156 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
157 void mangleDynamicAtExitDestructor(const VarDecl *D,
158 raw_ostream &Out) override;
159 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
160 void mangleItaniumThreadLocalWrapper(const VarDecl *D,
161 raw_ostream &) override;
163 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
165 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
166 // Lambda closure types are already numbered.
167 if (isLambda(ND))
168 return false;
170 // Anonymous tags are already numbered.
171 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
172 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
173 return false;
176 // Use the canonical number for externally visible decls.
177 if (ND->isExternallyVisible()) {
178 unsigned discriminator = getASTContext().getManglingNumber(ND);
179 if (discriminator == 1)
180 return false;
181 disc = discriminator - 2;
182 return true;
185 // Make up a reasonable number for internal decls.
186 unsigned &discriminator = Uniquifier[ND];
187 if (!discriminator) {
188 const DeclContext *DC = getEffectiveDeclContext(ND);
189 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
191 if (discriminator == 1)
192 return false;
193 disc = discriminator-2;
194 return true;
196 /// @}
199 /// CXXNameMangler - Manage the mangling of a single name.
200 class CXXNameMangler {
201 ItaniumMangleContextImpl &Context;
202 raw_ostream &Out;
204 /// The "structor" is the top-level declaration being mangled, if
205 /// that's not a template specialization; otherwise it's the pattern
206 /// for that specialization.
207 const NamedDecl *Structor;
208 unsigned StructorType;
210 /// SeqID - The next subsitution sequence number.
211 unsigned SeqID;
213 class FunctionTypeDepthState {
214 unsigned Bits;
216 enum { InResultTypeMask = 1 };
218 public:
219 FunctionTypeDepthState() : Bits(0) {}
221 /// The number of function types we're inside.
222 unsigned getDepth() const {
223 return Bits >> 1;
226 /// True if we're in the return type of the innermost function type.
227 bool isInResultType() const {
228 return Bits & InResultTypeMask;
231 FunctionTypeDepthState push() {
232 FunctionTypeDepthState tmp = *this;
233 Bits = (Bits & ~InResultTypeMask) + 2;
234 return tmp;
237 void enterResultType() {
238 Bits |= InResultTypeMask;
241 void leaveResultType() {
242 Bits &= ~InResultTypeMask;
245 void pop(FunctionTypeDepthState saved) {
246 assert(getDepth() == saved.getDepth() + 1);
247 Bits = saved.Bits;
250 } FunctionTypeDepth;
252 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
254 ASTContext &getASTContext() const { return Context.getASTContext(); }
256 public:
257 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
258 const NamedDecl *D = nullptr)
259 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
260 SeqID(0) {
261 // These can't be mangled without a ctor type or dtor type.
262 assert(!D || (!isa<CXXDestructorDecl>(D) &&
263 !isa<CXXConstructorDecl>(D)));
265 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
266 const CXXConstructorDecl *D, CXXCtorType Type)
267 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
268 SeqID(0) { }
269 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
270 const CXXDestructorDecl *D, CXXDtorType Type)
271 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
272 SeqID(0) { }
274 #if MANGLE_CHECKER
275 ~CXXNameMangler() {
276 if (Out.str()[0] == '\01')
277 return;
279 int status = 0;
280 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
281 assert(status == 0 && "Could not demangle mangled name!");
282 free(result);
284 #endif
285 raw_ostream &getStream() { return Out; }
287 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
288 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
289 void mangleNumber(const llvm::APSInt &I);
290 void mangleNumber(int64_t Number);
291 void mangleFloat(const llvm::APFloat &F);
292 void mangleFunctionEncoding(const FunctionDecl *FD);
293 void mangleSeqID(unsigned SeqID);
294 void mangleName(const NamedDecl *ND);
295 void mangleType(QualType T);
296 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
298 private:
300 bool mangleSubstitution(const NamedDecl *ND);
301 bool mangleSubstitution(QualType T);
302 bool mangleSubstitution(TemplateName Template);
303 bool mangleSubstitution(uintptr_t Ptr);
305 void mangleExistingSubstitution(QualType type);
306 void mangleExistingSubstitution(TemplateName name);
308 bool mangleStandardSubstitution(const NamedDecl *ND);
310 void addSubstitution(const NamedDecl *ND) {
311 ND = cast<NamedDecl>(ND->getCanonicalDecl());
313 addSubstitution(reinterpret_cast<uintptr_t>(ND));
315 void addSubstitution(QualType T);
316 void addSubstitution(TemplateName Template);
317 void addSubstitution(uintptr_t Ptr);
319 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
320 NamedDecl *firstQualifierLookup,
321 bool recursive = false);
322 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
323 NamedDecl *firstQualifierLookup,
324 DeclarationName name,
325 unsigned KnownArity = UnknownArity);
327 void mangleName(const TemplateDecl *TD,
328 const TemplateArgument *TemplateArgs,
329 unsigned NumTemplateArgs);
330 void mangleUnqualifiedName(const NamedDecl *ND) {
331 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
333 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
334 unsigned KnownArity);
335 void mangleUnscopedName(const NamedDecl *ND);
336 void mangleUnscopedTemplateName(const TemplateDecl *ND);
337 void mangleUnscopedTemplateName(TemplateName);
338 void mangleSourceName(const IdentifierInfo *II);
339 void mangleLocalName(const Decl *D);
340 void mangleBlockForPrefix(const BlockDecl *Block);
341 void mangleUnqualifiedBlock(const BlockDecl *Block);
342 void mangleLambda(const CXXRecordDecl *Lambda);
343 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
344 bool NoFunction=false);
345 void mangleNestedName(const TemplateDecl *TD,
346 const TemplateArgument *TemplateArgs,
347 unsigned NumTemplateArgs);
348 void manglePrefix(NestedNameSpecifier *qualifier);
349 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
350 void manglePrefix(QualType type);
351 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
352 void mangleTemplatePrefix(TemplateName Template);
353 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
354 void mangleQualifiers(Qualifiers Quals);
355 void mangleRefQualifier(RefQualifierKind RefQualifier);
357 void mangleObjCMethodName(const ObjCMethodDecl *MD);
359 // Declare manglers for every type class.
360 #define ABSTRACT_TYPE(CLASS, PARENT)
361 #define NON_CANONICAL_TYPE(CLASS, PARENT)
362 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
363 #include "clang/AST/TypeNodes.def"
365 void mangleType(const TagType*);
366 void mangleType(TemplateName);
367 void mangleBareFunctionType(const FunctionType *T,
368 bool MangleReturnType);
369 void mangleNeonVectorType(const VectorType *T);
370 void mangleAArch64NeonVectorType(const VectorType *T);
372 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
373 void mangleMemberExpr(const Expr *base, bool isArrow,
374 NestedNameSpecifier *qualifier,
375 NamedDecl *firstQualifierLookup,
376 DeclarationName name,
377 unsigned knownArity);
378 void mangleCastExpression(const Expr *E, StringRef CastEncoding);
379 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
380 void mangleCXXCtorType(CXXCtorType T);
381 void mangleCXXDtorType(CXXDtorType T);
383 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
384 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
385 unsigned NumTemplateArgs);
386 void mangleTemplateArgs(const TemplateArgumentList &AL);
387 void mangleTemplateArg(TemplateArgument A);
389 void mangleTemplateParameter(unsigned Index);
391 void mangleFunctionParam(const ParmVarDecl *parm);
396 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
397 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
398 if (FD) {
399 LanguageLinkage L = FD->getLanguageLinkage();
400 // Overloadable functions need mangling.
401 if (FD->hasAttr<OverloadableAttr>())
402 return true;
404 // "main" is not mangled.
405 if (FD->isMain())
406 return false;
408 // C++ functions and those whose names are not a simple identifier need
409 // mangling.
410 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
411 return true;
413 // C functions are not mangled.
414 if (L == CLanguageLinkage)
415 return false;
418 // Otherwise, no mangling is done outside C++ mode.
419 if (!getASTContext().getLangOpts().CPlusPlus)
420 return false;
422 const VarDecl *VD = dyn_cast<VarDecl>(D);
423 if (VD) {
424 // C variables are not mangled.
425 if (VD->isExternC())
426 return false;
428 // Variables at global scope with non-internal linkage are not mangled
429 const DeclContext *DC = getEffectiveDeclContext(D);
430 // Check for extern variable declared locally.
431 if (DC->isFunctionOrMethod() && D->hasLinkage())
432 while (!DC->isNamespace() && !DC->isTranslationUnit())
433 DC = getEffectiveParentContext(DC);
434 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
435 !isa<VarTemplateSpecializationDecl>(D))
436 return false;
439 return true;
442 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
443 // <mangled-name> ::= _Z <encoding>
444 // ::= <data name>
445 // ::= <special-name>
446 Out << Prefix;
447 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
448 mangleFunctionEncoding(FD);
449 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
450 mangleName(VD);
451 else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
452 mangleName(IFD->getAnonField());
453 else
454 mangleName(cast<FieldDecl>(D));
457 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
458 // <encoding> ::= <function name> <bare-function-type>
459 mangleName(FD);
461 // Don't mangle in the type if this isn't a decl we should typically mangle.
462 if (!Context.shouldMangleDeclName(FD))
463 return;
465 if (FD->hasAttr<EnableIfAttr>()) {
466 FunctionTypeDepthState Saved = FunctionTypeDepth.push();
467 Out << "Ua9enable_ifI";
468 // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
469 // it here.
470 for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
471 E = FD->getAttrs().rend();
472 I != E; ++I) {
473 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
474 if (!EIA)
475 continue;
476 Out << 'X';
477 mangleExpression(EIA->getCond());
478 Out << 'E';
480 Out << 'E';
481 FunctionTypeDepth.pop(Saved);
484 // Whether the mangling of a function type includes the return type depends on
485 // the context and the nature of the function. The rules for deciding whether
486 // the return type is included are:
488 // 1. Template functions (names or types) have return types encoded, with
489 // the exceptions listed below.
490 // 2. Function types not appearing as part of a function name mangling,
491 // e.g. parameters, pointer types, etc., have return type encoded, with the
492 // exceptions listed below.
493 // 3. Non-template function names do not have return types encoded.
495 // The exceptions mentioned in (1) and (2) above, for which the return type is
496 // never included, are
497 // 1. Constructors.
498 // 2. Destructors.
499 // 3. Conversion operator functions, e.g. operator int.
500 bool MangleReturnType = false;
501 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
502 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
503 isa<CXXConversionDecl>(FD)))
504 MangleReturnType = true;
506 // Mangle the type of the primary template.
507 FD = PrimaryTemplate->getTemplatedDecl();
510 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
511 MangleReturnType);
514 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
515 while (isa<LinkageSpecDecl>(DC)) {
516 DC = getEffectiveParentContext(DC);
519 return DC;
522 /// isStd - Return whether a given namespace is the 'std' namespace.
523 static bool isStd(const NamespaceDecl *NS) {
524 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
525 ->isTranslationUnit())
526 return false;
528 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
529 return II && II->isStr("std");
532 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
533 // namespace.
534 static bool isStdNamespace(const DeclContext *DC) {
535 if (!DC->isNamespace())
536 return false;
538 return isStd(cast<NamespaceDecl>(DC));
541 static const TemplateDecl *
542 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
543 // Check if we have a function template.
544 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
545 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
546 TemplateArgs = FD->getTemplateSpecializationArgs();
547 return TD;
551 // Check if we have a class template.
552 if (const ClassTemplateSpecializationDecl *Spec =
553 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
554 TemplateArgs = &Spec->getTemplateArgs();
555 return Spec->getSpecializedTemplate();
558 // Check if we have a variable template.
559 if (const VarTemplateSpecializationDecl *Spec =
560 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
561 TemplateArgs = &Spec->getTemplateArgs();
562 return Spec->getSpecializedTemplate();
565 return nullptr;
568 void CXXNameMangler::mangleName(const NamedDecl *ND) {
569 // <name> ::= <nested-name>
570 // ::= <unscoped-name>
571 // ::= <unscoped-template-name> <template-args>
572 // ::= <local-name>
574 const DeclContext *DC = getEffectiveDeclContext(ND);
576 // If this is an extern variable declared locally, the relevant DeclContext
577 // is that of the containing namespace, or the translation unit.
578 // FIXME: This is a hack; extern variables declared locally should have
579 // a proper semantic declaration context!
580 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
581 while (!DC->isNamespace() && !DC->isTranslationUnit())
582 DC = getEffectiveParentContext(DC);
583 else if (GetLocalClassDecl(ND)) {
584 mangleLocalName(ND);
585 return;
588 DC = IgnoreLinkageSpecDecls(DC);
590 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
591 // Check if we have a template.
592 const TemplateArgumentList *TemplateArgs = nullptr;
593 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
594 mangleUnscopedTemplateName(TD);
595 mangleTemplateArgs(*TemplateArgs);
596 return;
599 mangleUnscopedName(ND);
600 return;
603 if (isLocalContainerContext(DC)) {
604 mangleLocalName(ND);
605 return;
608 mangleNestedName(ND, DC);
610 void CXXNameMangler::mangleName(const TemplateDecl *TD,
611 const TemplateArgument *TemplateArgs,
612 unsigned NumTemplateArgs) {
613 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
615 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
616 mangleUnscopedTemplateName(TD);
617 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
618 } else {
619 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
623 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
624 // <unscoped-name> ::= <unqualified-name>
625 // ::= St <unqualified-name> # ::std::
627 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
628 Out << "St";
630 mangleUnqualifiedName(ND);
633 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
634 // <unscoped-template-name> ::= <unscoped-name>
635 // ::= <substitution>
636 if (mangleSubstitution(ND))
637 return;
639 // <template-template-param> ::= <template-param>
640 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
641 mangleTemplateParameter(TTP->getIndex());
642 else
643 mangleUnscopedName(ND->getTemplatedDecl());
645 addSubstitution(ND);
648 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
649 // <unscoped-template-name> ::= <unscoped-name>
650 // ::= <substitution>
651 if (TemplateDecl *TD = Template.getAsTemplateDecl())
652 return mangleUnscopedTemplateName(TD);
654 if (mangleSubstitution(Template))
655 return;
657 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
658 assert(Dependent && "Not a dependent template name?");
659 if (const IdentifierInfo *Id = Dependent->getIdentifier())
660 mangleSourceName(Id);
661 else
662 mangleOperatorName(Dependent->getOperator(), UnknownArity);
664 addSubstitution(Template);
667 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
668 // ABI:
669 // Floating-point literals are encoded using a fixed-length
670 // lowercase hexadecimal string corresponding to the internal
671 // representation (IEEE on Itanium), high-order bytes first,
672 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
673 // on Itanium.
