etc/services - sync with NetBSD-8
[minix.git] / external / bsd / llvm / dist / clang / lib / AST / RecordLayoutBuilder.cpp
blob0d070a4bfbfc6edc5010bf15ab42439724d1d388
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "clang/AST/RecordLayout.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/Attr.h"
13 #include "clang/AST/CXXInheritance.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/CrashRecoveryContext.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/MathExtras.h"
25 using namespace clang;
27 namespace {
29 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
30 /// For a class hierarchy like
31 ///
32 /// class A { };
33 /// class B : A { };
34 /// class C : A, B { };
35 ///
36 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
37 /// instances, one for B and two for A.
38 ///
39 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
40 struct BaseSubobjectInfo {
41 /// Class - The class for this base info.
42 const CXXRecordDecl *Class;
44 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
45 bool IsVirtual;
47 /// Bases - Information about the base subobjects.
48 SmallVector<BaseSubobjectInfo*, 4> Bases;
50 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
51 /// of this base info (if one exists).
52 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
54 // FIXME: Document.
55 const BaseSubobjectInfo *Derived;
58 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
59 /// offsets while laying out a C++ class.
60 class EmptySubobjectMap {
61 const ASTContext &Context;
62 uint64_t CharWidth;
64 /// Class - The class whose empty entries we're keeping track of.
65 const CXXRecordDecl *Class;
67 /// EmptyClassOffsets - A map from offsets to empty record decls.
68 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
69 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
70 EmptyClassOffsetsMapTy EmptyClassOffsets;
72 /// MaxEmptyClassOffset - The highest offset known to contain an empty
73 /// base subobject.
74 CharUnits MaxEmptyClassOffset;
76 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
77 /// member subobject that is empty.
78 void ComputeEmptySubobjectSizes();
80 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
82 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
83 CharUnits Offset, bool PlacingEmptyBase);
85 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
86 const CXXRecordDecl *Class,
87 CharUnits Offset);
88 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
90 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
91 /// subobjects beyond the given offset.
92 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
93 return Offset <= MaxEmptyClassOffset;
96 CharUnits
97 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
98 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
99 assert(FieldOffset % CharWidth == 0 &&
100 "Field offset not at char boundary!");
102 return Context.toCharUnitsFromBits(FieldOffset);
105 protected:
106 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
107 CharUnits Offset) const;
109 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
110 CharUnits Offset);
112 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
113 const CXXRecordDecl *Class,
114 CharUnits Offset) const;
115 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
116 CharUnits Offset) const;
118 public:
119 /// This holds the size of the largest empty subobject (either a base
120 /// or a member). Will be zero if the record being built doesn't contain
121 /// any empty classes.
122 CharUnits SizeOfLargestEmptySubobject;
124 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
125 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
126 ComputeEmptySubobjectSizes();
129 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
130 /// at the given offset.
131 /// Returns false if placing the record will result in two components
132 /// (direct or indirect) of the same type having the same offset.
133 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
134 CharUnits Offset);
136 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
137 /// offset.
138 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
141 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
142 // Check the bases.
143 for (const CXXBaseSpecifier &Base : Class->bases()) {
144 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
146 CharUnits EmptySize;
147 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
148 if (BaseDecl->isEmpty()) {
149 // If the class decl is empty, get its size.
150 EmptySize = Layout.getSize();
151 } else {
152 // Otherwise, we get the largest empty subobject for the decl.
153 EmptySize = Layout.getSizeOfLargestEmptySubobject();
156 if (EmptySize > SizeOfLargestEmptySubobject)
157 SizeOfLargestEmptySubobject = EmptySize;
160 // Check the fields.
161 for (const FieldDecl *FD : Class->fields()) {
162 const RecordType *RT =
163 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
165 // We only care about record types.
166 if (!RT)
167 continue;
169 CharUnits EmptySize;
170 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
171 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
172 if (MemberDecl->isEmpty()) {
173 // If the class decl is empty, get its size.
174 EmptySize = Layout.getSize();
175 } else {
176 // Otherwise, we get the largest empty subobject for the decl.
177 EmptySize = Layout.getSizeOfLargestEmptySubobject();
180 if (EmptySize > SizeOfLargestEmptySubobject)
181 SizeOfLargestEmptySubobject = EmptySize;
185 bool
186 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
187 CharUnits Offset) const {
188 // We only need to check empty bases.
189 if (!RD->isEmpty())
190 return true;
192 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
193 if (I == EmptyClassOffsets.end())
194 return true;
196 const ClassVectorTy &Classes = I->second;
197 if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
198 return true;
200 // There is already an empty class of the same type at this offset.
201 return false;
204 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
205 CharUnits Offset) {
206 // We only care about empty bases.