674 // The 'without leading zeroes' thing seems to be an editorial
675 // mistake; see the discussion on cxx-abi-dev beginning on
676 // 2012-01-16.
678 // Our requirements here are just barely weird enough to justify
679 // using a custom algorithm instead of post-processing APInt::toString().
681 llvm::APInt valueBits = f.bitcastToAPInt();
682 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
683 assert(numCharacters != 0);
685 // Allocate a buffer of the right number of characters.
686 SmallVector<char, 20> buffer;
687 buffer.set_size(numCharacters);
689 // Fill the buffer left-to-right.
690 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
691 // The bit-index of the next hex digit.
692 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
694 // Project out 4 bits starting at 'digitIndex'.
695 llvm::integerPart hexDigit
696 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
697 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
698 hexDigit &= 0xF;
700 // Map that over to a lowercase hex digit.
701 static const char charForHex[16] = {
702 '0', '1', '2', '3', '4', '5', '6', '7',
703 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
705 buffer[stringIndex] = charForHex[hexDigit];
708 Out.write(buffer.data(), numCharacters);
711 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
712 if (Value.isSigned() && Value.isNegative()) {
713 Out << 'n';
714 Value.abs().print(Out, /*signed*/ false);
715 } else {
716 Value.print(Out, /*signed*/ false);
720 void CXXNameMangler::mangleNumber(int64_t Number) {
721 // <number> ::= [n] <non-negative decimal integer>
722 if (Number < 0) {
723 Out << 'n';
724 Number = -Number;
727 Out << Number;
730 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
731 // <call-offset> ::= h <nv-offset> _
732 // ::= v <v-offset> _
733 // <nv-offset> ::= <offset number> # non-virtual base override
734 // <v-offset> ::= <offset number> _ <virtual offset number>
735 // # virtual base override, with vcall offset
736 if (!Virtual) {
737 Out << 'h';
738 mangleNumber(NonVirtual);
739 Out << '_';
740 return;
743 Out << 'v';
744 mangleNumber(NonVirtual);
745 Out << '_';
746 mangleNumber(Virtual);
747 Out << '_';
750 void CXXNameMangler::manglePrefix(QualType type) {
751 if (const TemplateSpecializationType *TST =
752 type->getAs<TemplateSpecializationType>()) {
753 if (!mangleSubstitution(QualType(TST, 0))) {
754 mangleTemplatePrefix(TST->getTemplateName());
756 // FIXME: GCC does not appear to mangle the template arguments when
757 // the template in question is a dependent template name. Should we
758 // emulate that badness?
759 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
760 addSubstitution(QualType(TST, 0));
762 } else if (const DependentTemplateSpecializationType *DTST
763 = type->getAs<DependentTemplateSpecializationType>()) {
764 TemplateName Template
765 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
766 DTST->getIdentifier());
767 mangleTemplatePrefix(Template);
769 // FIXME: GCC does not appear to mangle the template arguments when
770 // the template in question is a dependent template name. Should we
771 // emulate that badness?
772 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
773 } else {
774 // We use the QualType mangle type variant here because it handles
775 // substitutions.
776 mangleType(type);
780 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
782 /// \param firstQualifierLookup - the entity found by unqualified lookup
783 /// for the first name in the qualifier, if this is for a member expression
784 /// \param recursive - true if this is being called recursively,
785 /// i.e. if there is more prefix "to the right".
786 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
787 NamedDecl *firstQualifierLookup,
788 bool recursive) {
790 // x, ::x
791 // <unresolved-name> ::= [gs] <base-unresolved-name>
793 // T::x / decltype(p)::x
794 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
796 // T::N::x /decltype(p)::N::x
797 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
798 // <base-unresolved-name>
800 // A::x, N::y, A<T>::z; "gs" means leading "::"
801 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
802 // <base-unresolved-name>
804 switch (qualifier->getKind()) {
805 case NestedNameSpecifier::Global:
806 Out << "gs";
808 // We want an 'sr' unless this is the entire NNS.
809 if (recursive)
810 Out << "sr";
812 // We never want an 'E' here.
813 return;
815 case NestedNameSpecifier::Super:
816 llvm_unreachable("Can't mangle __super specifier");
818 case NestedNameSpecifier::Namespace:
819 if (qualifier->getPrefix())
820 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
821 /*recursive*/ true);
822 else
823 Out << "sr";
824 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
825 break;
826 case NestedNameSpecifier::NamespaceAlias:
827 if (qualifier->getPrefix())
828 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
829 /*recursive*/ true);
830 else
831 Out << "sr";
832 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
833 break;
835 case NestedNameSpecifier::TypeSpec:
836 case NestedNameSpecifier::TypeSpecWithTemplate: {
837 const Type *type = qualifier->getAsType();
839 // We only want to use an unresolved-type encoding if this is one of:
840 // - a decltype
841 // - a template type parameter
842 // - a template template parameter with arguments
843 // In all of these cases, we should have no prefix.
844 if (qualifier->getPrefix()) {
845 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
846 /*recursive*/ true);
847 } else {
848 // Otherwise, all the cases want this.
849 Out << "sr";
852 // Only certain other types are valid as prefixes; enumerate them.
853 switch (type->getTypeClass()) {
854 case Type::Builtin:
855 case Type::Complex:
856 case Type::Adjusted:
857 case Type::Decayed:
858 case Type::Pointer:
859 case Type::BlockPointer:
860 case Type::LValueReference:
861 case Type::RValueReference:
862 case Type::MemberPointer:
863 case Type::ConstantArray:
864 case Type::IncompleteArray:
865 case Type::VariableArray:
866 case Type::DependentSizedArray:
867 case Type::DependentSizedExtVector:
868 case Type::Vector:
869 case Type::ExtVector:
870 case Type::FunctionProto:
871 case Type::FunctionNoProto:
872 case Type::Enum:
873 case Type::Paren:
874 case Type::Elaborated:
875 case Type::Attributed:
876 case Type::Auto:
877 case Type::PackExpansion:
878 case Type::ObjCObject:
879 case Type::ObjCInterface:
880 case Type::ObjCObjectPointer:
881 case Type::Atomic:
882 llvm_unreachable("type is illegal as a nested name specifier");
884 case Type::SubstTemplateTypeParmPack:
885 // FIXME: not clear how to mangle this!
886 // template <class T...> class A {
887 // template <class U...> void foo(decltype(T::foo(U())) x...);
888 // };
889 Out << "_SUBSTPACK_";
890 break;
892 // <unresolved-type> ::= <template-param>
893 // ::= <decltype>
894 // ::= <template-template-param> <template-args>
895 // (this last is not official yet)
896 case Type::TypeOfExpr:
897 case Type::TypeOf:
898 case Type::Decltype:
899 case Type::TemplateTypeParm:
900 case Type::UnaryTransform:
901 case Type::SubstTemplateTypeParm:
902 unresolvedType:
903 assert(!qualifier->getPrefix());
905 // We only get here recursively if we're followed by identifiers.
906 if (recursive) Out << 'N';
908 // This seems to do everything we want. It's not really
909 // sanctioned for a substituted template parameter, though.
910 mangleType(QualType(type, 0));
912 // We never want to print 'E' directly after an unresolved-type,
913 // so we return directly.
914 return;
916 case Type::Typedef:
917 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
918 break;
920 case Type::UnresolvedUsing:
921 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
922 ->getIdentifier());
923 break;
925 case Type::Record:
926 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
927 break;
929 case Type::TemplateSpecialization: {
930 const TemplateSpecializationType *tst
931 = cast<TemplateSpecializationType>(type);
932 TemplateName name = tst->getTemplateName();
933 switch (name.getKind()) {
934 case TemplateName::Template:
935 case TemplateName::QualifiedTemplate: {
936 TemplateDecl *temp = name.getAsTemplateDecl();
938 // If the base is a template template parameter, this is an
939 // unresolved type.
940 assert(temp && "no template for template specialization type");
941 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
943 mangleSourceName(temp->getIdentifier());
944 break;
947 case TemplateName::OverloadedTemplate:
948 case TemplateName::DependentTemplate:
949 llvm_unreachable("invalid base for a template specialization type");
951 case TemplateName::SubstTemplateTemplateParm: {
952 SubstTemplateTemplateParmStorage *subst
953 = name.getAsSubstTemplateTemplateParm();
954 mangleExistingSubstitution(subst->getReplacement());
955 break;
958 case TemplateName::SubstTemplateTemplateParmPack: {
959 // FIXME: not clear how to mangle this!
960 // template <template <class U> class T...> class A {
961 // template <class U...> void foo(decltype(T<U>::foo) x...);
962 // };
963 Out << "_SUBSTPACK_";
964 break;
968 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
969 break;
972 case Type::InjectedClassName:
973 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
974 ->getIdentifier());
975 break;
977 case Type::DependentName:
978 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
979 break;
981 case Type::DependentTemplateSpecialization: {
982 const DependentTemplateSpecializationType *tst
983 = cast<DependentTemplateSpecializationType>(type);
984 mangleSourceName(tst->getIdentifier());
985 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
986 break;
989 break;
992 case NestedNameSpecifier::Identifier:
993 // Member expressions can have these without prefixes.
994 if (qualifier->getPrefix()) {
995 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
996 /*recursive*/ true);
997 } else if (firstQualifierLookup) {
999 // Try to make a proper qualifier out of the lookup result, and
1000 // then just recurse on that.
1001 NestedNameSpecifier *newQualifier;
1002 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
1003 QualType type = getASTContext().getTypeDeclType(typeDecl);
1005 // Pretend we had a different nested name specifier.
1006 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1007 /*prefix*/ nullptr,
1008 /*template*/ false,
1009 type.getTypePtr());
1010 } else if (NamespaceDecl *nspace =
1011 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1012 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1013 /*prefix*/ nullptr,
1014 nspace);
1015 } else if (NamespaceAliasDecl *alias =
1016 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1017 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1018 /*prefix*/ nullptr,
1019 alias);
1020 } else {
1021 // No sensible mangling to do here.
1022 newQualifier = nullptr;
1025 if (newQualifier)
1026 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ nullptr,
1027 recursive);
1029 } else {
1030 Out << "sr";
1033 mangleSourceName(qualifier->getAsIdentifier());
1034 break;
1037 // If this was the innermost part of the NNS, and we fell out to
1038 // here, append an 'E'.
1039 if (!recursive)
1040 Out << 'E';
1043 /// Mangle an unresolved-name, which is generally used for names which
1044 /// weren't resolved to specific entities.
1045 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1046 NamedDecl *firstQualifierLookup,
1047 DeclarationName name,
1048 unsigned knownArity) {
1049 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1050 mangleUnqualifiedName(nullptr, name, knownArity);
1053 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1054 DeclarationName Name,
1055 unsigned KnownArity) {
1056 // <unqualified-name> ::= <operator-name>
1057 // ::= <ctor-dtor-name>
1058 // ::= <source-name>
1059 switch (Name.getNameKind()) {
1060 case DeclarationName::Identifier: {
1061 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1062 // We must avoid conflicts between internally- and externally-
1063 // linked variable and function declaration names in the same TU:
1064 // void test() { extern void foo(); }
1065 // static void foo();
1066 // This naming convention is the same as that followed by GCC,
1067 // though it shouldn't actually matter.
1068 if (ND && ND->getFormalLinkage() == InternalLinkage &&
1069 getEffectiveDeclContext(ND)->isFileContext())
1070 Out << 'L';
1072 mangleSourceName(II);
1073 break;
1076 // Otherwise, an anonymous entity. We must have a declaration.
1077 assert(ND && "mangling empty name without declaration");
1079 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1080 if (NS->isAnonymousNamespace()) {
1081 // This is how gcc mangles these names.
1082 Out << "12_GLOBAL__N_1";
1083 break;
1087 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1088 // We must have an anonymous union or struct declaration.
1089 const RecordDecl *RD =
1090 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1092 // Itanium C++ ABI 5.1.2:
1094 // For the purposes of mangling, the name of an anonymous union is
1095 // considered to be the name of the first named data member found by a
1096 // pre-order, depth-first, declaration-order walk of the data members of
1097 // the anonymous union. If there is no such data member (i.e., if all of
1098 // the data members in the union are unnamed), then there is no way for
1099 // a program to refer to the anonymous union, and there is therefore no
1100 // need to mangle its name.
1101 assert(RD->isAnonymousStructOrUnion()
1102 && "Expected anonymous struct or union!");
1103 const FieldDecl *FD = RD->findFirstNamedDataMember();
1105 // It's actually possible for various reasons for us to get here
1106 // with an empty anonymous struct / union. Fortunately, it
1107 // doesn't really matter what name we generate.
1108 if (!FD) break;
1109 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1111 mangleSourceName(FD->getIdentifier());
1112 break;
1115 // Class extensions have no name as a category, and it's possible
1116 // for them to be the semantic parent of certain declarations
1117 // (primarily, tag decls defined within declarations). Such
1118 // declarations will always have internal linkage, so the name
1119 // doesn't really matter, but we shouldn't crash on them. For
1120 // safety, just handle all ObjC containers here.
1121 if (isa<ObjCContainerDecl>(ND))
1122 break;
1124 // We must have an anonymous struct.
1125 const TagDecl *TD = cast<TagDecl>(ND);
1126 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1127 assert(TD->getDeclContext() == D->getDeclContext() &&
1128 "Typedef should not be in another decl context!");
1129 assert(D->getDeclName().getAsIdentifierInfo() &&
1130 "Typedef was not named!");
1131 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1132 break;
1135 // <unnamed-type-name> ::= <closure-type-name>
1137 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1138 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1139 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1140 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1141 mangleLambda(Record);
1142 break;
1146 if (TD->isExternallyVisible()) {
1147 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1148 Out << "Ut";
1149 if (UnnamedMangle > 1)
1150 Out << llvm::utostr(UnnamedMangle - 2);
1151 Out << '_';
1152 break;
1155 // Get a unique id for the anonymous struct.
1156 unsigned AnonStructId = Context.getAnonymousStructId(TD);
1158 // Mangle it as a source name in the form
1159 // [n] $_<id>
1160 // where n is the length of the string.
1161 SmallString<8> Str;
1162 Str += "$_";
1163 Str += llvm::utostr(AnonStructId);
1165 Out << Str.size();
1166 Out << Str.str();
1167 break;
1170 case DeclarationName::ObjCZeroArgSelector:
1171 case DeclarationName::ObjCOneArgSelector:
1172 case DeclarationName::ObjCMultiArgSelector:
1173 llvm_unreachable("Can't mangle Objective-C selector names here!");
1175 case DeclarationName::CXXConstructorName:
1176 if (ND == Structor)
1177 // If the named decl is the C++ constructor we're mangling, use the type
1178 // we were given.
1179 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1180 else
1181 // Otherwise, use the complete constructor name. This is relevant if a
1182 // class with a constructor is declared within a constructor.
1183 mangleCXXCtorType(Ctor_Complete);
1184 break;
1186 case DeclarationName::CXXDestructorName:
1187 if (ND == Structor)
1188 // If the named decl is the C++ destructor we're mangling, use the type we
1189 // were given.
1190 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1191 else
1192 // Otherwise, use the complete destructor name. This is relevant if a
1193 // class with a destructor is declared within a destructor.
1194 mangleCXXDtorType(Dtor_Complete);
1195 break;
1197 case DeclarationName::CXXConversionFunctionName:
1198 // <operator-name> ::= cv <type> # (cast)
1199 Out << "cv";
1200 mangleType(Name.getCXXNameType());
1201 break;
1203 case DeclarationName::CXXOperatorName: {
1204 unsigned Arity;
1205 if (ND) {
1206 Arity = cast<FunctionDecl>(ND)->getNumParams();
1208 // If we have a C++ member function, we need to include the 'this' pointer.
1209 // FIXME: This does not make sense for operators that are static, but their
1210 // names stay the same regardless of the arity (operator new for instance).
1211 if (isa<CXXMethodDecl>(ND))
1212 Arity++;
1213 } else
1214 Arity = KnownArity;
1216 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1217 break;
1220 case DeclarationName::CXXLiteralOperatorName:
1221 // FIXME: This mangling is not yet official.
1222 Out << "li";
1223 mangleSourceName(Name.getCXXLiteralIdentifier());
1224 break;
1226 case DeclarationName::CXXUsingDirective:
1227 llvm_unreachable("Can't mangle a using directive name!");
1231 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1232 // <source-name> ::= <positive length number> <identifier>
1233 // <number> ::= [n] <non-negative decimal integer>
1234 // <identifier> ::= <unqualified source code identifier>
1235 Out << II->getLength() << II->getName();
1238 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1239 const DeclContext *DC,
1240 bool NoFunction) {
1241 // <nested-name>
1242 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1243 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1244 // <template-args> E
1246 Out << 'N';
1247 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1248 Qualifiers MethodQuals =
1249 Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1250 // We do not consider restrict a distinguishing attribute for overloading
1251 // purposes so we must not mangle it.
1252 MethodQuals.removeRestrict();
1253 mangleQualifiers(MethodQuals);
1254 mangleRefQualifier(Method->getRefQualifier());
1257 // Check if we have a template.
1258 const TemplateArgumentList *TemplateArgs = nullptr;
1259 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1260 mangleTemplatePrefix(TD, NoFunction);
1261 mangleTemplateArgs(*TemplateArgs);
1263 else {
1264 manglePrefix(DC, NoFunction);
1265 mangleUnqualifiedName(ND);
1268 Out << 'E';
1270 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1271 const TemplateArgument *TemplateArgs,
1272 unsigned NumTemplateArgs) {
1273 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1275 Out << 'N';
1277 mangleTemplatePrefix(TD);
1278 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1280 Out << 'E';
1283 void CXXNameMangler::mangleLocalName(const Decl *D) {
1284 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1285 // := Z <function encoding> E s [<discriminator>]
1286 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1287 // _ <entity name>
1288 // <discriminator> := _ <non-negative number>
1289 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1290 const RecordDecl *RD = GetLocalClassDecl(D);
1291 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1293 Out << 'Z';
1295 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1296 mangleObjCMethodName(MD);
1297 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1298 mangleBlockForPrefix(BD);
1299 else
1300 mangleFunctionEncoding(cast<FunctionDecl>(DC));
1302 Out << 'E';
1304 if (RD) {
1305 // The parameter number is omitted for the last parameter, 0 for the
1306 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1307 // <entity name> will of course contain a <closure-type-name>: Its
1308 // numbering will be local to the particular argument in which it appears
1309 // -- other default arguments do not affect its encoding.
1310 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1311 if (CXXRD->isLambda()) {
1312 if (const ParmVarDecl *Parm
1313 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1314 if (const FunctionDecl *Func
1315 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1316 Out << 'd';
1317 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1318 if (Num > 1)
1319 mangleNumber(Num - 2);
1320 Out << '_';
1325 // Mangle the name relative to the closest enclosing function.
1326 // equality ok because RD derived from ND above
1327 if (D == RD) {
1328 mangleUnqualifiedName(RD);
1329 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1330 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1331 mangleUnqualifiedBlock(BD);
1332 } else {
1333 const NamedDecl *ND = cast<NamedDecl>(D);
1334 mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1336 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1337 // Mangle a block in a default parameter; see above explanation for
1338 // lambdas.
1339 if (const ParmVarDecl *Parm
1340 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1341 if (const FunctionDecl *Func
1342 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1343 Out << 'd';
1344 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1345 if (Num > 1)
1346 mangleNumber(Num - 2);
1347 Out << '_';
1351 mangleUnqualifiedBlock(BD);
1352 } else {
1353 mangleUnqualifiedName(cast<NamedDecl>(D));
1356 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1357 unsigned disc;
1358 if (Context.getNextDiscriminator(ND, disc)) {
1359 if (disc < 10)
1360 Out << '_' << disc;
1361 else
1362 Out << "__" << disc << '_';
1367 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1368 if (GetLocalClassDecl(Block)) {
1369 mangleLocalName(Block);
1370 return;
1372 const DeclContext *DC = getEffectiveDeclContext(Block);
1373 if (isLocalContainerContext(DC)) {
1374 mangleLocalName(Block);
1375 return;
1377 manglePrefix(getEffectiveDeclContext(Block));
1378 mangleUnqualifiedBlock(Block);
1381 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1382 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1383 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1384 Context->getDeclContext()->isRecord()) {
1385 if (const IdentifierInfo *Name
1386 = cast<NamedDecl>(Context)->getIdentifier()) {
1387 mangleSourceName(Name);
1388 Out << 'M';
1393 // If we have a block mangling number, use it.
1394 unsigned Number = Block->getBlockManglingNumber();
1395 // Otherwise, just make up a number. It doesn't matter what it is because
1396 // the symbol in question isn't externally visible.
1397 if (!Number)
1398 Number = Context.getBlockId(Block, false);
1399 Out << "Ub";
1400 if (Number > 0)
1401 Out << Number - 1;
1402 Out << '_';
1405 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1406 // If the context of a closure type is an initializer for a class member
1407 // (static or nonstatic), it is encoded in a qualified name with a final
1408 // <prefix> of the form:
1410 // <data-member-prefix> := <member source-name> M
1412 // Technically, the data-member-prefix is part of the <prefix>. However,
1413 // since a closure type will always be mangled with a prefix, it's easier
1414 // to emit that last part of the prefix here.
1415 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1416 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1417 Context->getDeclContext()->isRecord()) {
1418 if (const IdentifierInfo *Name
1419 = cast<NamedDecl>(Context)->getIdentifier()) {
1420 mangleSourceName(Name);
1421 Out << 'M';
1426 Out << "Ul";
1427 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1428 getAs<FunctionProtoType>();
1429 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1430 Out << "E";
1432 // The number is omitted for the first closure type with a given
1433 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1434 // (in lexical order) with that same <lambda-sig> and context.
1436 // The AST keeps track of the number for us.
1437 unsigned Number = Lambda->getLambdaManglingNumber();
1438 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1439 if (Number > 1)
1440 mangleNumber(Number - 2);
1441 Out << '_';
1444 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1445 switch (qualifier->getKind()) {
1446 case NestedNameSpecifier::Global:
1447 // nothing
1448 return;
1450 case NestedNameSpecifier::Super:
1451 llvm_unreachable("Can't mangle __super specifier");
1453 case NestedNameSpecifier::Namespace:
1454 mangleName(qualifier->getAsNamespace());
1455 return;
1457 case NestedNameSpecifier::NamespaceAlias:
1458 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1459 return;
1461 case NestedNameSpecifier::TypeSpec:
1462 case NestedNameSpecifier::TypeSpecWithTemplate:
1463 manglePrefix(QualType(qualifier->getAsType(), 0));
1464 return;
1466 case NestedNameSpecifier::Identifier:
1467 // Member expressions can have these without prefixes, but that
1468 // should end up in mangleUnresolvedPrefix instead.
1469 assert(qualifier->getPrefix());
1470 manglePrefix(qualifier->getPrefix());
1472 mangleSourceName(qualifier->getAsIdentifier());
1473 return;
1476 llvm_unreachable("unexpected nested name specifier");
1479 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1480 // <prefix> ::= <prefix> <unqualified-name>
1481 // ::= <template-prefix> <template-args>
1482 // ::= <template-param>
1483 // ::= # empty
1484 // ::= <substitution>
1486 DC = IgnoreLinkageSpecDecls(DC);
1488 if (DC->isTranslationUnit())
1489 return;
1491 if (NoFunction && isLocalContainerContext(DC))
1492 return;
1494 assert(!isLocalContainerContext(DC));
1496 const NamedDecl *ND = cast<NamedDecl>(DC);
1497 if (mangleSubstitution(ND))
1498 return;
1500 // Check if we have a template.
1501 const TemplateArgumentList *TemplateArgs = nullptr;
1502 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1503 mangleTemplatePrefix(TD);
1504 mangleTemplateArgs(*TemplateArgs);
1505 } else {
1506 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1507 mangleUnqualifiedName(ND);
1510 addSubstitution(ND);
1513 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1514 // <template-prefix> ::= <prefix> <template unqualified-name>
1515 // ::= <template-param>
1516 // ::= <substitution>
1517 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1518 return mangleTemplatePrefix(TD);
1520 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1521 manglePrefix(Qualified->getQualifier());
1523 if (OverloadedTemplateStorage *Overloaded
1524 = Template.getAsOverloadedTemplate()) {
1525 mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1526 UnknownArity);
1527 return;
1530 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1531 assert(Dependent && "Unknown template name kind?");
1532 manglePrefix(Dependent->getQualifier());
1533 mangleUnscopedTemplateName(Template);
1536 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1537 bool NoFunction) {
1538 // <template-prefix> ::= <prefix> <template unqualified-name>
1539 // ::= <template-param>
1540 // ::= <substitution>
1541 // <template-template-param> ::= <template-param>
1542 // <substitution>
1544 if (mangleSubstitution(ND))
1545 return;
1547 // <template-template-param> ::= <template-param>
1548 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1549 mangleTemplateParameter(TTP->getIndex());
1550 } else {
1551 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1552 mangleUnqualifiedName(ND->getTemplatedDecl());
1555 addSubstitution(ND);
1558 /// Mangles a template name under the production <type>. Required for
1559 /// template template arguments.
1560 /// <type> ::= <class-enum-type>
1561 /// ::= <template-param>
1562 /// ::= <substitution>
1563 void CXXNameMangler::mangleType(TemplateName TN) {
1564 if (mangleSubstitution(TN))
1565 return;
1567 TemplateDecl *TD = nullptr;
1569 switch (TN.getKind()) {
1570 case TemplateName::QualifiedTemplate:
1571 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1572 goto HaveDecl;
1574 case TemplateName::Template:
1575 TD = TN.getAsTemplateDecl();
1576 goto HaveDecl;
1578 HaveDecl:
1579 if (isa<TemplateTemplateParmDecl>(TD))
1580 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1581 else
1582 mangleName(TD);
1583 break;
1585 case TemplateName::OverloadedTemplate:
1586 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1588 case TemplateName::DependentTemplate: {
1589 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1590 assert(Dependent->isIdentifier());
1592 // <class-enum-type> ::= <name>
1593 // <name> ::= <nested-name>
1594 mangleUnresolvedPrefix(Dependent->getQualifier(), nullptr);
1595 mangleSourceName(Dependent->getIdentifier());
1596 break;
1599 case TemplateName::SubstTemplateTemplateParm: {
1600 // Substituted template parameters are mangled as the substituted
1601 // template. This will check for the substitution twice, which is
1602 // fine, but we have to return early so that we don't try to *add*
1603 // the substitution twice.
1604 SubstTemplateTemplateParmStorage *subst
1605 = TN.getAsSubstTemplateTemplateParm();
1606 mangleType(subst->getReplacement());
1607 return;
1610 case TemplateName::SubstTemplateTemplateParmPack: {
1611 // FIXME: not clear how to mangle this!
1612 // template <template <class> class T...> class A {
1613 // template <template <class> class U...> void foo(B<T,U> x...);
1614 // };
1615 Out << "_SUBSTPACK_";
1616 break;
1620 addSubstitution(TN);
1623 void
1624 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1625 switch (OO) {
1626 // <operator-name> ::= nw # new
1627 case OO_New: Out << "nw"; break;
1628 // ::= na # new[]
1629 case OO_Array_New: Out << "na"; break;
1630 // ::= dl # delete
1631 case OO_Delete: Out << "dl"; break;
1632 // ::= da # delete[]
1633 case OO_Array_Delete: Out << "da"; break;
1634 // ::= ps # + (unary)
1635 // ::= pl # + (binary or unknown)
1636 case OO_Plus:
1637 Out << (Arity == 1? "ps" : "pl"); break;
1638 // ::= ng # - (unary)
1639 // ::= mi # - (binary or unknown)
1640 case OO_Minus:
1641 Out << (Arity == 1? "ng" : "mi"); break;
1642 // ::= ad # & (unary)
1643 // ::= an # & (binary or unknown)
1644 case OO_Amp:
1645 Out << (Arity == 1? "ad" : "an"); break;
1646 // ::= de # * (unary)
1647 // ::= ml # * (binary or unknown)
1648 case OO_Star:
1649 // Use binary when unknown.
1650 Out << (Arity == 1? "de" : "ml"); break;
1651 // ::= co # ~
1652 case OO_Tilde: Out << "co"; break;
1653 // ::= dv # /
1654 case OO_Slash: Out << "dv"; break;
1655 // ::= rm # %
1656 case OO_Percent: Out << "rm"; break;
1657 // ::= or # |
1658 case OO_Pipe: Out << "or"; break;
1659 // ::= eo # ^
1660 case OO_Caret: Out << "eo"; break;
1661 // ::= aS # =
1662 case OO_Equal: Out << "aS"; break;
1663 // ::= pL # +=
1664 case OO_PlusEqual: Out << "pL"; break;
1665 // ::= mI # -=
1666 case OO_MinusEqual: Out << "mI"; break;
1667 // ::= mL # *=
1668 case OO_StarEqual: Out << "mL"; break;
1669 // ::= dV # /=
1670 case OO_SlashEqual: Out << "dV"; break;
1671 // ::= rM # %=
1672 case OO_PercentEqual: Out << "rM"; break;
1673 // ::= aN # &=
1674 case OO_AmpEqual: Out << "aN"; break;
1675 // ::= oR # |=
1676 case OO_PipeEqual: Out << "oR"; break;
1677 // ::= eO # ^=
1678 case OO_CaretEqual: Out << "eO"; break;
1679 // ::= ls # <<
1680 case OO_LessLess: Out << "ls"; break;
1681 // ::= rs # >>
1682 case OO_GreaterGreater: Out << "rs"; break;
1683 // ::= lS # <<=
1684 case OO_LessLessEqual: Out << "lS"; break;
1685 // ::= rS # >>=
1686 case OO_GreaterGreaterEqual: Out << "rS"; break;
1687 // ::= eq # ==
1688 case OO_EqualEqual: Out << "eq"; break;
1689 // ::= ne # !=
1690 case OO_ExclaimEqual: Out << "ne"; break;
1691 // ::= lt # <
1692 case OO_Less: Out << "lt"; break;
1693 // ::= gt # >
1694 case OO_Greater: Out << "gt"; break;
1695 // ::= le # <=
1696 case OO_LessEqual: Out << "le"; break;
1697 // ::= ge # >=
1698 case OO_GreaterEqual: Out << "ge"; break;
1699 // ::= nt # !
1700 case OO_Exclaim: Out << "nt"; break;
1701 // ::= aa # &&
1702 case OO_AmpAmp: Out << "aa"; break;
1703 // ::= oo # ||
1704 case OO_PipePipe: Out << "oo"; break;
1705 // ::= pp # ++
1706 case OO_PlusPlus: Out << "pp"; break;
1707 // ::= mm # --
1708 case OO_MinusMinus: Out << "mm"; break;
1709 // ::= cm # ,
1710 case OO_Comma: Out << "cm"; break;
1711 // ::= pm # ->*
1712 case OO_ArrowStar: Out << "pm"; break;
1713 // ::= pt # ->
1714 case OO_Arrow: Out << "pt"; break;
1715 // ::= cl # ()
1716 case OO_Call: Out << "cl"; break;
1717 // ::= ix # []
1718 case OO_Subscript: Out << "ix"; break;
1720 // ::= qu # ?
1721 // The conditional operator can't be overloaded, but we still handle it when
1722 // mangling expressions.
1723 case OO_Conditional: Out << "qu"; break;
1725 case OO_None:
1726 case NUM_OVERLOADED_OPERATORS:
1727 llvm_unreachable("Not an overloaded operator");
1731 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1732 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1733 if (Quals.hasRestrict())
1734 Out << 'r';
1735 if (Quals.hasVolatile())
1736 Out << 'V';
1737 if (Quals.hasConst())
1738 Out << 'K';
1740 if (Quals.hasAddressSpace()) {
1741 // Address space extension:
1743 // <type> ::= U <target-addrspace>
1744 // <type> ::= U <OpenCL-addrspace>
1745 // <type> ::= U <CUDA-addrspace>
1747 SmallString<64> ASString;
1748 unsigned AS = Quals.getAddressSpace();
1750 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1751 // <target-addrspace> ::= "AS" <address-space-number>
1752 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1753 ASString = "AS" + llvm::utostr_32(TargetAS);
1754 } else {
1755 switch (AS) {
1756 default: llvm_unreachable("Not a language specific address space");
1757 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1758 case LangAS::opencl_global: ASString = "CLglobal"; break;
1759 case LangAS::opencl_local: ASString = "CLlocal"; break;
1760 case LangAS::opencl_constant: ASString = "CLconstant"; break;
1761 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1762 case LangAS::cuda_device: ASString = "CUdevice"; break;
1763 case LangAS::cuda_constant: ASString = "CUconstant"; break;
1764 case LangAS::cuda_shared: ASString = "CUshared"; break;
1767 Out << 'U' << ASString.size() << ASString;
1770 StringRef LifetimeName;
1771 switch (Quals.getObjCLifetime()) {
1772 // Objective-C ARC Extension:
1774 // <type> ::= U "__strong"
1775 // <type> ::= U "__weak"
1776 // <type> ::= U "__autoreleasing"
1777 case Qualifiers::OCL_None:
1778 break;
1780 case Qualifiers::OCL_Weak:
1781 LifetimeName = "__weak";
1782 break;
1784 case Qualifiers::OCL_Strong:
1785 LifetimeName = "__strong";
1786 break;
1788 case Qualifiers::OCL_Autoreleasing:
1789 LifetimeName = "__autoreleasing";
1790 break;
1792 case Qualifiers::OCL_ExplicitNone:
1793 // The __unsafe_unretained qualifier is *not* mangled, so that
1794 // __unsafe_unretained types in ARC produce the same manglings as the
1795 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1796 // better ABI compatibility.
1798 // It's safe to do this because unqualified 'id' won't show up
1799 // in any type signatures that need to be mangled.
1800 break;
1802 if (!LifetimeName.empty())
1803 Out << 'U' << LifetimeName.size() << LifetimeName;
1806 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1807 // <ref-qualifier> ::= R # lvalue reference
1808 // ::= O # rvalue-reference
1809 switch (RefQualifier) {
1810 case RQ_None:
1811 break;
1813 case RQ_LValue:
1814 Out << 'R';
1815 break;
1817 case RQ_RValue:
1818 Out << 'O';
1819 break;
1823 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1824 Context.mangleObjCMethodName(MD, Out);
1827 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
1828 if (Quals)
1829 return true;
1830 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
1831 return true;
1832 if (Ty->isOpenCLSpecificType())
1833 return true;
1834 if (Ty->isBuiltinType())
1835 return false;
1837 return true;
1840 void CXXNameMangler::mangleType(QualType T) {
1841 // If our type is instantiation-dependent but not dependent, we mangle
1842 // it as it was written in the source, removing any top-level sugar.
1843 // Otherwise, use the canonical type.
1845 // FIXME: This is an approximation of the instantiation-dependent name
1846 // mangling rules, since we should really be using the type as written and
1847 // augmented via semantic analysis (i.e., with implicit conversions and
1848 // default template arguments) for any instantiation-dependent type.
1849 // Unfortunately, that requires several changes to our AST:
1850 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1851 // uniqued, so that we can handle substitutions properly
1852 // - Default template arguments will need to be represented in the
1853 // TemplateSpecializationType, since they need to be mangled even though
1854 // they aren't written.
1855 // - Conversions on non-type template arguments need to be expressed, since
1856 // they can affect the mangling of sizeof/alignof.
1857 if (!T->isInstantiationDependentType() || T->isDependentType())
1858 T = T.getCanonicalType();
1859 else {
1860 // Desugar any types that are purely sugar.
1861 do {
1862 // Don't desugar through template specialization types that aren't
1863 // type aliases. We need to mangle the template arguments as written.
1864 if (const TemplateSpecializationType *TST
1865 = dyn_cast<TemplateSpecializationType>(T))
1866 if (!TST->isTypeAlias())
1867 break;
1869 QualType Desugared
1870 = T.getSingleStepDesugaredType(Context.getASTContext());
1871 if (Desugared == T)
1872 break;
1874 T = Desugared;
1875 } while (true);
1877 SplitQualType split = T.split();
1878 Qualifiers quals = split.Quals;
1879 const Type *ty = split.Ty;
1881 bool isSubstitutable = isTypeSubstitutable(quals, ty);
1882 if (isSubstitutable && mangleSubstitution(T))
1883 return;
1885 // If we're mangling a qualified array type, push the qualifiers to
1886 // the element type.
1887 if (quals && isa<ArrayType>(T)) {
1888 ty = Context.getASTContext().getAsArrayType(T);
1889 quals = Qualifiers();
1891 // Note that we don't update T: we want to add the
1892 // substitution at the original type.
1895 if (quals) {
1896 mangleQualifiers(quals);
1897 // Recurse: even if the qualified type isn't yet substitutable,
1898 // the unqualified type might be.
1899 mangleType(QualType(ty, 0));
1900 } else {
1901 switch (ty->getTypeClass()) {
1902 #define ABSTRACT_TYPE(CLASS, PARENT)
1903 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1904 case Type::CLASS: \
1905 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1906 return;
1907 #define TYPE(CLASS, PARENT) \
1908 case Type::CLASS: \
1909 mangleType(static_cast<const CLASS##Type*>(ty)); \
1910 break;
1911 #include "clang/AST/TypeNodes.def"
1915 // Add the substitution.
1916 if (isSubstitutable)
1917 addSubstitution(T);
1920 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1921 if (!mangleStandardSubstitution(ND))
1922 mangleName(ND);
1925 void CXXNameMangler::mangleType(const BuiltinType *T) {
1926 // <type> ::= <builtin-type>
1927 // <builtin-type> ::= v # void
1928 // ::= w # wchar_t
1929 // ::= b # bool
1930 // ::= c # char
1931 // ::= a # signed char
1932 // ::= h # unsigned char
1933 // ::= s # short
1934 // ::= t # unsigned short
1935 // ::= i # int
1936 // ::= j # unsigned int
1937 // ::= l # long
1938 // ::= m # unsigned long
1939 // ::= x # long long, __int64
1940 // ::= y # unsigned long long, __int64
1941 // ::= n # __int128
1942 // ::= o # unsigned __int128
1943 // ::= f # float
1944 // ::= d # double
1945 // ::= e # long double, __float80
1946 // UNSUPPORTED: ::= g # __float128
1947 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1948 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1949 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1950 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1951 // ::= Di # char32_t
1952 // ::= Ds # char16_t
1953 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1954 // ::= u <source-name> # vendor extended type
1955 switch (T->getKind()) {
1956 case BuiltinType::Void: Out << 'v'; break;
1957 case BuiltinType::Bool: Out << 'b'; break;
1958 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1959 case BuiltinType::UChar: Out << 'h'; break;
1960 case BuiltinType::UShort: Out << 't'; break;
1961 case BuiltinType::UInt: Out << 'j'; break;
1962 case BuiltinType::ULong: Out << 'm'; break;
1963 case BuiltinType::ULongLong: Out << 'y'; break;
1964 case BuiltinType::UInt128: Out << 'o'; break;
1965 case BuiltinType::SChar: Out << 'a'; break;
1966 case BuiltinType::WChar_S:
1967 case BuiltinType::WChar_U: Out << 'w'; break;
1968 case BuiltinType::Char16: Out << "Ds"; break;
1969 case BuiltinType::Char32: Out << "Di"; break;
1970 case BuiltinType::Short: Out << 's'; break;
1971 case BuiltinType::Int: Out << 'i'; break;
1972 case BuiltinType::Long: Out << 'l'; break;
1973 case BuiltinType::LongLong: Out << 'x'; break;
1974 case BuiltinType::Int128: Out << 'n'; break;
1975 case BuiltinType::Half: Out << "Dh"; break;
1976 case BuiltinType::Float: Out << 'f'; break;
1977 case BuiltinType::Double: Out << 'd'; break;
1978 case BuiltinType::LongDouble: Out << 'e'; break;
1979 case BuiltinType::NullPtr: Out << "Dn"; break;
1981 #define BUILTIN_TYPE(Id, SingletonId)
1982 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1983 case BuiltinType::Id:
1984 #include "clang/AST/BuiltinTypes.def"
1985 case BuiltinType::Dependent:
1986 llvm_unreachable("mangling a placeholder type");
1987 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1988 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1989 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1990 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1991 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1992 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1993 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1994 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1995 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
1996 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
1997 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
2001 // <type> ::= <function-type>
2002 // <function-type> ::= [<CV-qualifiers>] F [Y]
2003 // <bare-function-type> [<ref-qualifier>] E
2004 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2005 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
2006 // e.g. "const" in "int (A::*)() const".
2007 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2009 Out << 'F';
2011 // FIXME: We don't have enough information in the AST to produce the 'Y'
2012 // encoding for extern "C" function types.
2013 mangleBareFunctionType(T, /*MangleReturnType=*/true);
2015 // Mangle the ref-qualifier, if present.
2016 mangleRefQualifier(T->getRefQualifier());
2018 Out << 'E';
2020 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2021 llvm_unreachable("Can't mangle K&R function prototypes");
2023 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2024 bool MangleReturnType) {
2025 // We should never be mangling something without a prototype.
2026 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2028 // Record that we're in a function type. See mangleFunctionParam
2029 // for details on what we're trying to achieve here.
2030 FunctionTypeDepthState saved = FunctionTypeDepth.push();
2032 // <bare-function-type> ::= <signature type>+
2033 if (MangleReturnType) {
2034 FunctionTypeDepth.enterResultType();
2035 mangleType(Proto->getReturnType());
2036 FunctionTypeDepth.leaveResultType();
2039 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2040 // <builtin-type> ::= v # void
2041 Out << 'v';
2043 FunctionTypeDepth.pop(saved);
2044 return;
2047 for (const auto &Arg : Proto->param_types())
2048 mangleType(Context.getASTContext().getSignatureParameterType(Arg));
2050 FunctionTypeDepth.pop(saved);
2052 // <builtin-type> ::= z # ellipsis
2053 if (Proto->isVariadic())
2054 Out << 'z';
2057 // <type> ::= <class-enum-type>
2058 // <class-enum-type> ::= <name>
2059 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2060 mangleName(T->getDecl());
2063 // <type> ::= <class-enum-type>
2064 // <class-enum-type> ::= <name>
2065 void CXXNameMangler::mangleType(const EnumType *T) {
2066 mangleType(static_cast<const TagType*>(T));
2068 void CXXNameMangler::mangleType(const RecordType *T) {
2069 mangleType(static_cast<const TagType*>(T));
2071 void CXXNameMangler::mangleType(const TagType *T) {
2072 mangleName(T->getDecl());
2075 // <type> ::= <array-type>
2076 // <array-type> ::= A <positive dimension number> _ <element type>
2077 // ::= A [<dimension expression>] _ <element type>
2078 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2079 Out << 'A' << T->getSize() << '_';
2080 mangleType(T->getElementType());
2082 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2083 Out << 'A';
2084 // decayed vla types (size 0) will just be skipped.
2085 if (T->getSizeExpr())
2086 mangleExpression(T->getSizeExpr());
2087 Out << '_';
2088 mangleType(T->getElementType());
2090 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2091 Out << 'A';
2092 mangleExpression(T->getSizeExpr());
2093 Out << '_';
2094 mangleType(T->getElementType());
2096 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2097 Out << "A_";
2098 mangleType(T->getElementType());
2101 // <type> ::= <pointer-to-member-type>
2102 // <pointer-to-member-type> ::= M <class type> <member type>
2103 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2104 Out << 'M';
2105 mangleType(QualType(T->getClass(), 0));
2106 QualType PointeeType = T->getPointeeType();
2107 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2108 mangleType(FPT);
2110 // Itanium C++ ABI 5.1.8:
2112 // The type of a non-static member function is considered to be different,
2113 // for the purposes of substitution, from the type of a namespace-scope or
2114 // static member function whose type appears similar. The types of two
2115 // non-static member functions are considered to be different, for the
2116 // purposes of substitution, if the functions are members of different
2117 // classes. In other words, for the purposes of substitution, the class of
2118 // which the function is a member is considered part of the type of
2119 // function.
2121 // Given that we already substitute member function pointers as a
2122 // whole, the net effect of this rule is just to unconditionally
2123 // suppress substitution on the function type in a member pointer.
2124 // We increment the SeqID here to emulate adding an entry to the
2125 // substitution table.
2126 ++SeqID;
2127 } else
2128 mangleType(PointeeType);
2131 // <type> ::= <template-param>
2132 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2133 mangleTemplateParameter(T->getIndex());
2136 // <type> ::= <template-param>
2137 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2138 // FIXME: not clear how to mangle this!
2139 // template <class T...> class A {
2140 // template <class U...> void foo(T(*)(U) x...);
2141 // };
2142 Out << "_SUBSTPACK_";
2145 // <type> ::= P <type> # pointer-to
2146 void CXXNameMangler::mangleType(const PointerType *T) {
2147 Out << 'P';
2148 mangleType(T->getPointeeType());
2150 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2151 Out << 'P';
2152 mangleType(T->getPointeeType());
2155 // <type> ::= R <type> # reference-to
2156 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2157 Out << 'R';
2158 mangleType(T->getPointeeType());
2161 // <type> ::= O <type> # rvalue reference-to (C++0x)
2162 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2163 Out << 'O';
2164 mangleType(T->getPointeeType());
2167 // <type> ::= C <type> # complex pair (C 2000)
2168 void CXXNameMangler::mangleType(const ComplexType *T) {
2169 Out << 'C';
2170 mangleType(T->getElementType());
2173 // ARM's ABI for Neon vector types specifies that they should be mangled as
2174 // if they are structs (to match ARM's initial implementation). The
2175 // vector type must be one of the special types predefined by ARM.
2176 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2177 QualType EltType = T->getElementType();
2178 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2179 const char *EltName = nullptr;
2180 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2181 switch (cast<BuiltinType>(EltType)->getKind()) {
2182 case BuiltinType::SChar:
2183 case BuiltinType::UChar:
2184 EltName = "poly8_t";
2185 break;
2186 case BuiltinType::Short:
2187 case BuiltinType::UShort:
2188 EltName = "poly16_t";
2189 break;
2190 case BuiltinType::ULongLong:
2191 EltName = "poly64_t";
2192 break;
2193 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2195 } else {
2196 switch (cast<BuiltinType>(EltType)->getKind()) {
2197 case BuiltinType::SChar: EltName = "int8_t"; break;
2198 case BuiltinType::UChar: EltName = "uint8_t"; break;
2199 case BuiltinType::Short: EltName = "int16_t"; break;
2200 case BuiltinType::UShort: EltName = "uint16_t"; break;
2201 case BuiltinType::Int: EltName = "int32_t"; break;
2202 case BuiltinType::UInt: EltName = "uint32_t"; break;
2203 case BuiltinType::LongLong: EltName = "int64_t"; break;
2204 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2205 case BuiltinType::Double: EltName = "float64_t"; break;
2206 case BuiltinType::Float: EltName = "float32_t"; break;
2207 case BuiltinType::Half: EltName = "float16_t";break;
2208 default:
2209 llvm_unreachable("unexpected Neon vector element type");
2212 const char *BaseName = nullptr;
2213 unsigned BitSize = (T->getNumElements() *
2214 getASTContext().getTypeSize(EltType));
2215 if (BitSize == 64)
2216 BaseName = "__simd64_";
2217 else {
2218 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2219 BaseName = "__simd128_";
2221 Out << strlen(BaseName) + strlen(EltName);
2222 Out << BaseName << EltName;
2225 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2226 switch (EltType->getKind()) {
2227 case BuiltinType::SChar:
2228 return "Int8";
2229 case BuiltinType::Short:
2230 return "Int16";
2231 case BuiltinType::Int:
2232 return "Int32";
2233 case BuiltinType::Long:
2234 case BuiltinType::LongLong:
2235 return "Int64";
2236 case BuiltinType::UChar:
2237 return "Uint8";
2238 case BuiltinType::UShort:
2239 return "Uint16";
2240 case BuiltinType::UInt:
2241 return "Uint32";
2242 case BuiltinType::ULong:
2243 case BuiltinType::ULongLong:
2244 return "Uint64";
2245 case BuiltinType::Half:
2246 return "Float16";
2247 case BuiltinType::Float:
2248 return "Float32";
2249 case BuiltinType::Double:
2250 return "Float64";
2251 default:
2252 llvm_unreachable("Unexpected vector element base type");
2256 // AArch64's ABI for Neon vector types specifies that they should be mangled as
2257 // the equivalent internal name. The vector type must be one of the special
2258 // types predefined by ARM.
2259 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2260 QualType EltType = T->getElementType();
2261 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2262 unsigned BitSize =
2263 (T->getNumElements() * getASTContext().getTypeSize(EltType));
2264 (void)BitSize; // Silence warning.
2266 assert((BitSize == 64 || BitSize == 128) &&
2267 "Neon vector type not 64 or 128 bits");
2269 StringRef EltName;
2270 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2271 switch (cast<BuiltinType>(EltType)->getKind()) {
2272 case BuiltinType::UChar:
2273 EltName = "Poly8";
2274 break;
2275 case BuiltinType::UShort:
2276 EltName = "Poly16";
2277 break;
2278 case BuiltinType::ULong:
2279 EltName = "Poly64";
2280 break;
2281 default:
2282 llvm_unreachable("unexpected Neon polynomial vector element type");
2284 } else
2285 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2287 std::string TypeName =
2288 ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2289 Out << TypeName.length() << TypeName;
2292 // GNU extension: vector types
2293 // <type> ::= <vector-type>
2294 // <vector-type> ::= Dv <positive dimension number> _
2295 // <extended element type>
2296 // ::= Dv [<dimension expression>] _ <element type>
2297 // <extended element type> ::= <element type>
2298 // ::= p # AltiVec vector pixel
2299 // ::= b # Altivec vector bool
2300 void CXXNameMangler::mangleType(const VectorType *T) {
2301 if ((T->getVectorKind() == VectorType::NeonVector ||
2302 T->getVectorKind() == VectorType::NeonPolyVector)) {
2303 llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2304 llvm::Triple::ArchType Arch =
2305 getASTContext().getTargetInfo().getTriple().getArch();
2306 if ((Arch == llvm::Triple::aarch64 ||
2307 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2308 mangleAArch64NeonVectorType(T);
2309 else
2310 mangleNeonVectorType(T);
2311 return;
2313 Out << "Dv" << T->getNumElements() << '_';
2314 if (T->getVectorKind() == VectorType::AltiVecPixel)
2315 Out << 'p';
2316 else if (T->getVectorKind() == VectorType::AltiVecBool)
2317 Out << 'b';
2318 else
2319 mangleType(T->getElementType());
2321 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2322 mangleType(static_cast<const VectorType*>(T));
2324 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2325 Out << "Dv";
2326 mangleExpression(T->getSizeExpr());
2327 Out << '_';
2328 mangleType(T->getElementType());
2331 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2332 // <type> ::= Dp <type> # pack expansion (C++0x)
2333 Out << "Dp";
2334 mangleType(T->getPattern());
2337 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2338 mangleSourceName(T->getDecl()->getIdentifier());
2341 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2342 if (!T->qual_empty()) {
2343 // Mangle protocol qualifiers.
2344 SmallString<64> QualStr;
2345 llvm::raw_svector_ostream QualOS(QualStr);
2346 QualOS << "objcproto";
2347 for (const auto *I : T->quals()) {
2348 StringRef name = I->getName();
2349 QualOS << name.size() << name;
2351 QualOS.flush();
2352 Out << 'U' << QualStr.size() << QualStr;
2354 mangleType(T->getBaseType());
2357 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2358 Out << "U13block_pointer";
2359 mangleType(T->getPointeeType());
2362 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2363 // Mangle injected class name types as if the user had written the
2364 // specialization out fully. It may not actually be possible to see
2365 // this mangling, though.
2366 mangleType(T->getInjectedSpecializationType());
2369 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2370 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2371 mangleName(TD, T->getArgs(), T->getNumArgs());
2372 } else {
2373 if (mangleSubstitution(QualType(T, 0)))
2374 return;
2376 mangleTemplatePrefix(T->getTemplateName());
2378 // FIXME: GCC does not appear to mangle the template arguments when
2379 // the template in question is a dependent template name. Should we
2380 // emulate that badness?
2381 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2382 addSubstitution(QualType(T, 0));
2386 void CXXNameMangler::mangleType(const DependentNameType *T) {
2387 // Proposal by cxx-abi-dev, 2014-03-26
2388 // <class-enum-type> ::= <name> # non-dependent or dependent type name or
2389 // # dependent elaborated type specifier using
2390 // # 'typename'
2391 // ::= Ts <name> # dependent elaborated type specifier using
2392 // # 'struct' or 'class'
2393 // ::= Tu <name> # dependent elaborated type specifier using
2394 // # 'union'
2395 // ::= Te <name> # dependent elaborated type specifier using
2396 // # 'enum'
2397 switch (T->getKeyword()) {
2398 case ETK_Typename:
2399 break;
2400 case ETK_Struct:
2401 case ETK_Class:
2402 case ETK_Interface:
2403 Out << "Ts";
2404 break;
2405 case ETK_Union:
2406 Out << "Tu";
2407 break;
2408 case ETK_Enum:
2409 Out << "Te";
2410 break;
2411 default:
2412 llvm_unreachable("unexpected keyword for dependent type name");
2414 // Typename types are always nested
2415 Out << 'N';
2416 manglePrefix(T->getQualifier());
2417 mangleSourceName(T->getIdentifier());
2418 Out << 'E';
2421 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2422 // Dependently-scoped template types are nested if they have a prefix.
2423 Out << 'N';
2425 // TODO: avoid making this TemplateName.
2426 TemplateName Prefix =
2427 getASTContext().getDependentTemplateName(T->getQualifier(),
2428 T->getIdentifier());
2429 mangleTemplatePrefix(Prefix);
2431 // FIXME: GCC does not appear to mangle the template arguments when
2432 // the template in question is a dependent template name. Should we
2433 // emulate that badness?
2434 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2435 Out << 'E';
2438 void CXXNameMangler::mangleType(const TypeOfType *T) {
2439 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2440 // "extension with parameters" mangling.
2441 Out << "u6typeof";
2444 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2445 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2446 // "extension with parameters" mangling.
2447 Out << "u6typeof";
2450 void CXXNameMangler::mangleType(const DecltypeType *T) {
2451 Expr *E = T->getUnderlyingExpr();
2453 // type ::= Dt <expression> E # decltype of an id-expression
2454 // # or class member access
2455 // ::= DT <expression> E # decltype of an expression
2457 // This purports to be an exhaustive list of id-expressions and
2458 // class member accesses. Note that we do not ignore parentheses;
2459 // parentheses change the semantics of decltype for these
2460 // expressions (and cause the mangler to use the other form).
2461 if (isa<DeclRefExpr>(E) ||
2462 isa<MemberExpr>(E) ||
2463 isa<UnresolvedLookupExpr>(E) ||
2464 isa<DependentScopeDeclRefExpr>(E) ||
2465 isa<CXXDependentScopeMemberExpr>(E) ||
2466 isa<UnresolvedMemberExpr>(E))
2467 Out << "Dt";
2468 else
2469 Out << "DT";
2470 mangleExpression(E);
2471 Out << 'E';
2474 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2475 // If this is dependent, we need to record that. If not, we simply
2476 // mangle it as the underlying type since they are equivalent.
2477 if (T->isDependentType()) {
2478 Out << 'U';
2480 switch (T->getUTTKind()) {
2481 case UnaryTransformType::EnumUnderlyingType:
2482 Out << "3eut";
2483 break;
2487 mangleType(T->getUnderlyingType());
2490 void CXXNameMangler::mangleType(const AutoType *T) {
2491 QualType D = T->getDeducedType();
2492 // <builtin-type> ::= Da # dependent auto
2493 if (D.isNull())
2494 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2495 else
2496 mangleType(D);
2499 void CXXNameMangler::mangleType(const AtomicType *T) {
2500 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2501 // (Until there's a standardized mangling...)
2502 Out << "U7_Atomic";
2503 mangleType(T->getValueType());
2506 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2507 const llvm::APSInt &Value) {
2508 // <expr-primary> ::= L <type> <value number> E # integer literal
2509 Out << 'L';
2511 mangleType(T);
2512 if (T->isBooleanType()) {
2513 // Boolean values are encoded as 0/1.
2514 Out << (Value.getBoolValue() ? '1' : '0');
2515 } else {
2516 mangleNumber(Value);
2518 Out << 'E';
2522 /// Mangles a member expression.
2523 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2524 bool isArrow,
2525 NestedNameSpecifier *qualifier,
2526 NamedDecl *firstQualifierLookup,
2527 DeclarationName member,
2528 unsigned arity) {
2529 // <expression> ::= dt <expression> <unresolved-name>
2530 // ::= pt <expression> <unresolved-name>
2531 if (base) {
2533 // Ignore member expressions involving anonymous unions.
2534 while (const auto *RT = base->getType()->getAs<RecordType>()) {
2535 if (!RT->getDecl()->isAnonymousStructOrUnion())
2536 break;
2537 const auto *ME = dyn_cast<MemberExpr>(base);
2538 if (!ME)
2539 break;
2540 base = ME->getBase();
2541 isArrow = ME->isArrow();
2544 if (base->isImplicitCXXThis()) {
2545 // Note: GCC mangles member expressions to the implicit 'this' as
2546 // *this., whereas we represent them as this->. The Itanium C++ ABI
2547 // does not specify anything here, so we follow GCC.
2548 Out << "dtdefpT";
2549 } else {
2550 Out << (isArrow ? "pt" : "dt");
2551 mangleExpression(base);
2554 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2557 /// Look at the callee of the given call expression and determine if
2558 /// it's a parenthesized id-expression which would have triggered ADL
2559 /// otherwise.
2560 static bool isParenthesizedADLCallee(const CallExpr *call) {
2561 const Expr *callee = call->getCallee();
2562 const Expr *fn = callee->IgnoreParens();
2564 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2565 // too, but for those to appear in the callee, it would have to be
2566 // parenthesized.
2567 if (callee == fn) return false;
2569 // Must be an unresolved lookup.
2570 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2571 if (!lookup) return false;
2573 assert(!lookup->requiresADL());
2575 // Must be an unqualified lookup.
2576 if (lookup->getQualifier()) return false;
2578 // Must not have found a class member. Note that if one is a class
2579 // member, they're all class members.
2580 if (lookup->getNumDecls() > 0 &&
2581 (*lookup->decls_begin())->isCXXClassMember())
2582 return false;
2584 // Otherwise, ADL would have been triggered.
2585 return true;
2588 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
2589 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2590 Out << CastEncoding;
2591 mangleType(ECE->getType());
2592 mangleExpression(ECE->getSubExpr());
2595 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2596 // <expression> ::= <unary operator-name> <expression>
2597 // ::= <binary operator-name> <expression> <expression>
2598 // ::= <trinary operator-name> <expression> <expression> <expression>
2599 // ::= cv <type> expression # conversion with one argument
2600 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2601 // ::= dc <type> <expression> # dynamic_cast<type> (expression)
2602 // ::= sc <type> <expression> # static_cast<type> (expression)
2603 // ::= cc <type> <expression> # const_cast<type> (expression)
2604 // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
2605 // ::= st <type> # sizeof (a type)
2606 // ::= at <type> # alignof (a type)
2607 // ::= <template-param>
2608 // ::= <function-param>
2609 // ::= sr <type> <unqualified-name> # dependent name
2610 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2611 // ::= ds <expression> <expression> # expr.*expr
2612 // ::= sZ <template-param> # size of a parameter pack
2613 // ::= sZ <function-param> # size of a function parameter pack
2614 // ::= <expr-primary>
2615 // <expr-primary> ::= L <type> <value number> E # integer literal
2616 // ::= L <type <value float> E # floating literal
2617 // ::= L <mangled-name> E # external name
2618 // ::= fpT # 'this' expression
2619 QualType ImplicitlyConvertedToType;
2621 recurse:
2622 switch (E->getStmtClass()) {
2623 case Expr::NoStmtClass:
2624 #define ABSTRACT_STMT(Type)
2625 #define EXPR(Type, Base)
2626 #define STMT(Type, Base) \
2627 case Expr::Type##Class:
2628 #include "clang/AST/StmtNodes.inc"
2629 // fallthrough
2631 // These all can only appear in local or variable-initialization
2632 // contexts and so should never appear in a mangling.
2633 case Expr::AddrLabelExprClass:
2634 case Expr::DesignatedInitExprClass:
2635 case Expr::ImplicitValueInitExprClass:
2636 case Expr::ParenListExprClass:
2637 case Expr::LambdaExprClass:
2638 case Expr::MSPropertyRefExprClass:
2639 case Expr::TypoExprClass: // This should no longer exist in the AST by now.
2640 llvm_unreachable("unexpected statement kind");
2642 // FIXME: invent manglings for all these.
2643 case Expr::BlockExprClass:
2644 case Expr::CXXPseudoDestructorExprClass:
2645 case Expr::ChooseExprClass:
2646 case Expr::CompoundLiteralExprClass:
2647 case Expr::ExtVectorElementExprClass:
2648 case Expr::GenericSelectionExprClass:
2649 case Expr::ObjCEncodeExprClass:
2650 case Expr::ObjCIsaExprClass:
2651 case Expr::ObjCIvarRefExprClass:
2652 case Expr::ObjCMessageExprClass:
2653 case Expr::ObjCPropertyRefExprClass:
2654 case Expr::ObjCProtocolExprClass:
2655 case Expr::ObjCSelectorExprClass:
2656 case Expr::ObjCStringLiteralClass:
2657 case Expr::ObjCBoxedExprClass:
2658 case Expr::ObjCArrayLiteralClass:
2659 case Expr::ObjCDictionaryLiteralClass:
2660 case Expr::ObjCSubscriptRefExprClass:
2661 case Expr::ObjCIndirectCopyRestoreExprClass:
2662 case Expr::OffsetOfExprClass:
2663 case Expr::PredefinedExprClass:
2664 case Expr::ShuffleVectorExprClass:
2665 case Expr::ConvertVectorExprClass:
2666 case Expr::StmtExprClass:
2667 case Expr::TypeTraitExprClass:
2668 case Expr::ArrayTypeTraitExprClass:
2669 case Expr::ExpressionTraitExprClass:
2670 case Expr::VAArgExprClass:
2671 case Expr::CUDAKernelCallExprClass:
2672 case Expr::AsTypeExprClass:
2673 case Expr::PseudoObjectExprClass:
2674 case Expr::AtomicExprClass:
2676 // As bad as this diagnostic is, it's better than crashing.
2677 DiagnosticsEngine &Diags = Context.getDiags();
2678 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2679 "cannot yet mangle expression type %0");
2680 Diags.Report(E->getExprLoc(), DiagID)
2681 << E->getStmtClassName() << E->getSourceRange();
2682 break;
2685 case Expr::CXXUuidofExprClass: {
2686 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
2687 if (UE->isTypeOperand()) {
2688 QualType UuidT = UE->getTypeOperand(Context.getASTContext());
2689 Out << "u8__uuidoft";
2690 mangleType(UuidT);
2691 } else {
2692 Expr *UuidExp = UE->getExprOperand();
2693 Out << "u8__uuidofz";
2694 mangleExpression(UuidExp, Arity);
2696 break;
2699 // Even gcc-4.5 doesn't mangle this.
2700 case Expr::BinaryConditionalOperatorClass: {
2701 DiagnosticsEngine &Diags = Context.getDiags();
2702 unsigned DiagID =
2703 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2704 "?: operator with omitted middle operand cannot be mangled");
2705 Diags.Report(E->getExprLoc(), DiagID)
2706 << E->getStmtClassName() << E->getSourceRange();
2707 break;
2710 // These are used for internal purposes and cannot be meaningfully mangled.
2711 case Expr::OpaqueValueExprClass:
2712 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2714 case Expr::InitListExprClass: {
2715 Out << "il";
2716 const InitListExpr *InitList = cast<InitListExpr>(E);
2717 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2718 mangleExpression(InitList->getInit(i));
2719 Out << "E";
2720 break;
2723 case Expr::CXXDefaultArgExprClass:
2724 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2725 break;
2727 case Expr::CXXDefaultInitExprClass:
2728 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2729 break;
2731 case Expr::CXXStdInitializerListExprClass:
2732 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2733 break;
2735 case Expr::SubstNonTypeTemplateParmExprClass:
2736 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2737 Arity);
2738 break;
2740 case Expr::UserDefinedLiteralClass:
2741 // We follow g++'s approach of mangling a UDL as a call to the literal
2742 // operator.
2743 case Expr::CXXMemberCallExprClass: // fallthrough
2744 case Expr::CallExprClass: {
2745 const CallExpr *CE = cast<CallExpr>(E);
2747 // <expression> ::= cp <simple-id> <expression>* E
2748 // We use this mangling only when the call would use ADL except
2749 // for being parenthesized. Per discussion with David
2750 // Vandervoorde, 2011.04.25.
2751 if (isParenthesizedADLCallee(CE)) {
2752 Out << "cp";
2753 // The callee here is a parenthesized UnresolvedLookupExpr with
2754 // no qualifier and should always get mangled as a <simple-id>
2755 // anyway.
2757 // <expression> ::= cl <expression>* E
2758 } else {
2759 Out << "cl";
2762 mangleExpression(CE->getCallee(), CE->getNumArgs());
2763 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2764 mangleExpression(CE->getArg(I));
2765 Out << 'E';
2766 break;
2769 case Expr::CXXNewExprClass: {
2770 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2771 if (New->isGlobalNew()) Out << "gs";
2772 Out << (New->isArray() ? "na" : "nw");
2773 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2774 E = New->placement_arg_end(); I != E; ++I)
2775 mangleExpression(*I);
2776 Out << '_';
2777 mangleType(New->getAllocatedType());
2778 if (New->hasInitializer()) {
2779 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2780 Out << "il";
2781 else
2782 Out << "pi";
2783 const Expr *Init = New->getInitializer();
2784 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2785 // Directly inline the initializers.
2786 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2787 E = CCE->arg_end();
2788 I != E; ++I)
2789 mangleExpression(*I);
2790 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2791 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2792 mangleExpression(PLE->getExpr(i));
2793 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2794 isa<InitListExpr>(Init)) {
2795 // Only take InitListExprs apart for list-initialization.
2796 const InitListExpr *InitList = cast<InitListExpr>(Init);
2797 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2798 mangleExpression(InitList->getInit(i));
2799 } else
2800 mangleExpression(Init);
2802 Out << 'E';
2803 break;
2806 case Expr::MemberExprClass: {
2807 const MemberExpr *ME = cast<MemberExpr>(E);
2808 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2809 ME->getQualifier(), nullptr,
2810 ME->getMemberDecl()->getDeclName(), Arity);
2811 break;
2814 case Expr::UnresolvedMemberExprClass: {
2815 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2816 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2817 ME->getQualifier(), nullptr, ME->getMemberName(),
2818 Arity);
2819 if (ME->hasExplicitTemplateArgs())
2820 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2821 break;
2824 case Expr::CXXDependentScopeMemberExprClass: {
2825 const CXXDependentScopeMemberExpr *ME
2826 = cast<CXXDependentScopeMemberExpr>(E);
2827 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2828 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2829 ME->getMember(), Arity);
2830 if (ME->hasExplicitTemplateArgs())
2831 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2832 break;
2835 case Expr::UnresolvedLookupExprClass: {
2836 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2837 mangleUnresolvedName(ULE->getQualifier(), nullptr, ULE->getName(), Arity);
2839 // All the <unresolved-name> productions end in a
2840 // base-unresolved-name, where <template-args> are just tacked
2841 // onto the end.
2842 if (ULE->hasExplicitTemplateArgs())
2843 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2844 break;
2847 case Expr::CXXUnresolvedConstructExprClass: {
2848 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2849 unsigned N = CE->arg_size();
2851 Out << "cv";
2852 mangleType(CE->getType());
2853 if (N != 1) Out << '_';
2854 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2855 if (N != 1) Out << 'E';
2856 break;
2859 case Expr::CXXTemporaryObjectExprClass:
2860 case Expr::CXXConstructExprClass: {
2861 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2862 unsigned N = CE->getNumArgs();
2864 if (CE->isListInitialization())
2865 Out << "tl";
2866 else
2867 Out << "cv";
2868 mangleType(CE->getType());
2869 if (N != 1) Out << '_';
2870 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2871 if (N != 1) Out << 'E';
2872 break;
2875 case Expr::CXXScalarValueInitExprClass:
2876 Out <<"cv";
2877 mangleType(E->getType());
2878 Out <<"_E";
2879 break;
2881 case Expr::CXXNoexceptExprClass:
2882 Out << "nx";
2883 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2884 break;
2886 case Expr::UnaryExprOrTypeTraitExprClass: {
2887 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2889 if (!SAE->isInstantiationDependent()) {
2890 // Itanium C++ ABI:
2891 // If the operand of a sizeof or alignof operator is not
2892 // instantiation-dependent it is encoded as an integer literal
2893 // reflecting the result of the operator.
2895 // If the result of the operator is implicitly converted to a known
2896 // integer type, that type is used for the literal; otherwise, the type
2897 // of std::size_t or std::ptrdiff_t is used.
2898 QualType T = (ImplicitlyConvertedToType.isNull() ||
2899 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2900 : ImplicitlyConvertedToType;
2901 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2902 mangleIntegerLiteral(T, V);
2903 break;
2906 switch(SAE->getKind()) {
2907 case UETT_SizeOf:
2908 Out << 's';
2909 break;
2910 case UETT_AlignOf:
2911 Out << 'a';
2912 break;
2913 case UETT_VecStep:
2914 DiagnosticsEngine &Diags = Context.getDiags();
2915 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2916 "cannot yet mangle vec_step expression");
2917 Diags.Report(DiagID);
2918 return;
2920 if (SAE->isArgumentType()) {
2921 Out << 't';
2922 mangleType(SAE->getArgumentType());
2923 } else {
2924 Out << 'z';
2925 mangleExpression(SAE->getArgumentExpr());
2927 break;
2930 case Expr::CXXThrowExprClass: {
2931 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2932 // <expression> ::= tw <expression> # throw expression
2933 // ::= tr # rethrow
2934 if (TE->getSubExpr()) {
2935 Out << "tw";
2936 mangleExpression(TE->getSubExpr());
2937 } else {
2938 Out << "tr";
2940 break;
2943 case Expr::CXXTypeidExprClass: {
2944 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2945 // <expression> ::= ti <type> # typeid (type)
2946 // ::= te <expression> # typeid (expression)
2947 if (TIE->isTypeOperand()) {
2948 Out << "ti";
2949 mangleType(TIE->getTypeOperand(Context.getASTContext()));
2950 } else {
2951 Out << "te";
2952 mangleExpression(TIE->getExprOperand());
2954 break;
2957 case Expr::CXXDeleteExprClass: {
2958 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2959 // <expression> ::= [gs] dl <expression> # [::] delete expr
2960 // ::= [gs] da <expression> # [::] delete [] expr
2961 if (DE->isGlobalDelete()) Out << "gs";
2962 Out << (DE->isArrayForm() ? "da" : "dl");
2963 mangleExpression(DE->getArgument());
2964 break;
2967 case Expr::UnaryOperatorClass: {
2968 const UnaryOperator *UO = cast<UnaryOperator>(E);
2969 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2970 /*Arity=*/1);
2971 mangleExpression(UO->getSubExpr());
2972 break;
2975 case Expr::ArraySubscriptExprClass: {
2976 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2978 // Array subscript is treated as a syntactically weird form of
2979 // binary operator.
2980 Out << "ix";
2981 mangleExpression(AE->getLHS());
2982 mangleExpression(AE->getRHS());
2983 break;
2986 case Expr::CompoundAssignOperatorClass: // fallthrough
2987 case Expr::BinaryOperatorClass: {
2988 const BinaryOperator *BO = cast<BinaryOperator>(E);
2989 if (BO->getOpcode() == BO_PtrMemD)
2990 Out << "ds";
2991 else
2992 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2993 /*Arity=*/2);
2994 mangleExpression(BO->getLHS());
2995 mangleExpression(BO->getRHS());
2996 break;
2999 case Expr::ConditionalOperatorClass: {
3000 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3001 mangleOperatorName(OO_Conditional, /*Arity=*/3);
3002 mangleExpression(CO->getCond());
3003 mangleExpression(CO->getLHS(), Arity);
3004 mangleExpression(CO->getRHS(), Arity);
3005 break;
3008 case Expr::ImplicitCastExprClass: {
3009 ImplicitlyConvertedToType = E->getType();
3010 E = cast<ImplicitCastExpr>(E)->getSubExpr();
3011 goto recurse;
3014 case Expr::ObjCBridgedCastExprClass: {
3015 // Mangle ownership casts as a vendor extended operator __bridge,
3016 // __bridge_transfer, or __bridge_retain.
3017 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3018 Out << "v1U" << Kind.size() << Kind;
3020 // Fall through to mangle the cast itself.
3022 case Expr::CStyleCastExprClass:
3023 case Expr::CXXFunctionalCastExprClass:
3024 mangleCastExpression(E, "cv");
3025 break;
3027 case Expr::CXXStaticCastExprClass:
3028 mangleCastExpression(E, "sc");
3029 break;
3030 case Expr::CXXDynamicCastExprClass:
3031 mangleCastExpression(E, "dc");
3032 break;
3033 case Expr::CXXReinterpretCastExprClass:
3034 mangleCastExpression(E, "rc");
3035 break;
3036 case Expr::CXXConstCastExprClass:
3037 mangleCastExpression(E, "cc");
3038 break;
3040 case Expr::CXXOperatorCallExprClass: {
3041 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3042 unsigned NumArgs = CE->getNumArgs();
3043 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3044 // Mangle the arguments.
3045 for (unsigned i = 0; i != NumArgs; ++i)
3046 mangleExpression(CE->getArg(i));
3047 break;
3050 case Expr::ParenExprClass:
3051 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3052 break;
3054 case Expr::DeclRefExprClass: {
3055 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3057 switch (D->getKind()) {
3058 default:
3059 // <expr-primary> ::= L <mangled-name> E # external name
3060 Out << 'L';
3061 mangle(D, "_Z");
3062 Out << 'E';
3063 break;
3065 case Decl::ParmVar:
3066 mangleFunctionParam(cast<ParmVarDecl>(D));
3067 break;
3069 case Decl::EnumConstant: {
3070 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3071 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3072 break;
3075 case Decl::NonTypeTemplateParm: {
3076 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3077 mangleTemplateParameter(PD->getIndex());
3078 break;
3083 break;
3086 case Expr::SubstNonTypeTemplateParmPackExprClass:
3087 // FIXME: not clear how to mangle this!
3088 // template <unsigned N...> class A {
3089 // template <class U...> void foo(U (&x)[N]...);
3090 // };
3091 Out << "_SUBSTPACK_";
3092 break;
3094 case Expr::FunctionParmPackExprClass: {
3095 // FIXME: not clear how to mangle this!
3096 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3097 Out << "v110_SUBSTPACK";
3098 mangleFunctionParam(FPPE->getParameterPack());
3099 break;
3102 case Expr::DependentScopeDeclRefExprClass: {
3103 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3104 mangleUnresolvedName(DRE->getQualifier(), nullptr, DRE->getDeclName(),
3105 Arity);
3107 // All the <unresolved-name> productions end in a
3108 // base-unresolved-name, where <template-args> are just tacked
3109 // onto the end.
3110 if (DRE->hasExplicitTemplateArgs())
3111 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3112 break;
3115 case Expr::CXXBindTemporaryExprClass:
3116 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3117 break;
3119 case Expr::ExprWithCleanupsClass:
3120 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3121 break;
3123 case Expr::FloatingLiteralClass: {
3124 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3125 Out << 'L';
3126 mangleType(FL->getType());
3127 mangleFloat(FL->getValue());
3128 Out << 'E';
3129 break;
3132 case Expr::CharacterLiteralClass:
3133 Out << 'L';
3134 mangleType(E->getType());
3135 Out << cast<CharacterLiteral>(E)->getValue();
3136 Out << 'E';
3137 break;
3139 // FIXME. __objc_yes/__objc_no are mangled same as true/false
3140 case Expr::ObjCBoolLiteralExprClass:
3141 Out << "Lb";
3142 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3143 Out << 'E';
3144 break;
3146 case Expr::CXXBoolLiteralExprClass:
3147 Out << "Lb";
3148 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3149 Out << 'E';
3150 break;
3152 case Expr::IntegerLiteralClass: {
3153 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3154 if (E->getType()->isSignedIntegerType())
3155 Value.setIsSigned(true);
3156 mangleIntegerLiteral(E->getType(), Value);
3157 break;
3160 case Expr::ImaginaryLiteralClass: {
3161 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3162 // Mangle as if a complex literal.
3163 // Proposal from David Vandevoorde, 2010.06.30.
3164 Out << 'L';
3165 mangleType(E->getType());
3166 if (const FloatingLiteral *Imag =
3167 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3168 // Mangle a floating-point zero of the appropriate type.
3169 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3170 Out << '_';
3171 mangleFloat(Imag->getValue());
3172 } else {
3173 Out << "0_";
3174 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3175 if (IE->getSubExpr()->getType()->isSignedIntegerType())
3176 Value.setIsSigned(true);
3177 mangleNumber(Value);
3179 Out << 'E';
3180 break;
3183 case Expr::StringLiteralClass: {
3184 // Revised proposal from David Vandervoorde, 2010.07.15.
3185 Out << 'L';
3186 assert(isa<ConstantArrayType>(E->getType()));
3187 mangleType(E->getType());
3188 Out << 'E';
3189 break;
3192 case Expr::GNUNullExprClass:
3193 // FIXME: should this really be mangled the same as nullptr?
3194 // fallthrough
3196 case Expr::CXXNullPtrLiteralExprClass: {
3197 Out << "LDnE";
3198 break;
3201 case Expr::PackExpansionExprClass:
3202 Out << "sp";
3203 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3204 break;
3206 case Expr::SizeOfPackExprClass: {
3207 Out << "sZ";
3208 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3209 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3210 mangleTemplateParameter(TTP->getIndex());
3211 else if (const NonTypeTemplateParmDecl *NTTP
3212 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3213 mangleTemplateParameter(NTTP->getIndex());
3214 else if (const TemplateTemplateParmDecl *TempTP
3215 = dyn_cast<TemplateTemplateParmDecl>(Pack))
3216 mangleTemplateParameter(TempTP->getIndex());
3217 else
3218 mangleFunctionParam(cast<ParmVarDecl>(Pack));
3219 break;
3222 case Expr::MaterializeTemporaryExprClass: {
3223 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3224 break;
3227 case Expr::CXXFoldExprClass: {
3228 auto *FE = cast<CXXFoldExpr>(E);
3229 if (FE->isLeftFold())
3230 Out << (FE->getInit() ? "fL" : "fl");
3231 else
3232 Out << (FE->getInit() ? "fR" : "fr");
3234 if (FE->getOperator() == BO_PtrMemD)
3235 Out << "ds";
3236 else
3237 mangleOperatorName(
3238 BinaryOperator::getOverloadedOperator(FE->getOperator()),
3239 /*Arity=*/2);
3241 if (FE->getLHS())
3242 mangleExpression(FE->getLHS());
3243 if (FE->getRHS())
3244 mangleExpression(FE->getRHS());
3245 break;
3248 case Expr::CXXThisExprClass:
3249 Out << "fpT";
3250 break;
3254 /// Mangle an expression which refers to a parameter variable.
3256 /// <expression> ::= <function-param>
3257 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3258 /// <function-param> ::= fp <top-level CV-qualifiers>
3259 /// <parameter-2 non-negative number> _ # L == 0, I > 0
3260 /// <function-param> ::= fL <L-1 non-negative number>
3261 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
3262 /// <function-param> ::= fL <L-1 non-negative number>
3263 /// p <top-level CV-qualifiers>
3264 /// <I-1 non-negative number> _ # L > 0, I > 0
3266 /// L is the nesting depth of the parameter, defined as 1 if the
3267 /// parameter comes from the innermost function prototype scope
3268 /// enclosing the current context, 2 if from the next enclosing
3269 /// function prototype scope, and so on, with one special case: if
3270 /// we've processed the full parameter clause for the innermost
3271 /// function type, then L is one less. This definition conveniently
3272 /// makes it irrelevant whether a function's result type was written
3273 /// trailing or leading, but is otherwise overly complicated; the
3274 /// numbering was first designed without considering references to
3275 /// parameter in locations other than return types, and then the
3276 /// mangling had to be generalized without changing the existing
3277 /// manglings.
3279 /// I is the zero-based index of the parameter within its parameter
3280 /// declaration clause. Note that the original ABI document describes
3281 /// this using 1-based ordinals.
3282 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3283 unsigned parmDepth = parm->getFunctionScopeDepth();
3284 unsigned parmIndex = parm->getFunctionScopeIndex();
3286 // Compute 'L'.
3287 // parmDepth does not include the declaring function prototype.
3288 // FunctionTypeDepth does account for that.
3289 assert(parmDepth < FunctionTypeDepth.getDepth());
3290 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3291 if (FunctionTypeDepth.isInResultType())
3292 nestingDepth--;
3294 if (nestingDepth == 0) {
3295 Out << "fp";
3296 } else {
3297 Out << "fL" << (nestingDepth - 1) << 'p';
3300 // Top-level qualifiers. We don't have to worry about arrays here,
3301 // because parameters declared as arrays should already have been
3302 // transformed to have pointer type. FIXME: apparently these don't
3303 // get mangled if used as an rvalue of a known non-class type?
3304 assert(!parm->getType()->isArrayType()
3305 && "parameter's type is still an array type?");
3306 mangleQualifiers(parm->getType().getQualifiers());
3308 // Parameter index.
3309 if (parmIndex != 0) {
3310 Out << (parmIndex - 1);
3312 Out << '_';
3315 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3316 // <ctor-dtor-name> ::= C1 # complete object constructor
3317 // ::= C2 # base object constructor
3319 // In addition, C5 is a comdat name with C1 and C2 in it.
3320 switch (T) {
3321 case Ctor_Complete:
3322 Out << "C1";
3323 break;
3324 case Ctor_Base:
3325 Out << "C2";
3326 break;
3327 case Ctor_Comdat:
3328 Out << "C5";
3329 break;
3333 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3334 // <ctor-dtor-name> ::= D0 # deleting destructor
3335 // ::= D1 # complete object destructor
3336 // ::= D2 # base object destructor
3338 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
3339 switch (T) {
3340 case Dtor_Deleting:
3341 Out << "D0";
3342 break;
3343 case Dtor_Complete:
3344 Out << "D1";
3345 break;
3346 case Dtor_Base:
3347 Out << "D2";
3348 break;
3349 case Dtor_Comdat:
3350 Out << "D5";
3351 break;
3355 void CXXNameMangler::mangleTemplateArgs(
3356 const ASTTemplateArgumentListInfo &TemplateArgs) {
3357 // <template-args> ::= I <template-arg>+ E
3358 Out << 'I';
3359 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3360 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3361 Out << 'E';
3364 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3365 // <template-args> ::= I <template-arg>+ E
3366 Out << 'I';
3367 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3368 mangleTemplateArg(AL[i]);
3369 Out << 'E';
3372 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3373 unsigned NumTemplateArgs) {
3374 // <template-args> ::= I <template-arg>+ E
3375 Out << 'I';
3376 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3377 mangleTemplateArg(TemplateArgs[i]);
3378 Out << 'E';
3381 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3382 // <template-arg> ::= <type> # type or template
3383 // ::= X <expression> E # expression
3384 // ::= <expr-primary> # simple expressions
3385 // ::= J <template-arg>* E # argument pack
3386 if (!A.isInstantiationDependent() || A.isDependent())
3387 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3389 switch (A.getKind()) {
3390 case TemplateArgument::Null:
3391 llvm_unreachable("Cannot mangle NULL template argument");
3393 case TemplateArgument::Type:
3394 mangleType(A.getAsType());
3395 break;
3396 case TemplateArgument::Template:
3397 // This is mangled as <type>.
3398 mangleType(A.getAsTemplate());
3399 break;
3400 case TemplateArgument::TemplateExpansion:
3401 // <type> ::= Dp <type> # pack expansion (C++0x)
3402 Out << "Dp";
3403 mangleType(A.getAsTemplateOrTemplatePattern());
3404 break;
3405 case TemplateArgument::Expression: {
3406 // It's possible to end up with a DeclRefExpr here in certain
3407 // dependent cases, in which case we should mangle as a
3408 // declaration.
3409 const Expr *E = A.getAsExpr()->IgnoreParens();
3410 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3411 const ValueDecl *D = DRE->getDecl();
3412 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3413 Out << "L";
3414 mangle(D, "_Z");
3415 Out << 'E';
3416 break;
3420 Out << 'X';
3421 mangleExpression(E);
3422 Out << 'E';
3423 break;
3425 case TemplateArgument::Integral:
3426 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3427 break;
3428 case TemplateArgument::Declaration: {
3429 // <expr-primary> ::= L <mangled-name> E # external name
3430 // Clang produces AST's where pointer-to-member-function expressions
3431 // and pointer-to-function expressions are represented as a declaration not
3432 // an expression. We compensate for it here to produce the correct mangling.
3433 ValueDecl *D = A.getAsDecl();
3434 bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
3435 if (compensateMangling) {
3436 Out << 'X';
3437 mangleOperatorName(OO_Amp, 1);
3440 Out << 'L';
3441 // References to external entities use the mangled name; if the name would
3442 // not normally be manged then mangle it as unqualified.
3444 // FIXME: The ABI specifies that external names here should have _Z, but
3445 // gcc leaves this off.
3446 if (compensateMangling)
3447 mangle(D, "_Z");
3448 else
3449 mangle(D, "Z");
3450 Out << 'E';
3452 if (compensateMangling)
3453 Out << 'E';
3455 break;
3457 case TemplateArgument::NullPtr: {
3458 // <expr-primary> ::= L <type> 0 E
3459 Out << 'L';
3460 mangleType(A.getNullPtrType());
3461 Out << "0E";
3462 break;
3464 case TemplateArgument::Pack: {
3465 // <template-arg> ::= J <template-arg>* E
3466 Out << 'J';
3467 for (const auto &P : A.pack_elements())
3468 mangleTemplateArg(P);
3469 Out << 'E';
3474 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3475 // <template-param> ::= T_ # first template parameter
3476 // ::= T <parameter-2 non-negative number> _
3477 if (Index == 0)
3478 Out << "T_";
3479 else
3480 Out << 'T' << (Index - 1) << '_';
3483 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3484 if (SeqID == 1)
3485 Out << '0';
3486 else if (SeqID > 1) {
3487 SeqID--;
3489 // <seq-id> is encoded in base-36, using digits and upper case letters.
3490 char Buffer[7]; // log(2**32) / log(36) ~= 7
3491 MutableArrayRef<char> BufferRef(Buffer);
3492 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3494 for (; SeqID != 0; SeqID /= 36) {
3495 unsigned C = SeqID % 36;
3496 *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3499 Out.write(I.base(), I - BufferRef.rbegin());
3501 Out << '_';
3504 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3505 bool result = mangleSubstitution(type);
3506 assert(result && "no existing substitution for type");
3507 (void) result;
3510 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3511 bool result = mangleSubstitution(tname);
3512 assert(result && "no existing substitution for template name");
3513 (void) result;
3516 // <substitution> ::= S <seq-id> _
3517 // ::= S_
3518 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3519 // Try one of the standard substitutions first.
3520 if (mangleStandardSubstitution(ND))
3521 return true;
3523 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3524 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3527 /// \brief Determine whether the given type has any qualifiers that are
3528 /// relevant for substitutions.
3529 static bool hasMangledSubstitutionQualifiers(QualType T) {
3530 Qualifiers Qs = T.getQualifiers();
3531 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3534 bool CXXNameMangler::mangleSubstitution(QualType T) {
3535 if (!hasMangledSubstitutionQualifiers(T)) {
3536 if (const RecordType *RT = T->getAs<RecordType>())
3537 return mangleSubstitution(RT->getDecl());
3540 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3542 return mangleSubstitution(TypePtr);
3545 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3546 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3547 return mangleSubstitution(TD);
3549 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3550 return mangleSubstitution(
3551 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3554 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3555 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3556 if (I == Substitutions.end())
3557 return false;
3559 unsigned SeqID = I->second;
3560 Out << 'S';
3561 mangleSeqID(SeqID);
3563 return true;
3566 static bool isCharType(QualType T) {
3567 if (T.isNull())
3568 return false;
3570 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3571 T->isSpecificBuiltinType(BuiltinType::Char_U);
3574 /// isCharSpecialization - Returns whether a given type is a template
3575 /// specialization of a given name with a single argument of type char.
3576 static bool isCharSpecialization(QualType T, const char *Name) {
3577 if (T.isNull())
3578 return false;
3580 const RecordType *RT = T->getAs<RecordType>();
3581 if (!RT)
3582 return false;
3584 const ClassTemplateSpecializationDecl *SD =
3585 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3586 if (!SD)
3587 return false;
3589 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3590 return false;
3592 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3593 if (TemplateArgs.size() != 1)
3594 return false;
3596 if (!isCharType(TemplateArgs[0].getAsType()))
3597 return false;
3599 return SD->getIdentifier()->getName() == Name;
3602 template <std::size_t StrLen>
3603 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3604 const char (&Str)[StrLen]) {
3605 if (!SD->getIdentifier()->isStr(Str))
3606 return false;
3608 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3609 if (TemplateArgs.size() != 2)
3610 return false;
3612 if (!isCharType(TemplateArgs[0].getAsType()))
3613 return false;
3615 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3616 return false;
3618 return true;
3621 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3622 // <substitution> ::= St # ::std::
3623 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3624 if (isStd(NS)) {
3625 Out << "St";
3626 return true;
3630 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3631 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3632 return false;
3634 // <substitution> ::= Sa # ::std::allocator
3635 if (TD->getIdentifier()->isStr("allocator")) {
3636 Out << "Sa";
3637 return true;
3640 // <<substitution> ::= Sb # ::std::basic_string
3641 if (TD->getIdentifier()->isStr("basic_string")) {
3642 Out << "Sb";
3643 return true;
3647 if (const ClassTemplateSpecializationDecl *SD =
3648 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3649 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3650 return false;
3652 // <substitution> ::= Ss # ::std::basic_string<char,
3653 // ::std::char_traits<char>,
3654 // ::std::allocator<char> >
3655 if (SD->getIdentifier()->isStr("basic_string")) {
3656 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3658 if (TemplateArgs.size() != 3)
3659 return false;
3661 if (!isCharType(TemplateArgs[0].getAsType()))
3662 return false;
3664 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3665 return false;
3667 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3668 return false;
3670 Out << "Ss";
3671 return true;
3674 // <substitution> ::= Si # ::std::basic_istream<char,
3675 // ::std::char_traits<char> >
3676 if (isStreamCharSpecialization(SD, "basic_istream")) {
3677 Out << "Si";
3678 return true;
3681 // <substitution> ::= So # ::std::basic_ostream<char,
3682 // ::std::char_traits<char> >
3683 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3684 Out << "So";
3685 return true;
3688 // <substitution> ::= Sd # ::std::basic_iostream<char,
3689 // ::std::char_traits<char> >
3690 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3691 Out << "Sd";
3692 return true;
3695 return false;
3698 void CXXNameMangler::addSubstitution(QualType T) {
3699 if (!hasMangledSubstitutionQualifiers(T)) {
3700 if (const RecordType *RT = T->getAs<RecordType>()) {
3701 addSubstitution(RT->getDecl());
3702 return;
3706 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3707 addSubstitution(TypePtr);
3710 void CXXNameMangler::addSubstitution(TemplateName Template) {
3711 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3712 return addSubstitution(TD);
3714 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3715 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3718 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3719 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3720 Substitutions[Ptr] = SeqID++;
3725 /// \brief Mangles the name of the declaration D and emits that name to the
3726 /// given output stream.
3728 /// If the declaration D requires a mangled name, this routine will emit that
3729 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3730 /// and this routine will return false. In this case, the caller should just
3731 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3732 /// name.
3733 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3734 raw_ostream &Out) {
3735 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3736 "Invalid mangleName() call, argument is not a variable or function!");
3737 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3738 "Invalid mangleName() call on 'structor decl!");
3740 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3741 getASTContext().getSourceManager(),
3742 "Mangling declaration");
3744 CXXNameMangler Mangler(*this, Out, D);
3745 Mangler.mangle(D);
3748 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3749 CXXCtorType Type,
3750 raw_ostream &Out) {
3751 CXXNameMangler Mangler(*this, Out, D, Type);
3752 Mangler.mangle(D);
3755 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3756 CXXDtorType Type,
3757 raw_ostream &Out) {
3758 CXXNameMangler Mangler(*this, Out, D, Type);
3759 Mangler.mangle(D);
3762 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
3763 raw_ostream &Out) {
3764 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
3765 Mangler.mangle(D);
3768 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
3769 raw_ostream &Out) {
3770 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
3771 Mangler.mangle(D);
3774 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3775 const ThunkInfo &Thunk,
3776 raw_ostream &Out) {
3777 // <special-name> ::= T <call-offset> <base encoding>
3778 // # base is the nominal target function of thunk
3779 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3780 // # base is the nominal target function of thunk
3781 // # first call-offset is 'this' adjustment
3782 // # second call-offset is result adjustment
3784 assert(!isa<CXXDestructorDecl>(MD) &&
3785 "Use mangleCXXDtor for destructor decls!");
3786 CXXNameMangler Mangler(*this, Out);
3787 Mangler.getStream() << "_ZT";
3788 if (!Thunk.Return.isEmpty())
3789 Mangler.getStream() << 'c';
3791 // Mangle the 'this' pointer adjustment.
3792 Mangler.mangleCallOffset(Thunk.This.NonVirtual,
3793 Thunk.This.Virtual.Itanium.VCallOffsetOffset);
3795 // Mangle the return pointer adjustment if there is one.
3796 if (!Thunk.Return.isEmpty())
3797 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3798 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3800 Mangler.mangleFunctionEncoding(MD);
3803 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3804 const CXXDestructorDecl *DD, CXXDtorType Type,
3805 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
3806 // <special-name> ::= T <call-offset> <base encoding>
3807 // # base is the nominal target function of thunk
3808 CXXNameMangler Mangler(*this, Out, DD, Type);
3809 Mangler.getStream() << "_ZT";
3811 // Mangle the 'this' pointer adjustment.
3812 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3813 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
3815 Mangler.mangleFunctionEncoding(DD);
3818 /// mangleGuardVariable - Returns the mangled name for a guard variable
3819 /// for the passed in VarDecl.
3820 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3821 raw_ostream &Out) {
3822 // <special-name> ::= GV <object name> # Guard variable for one-time
3823 // # initialization
3824 CXXNameMangler Mangler(*this, Out);
3825 Mangler.getStream() << "_ZGV";
3826 Mangler.mangleName(D);
3829 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3830 raw_ostream &Out) {
3831 // These symbols are internal in the Itanium ABI, so the names don't matter.
3832 // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3833 // avoid duplicate symbols.
3834 Out << "__cxx_global_var_init";
3837 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3838 raw_ostream &Out) {
3839 // Prefix the mangling of D with __dtor_.
3840 CXXNameMangler Mangler(*this, Out);
3841 Mangler.getStream() << "__dtor_";
3842 if (shouldMangleDeclName(D))
3843 Mangler.mangle(D);
3844 else
3845 Mangler.getStream() << D->getName();
3848 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3849 raw_ostream &Out) {
3850 // <special-name> ::= TH <object name>
3851 CXXNameMangler Mangler(*this, Out);
3852 Mangler.getStream() << "_ZTH";
3853 Mangler.mangleName(D);
3856 void
3857 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3858 raw_ostream &Out) {
3859 // <special-name> ::= TW <object name>
3860 CXXNameMangler Mangler(*this, Out);
3861 Mangler.getStream() << "_ZTW";
3862 Mangler.mangleName(D);
3865 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
3866 unsigned ManglingNumber,
3867 raw_ostream &Out) {
3868 // We match the GCC mangling here.
3869 // <special-name> ::= GR <object name>
3870 CXXNameMangler Mangler(*this, Out);
3871 Mangler.getStream() << "_ZGR";
3872 Mangler.mangleName(D);
3873 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
3874 Mangler.mangleSeqID(ManglingNumber - 1);
3877 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
3878 raw_ostream &Out) {
3879 // <special-name> ::= TV <type> # virtual table
3880 CXXNameMangler Mangler(*this, Out);
3881 Mangler.getStream() << "_ZTV";
3882 Mangler.mangleNameOrStandardSubstitution(RD);
3885 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
3886 raw_ostream &Out) {
3887 // <special-name> ::= TT <type> # VTT structure
3888 CXXNameMangler Mangler(*this, Out);
3889 Mangler.getStream() << "_ZTT";
3890 Mangler.mangleNameOrStandardSubstitution(RD);
3893 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3894 int64_t Offset,
3895 const CXXRecordDecl *Type,
3896 raw_ostream &Out) {
3897 // <special-name> ::= TC <type> <offset number> _ <base type>
3898 CXXNameMangler Mangler(*this, Out);
3899 Mangler.getStream() << "_ZTC";
3900 Mangler.mangleNameOrStandardSubstitution(RD);
3901 Mangler.getStream() << Offset;
3902 Mangler.getStream() << '_';
3903 Mangler.mangleNameOrStandardSubstitution(Type);
3906 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
3907 // <special-name> ::= TI <type> # typeinfo structure
3908 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3909 CXXNameMangler Mangler(*this, Out);
3910 Mangler.getStream() << "_ZTI";
3911 Mangler.mangleType(Ty);
3914 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
3915 raw_ostream &Out) {
3916 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3917 CXXNameMangler Mangler(*this, Out);
3918 Mangler.getStream() << "_ZTS";
3919 Mangler.mangleType(Ty);
3922 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
3923 mangleCXXRTTIName(Ty, Out);
3926 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
3927 llvm_unreachable("Can't mangle string literals");
3930 ItaniumMangleContext *
3931 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3932 return new ItaniumMangleContextImpl(Context, Diags);