207 if (!RD->isEmpty())
208 return;
210 // If we have empty structures inside a union, we can assign both
211 // the same offset. Just avoid pushing them twice in the list.
212 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
213 if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
214 return;
216 Classes.push_back(RD);
218 // Update the empty class offset.
219 if (Offset > MaxEmptyClassOffset)
220 MaxEmptyClassOffset = Offset;
223 bool
224 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
225 CharUnits Offset) {
226 // We don't have to keep looking past the maximum offset that's known to
227 // contain an empty class.
228 if (!AnyEmptySubobjectsBeyondOffset(Offset))
229 return true;
231 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
232 return false;
234 // Traverse all non-virtual bases.
235 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
236 for (const BaseSubobjectInfo *Base : Info->Bases) {
237 if (Base->IsVirtual)
238 continue;
240 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
242 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
243 return false;
246 if (Info->PrimaryVirtualBaseInfo) {
247 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
249 if (Info == PrimaryVirtualBaseInfo->Derived) {
250 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
251 return false;
255 // Traverse all member variables.
256 unsigned FieldNo = 0;
257 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
258 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
259 if (I->isBitField())
260 continue;
262 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
263 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
264 return false;
267 return true;
270 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
271 CharUnits Offset,
272 bool PlacingEmptyBase) {
273 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
274 // We know that the only empty subobjects that can conflict with empty
275 // subobject of non-empty bases, are empty bases that can be placed at
276 // offset zero. Because of this, we only need to keep track of empty base
277 // subobjects with offsets less than the size of the largest empty
278 // subobject for our class.
279 return;
282 AddSubobjectAtOffset(Info->Class, Offset);
284 // Traverse all non-virtual bases.
285 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
286 for (const BaseSubobjectInfo *Base : Info->Bases) {
287 if (Base->IsVirtual)
288 continue;
290 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
291 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
294 if (Info->PrimaryVirtualBaseInfo) {
295 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
297 if (Info == PrimaryVirtualBaseInfo->Derived)
298 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
299 PlacingEmptyBase);
302 // Traverse all member variables.
303 unsigned FieldNo = 0;
304 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
305 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
306 if (I->isBitField())
307 continue;
309 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
310 UpdateEmptyFieldSubobjects(*I, FieldOffset);
314 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
315 CharUnits Offset) {
316 // If we know this class doesn't have any empty subobjects we don't need to
317 // bother checking.
318 if (SizeOfLargestEmptySubobject.isZero())
319 return true;
321 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
322 return false;
324 // We are able to place the base at this offset. Make sure to update the
325 // empty base subobject map.
326 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
327 return true;
330 bool
331 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
332 const CXXRecordDecl *Class,
333 CharUnits Offset) const {
334 // We don't have to keep looking past the maximum offset that's known to
335 // contain an empty class.
336 if (!AnyEmptySubobjectsBeyondOffset(Offset))
337 return true;
339 if (!CanPlaceSubobjectAtOffset(RD, Offset))
340 return false;
342 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
344 // Traverse all non-virtual bases.
345 for (const CXXBaseSpecifier &Base : RD->bases()) {
346 if (Base.isVirtual())
347 continue;
349 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
351 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
352 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
353 return false;
356 if (RD == Class) {
357 // This is the most derived class, traverse virtual bases as well.
358 for (const CXXBaseSpecifier &Base : RD->vbases()) {
359 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
361 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
362 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
363 return false;
367 // Traverse all member variables.
368 unsigned FieldNo = 0;
369 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
370 I != E; ++I, ++FieldNo) {
371 if (I->isBitField())
372 continue;
374 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
376 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
377 return false;
380 return true;
383 bool
384 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
385 CharUnits Offset) const {
386 // We don't have to keep looking past the maximum offset that's known to
387 // contain an empty class.
388 if (!AnyEmptySubobjectsBeyondOffset(Offset))
389 return true;
391 QualType T = FD->getType();
392 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
393 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
395 // If we have an array type we need to look at every element.
396 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
397 QualType ElemTy = Context.getBaseElementType(AT);
398 const RecordType *RT = ElemTy->getAs<RecordType>();
399 if (!RT)
400 return true;
402 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
403 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
405 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
406 CharUnits ElementOffset = Offset;
407 for (uint64_t I = 0; I != NumElements; ++I) {
408 // We don't have to keep looking past the maximum offset that's known to
409 // contain an empty class.
410 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
411 return true;
413 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
414 return false;
416 ElementOffset += Layout.getSize();
420 return true;
423 bool
424 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
425 CharUnits Offset) {
426 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
427 return false;
429 // We are able to place the member variable at this offset.
430 // Make sure to update the empty base subobject map.
431 UpdateEmptyFieldSubobjects(FD, Offset);
432 return true;
435 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
436 const CXXRecordDecl *Class,
437 CharUnits Offset) {
438 // We know that the only empty subobjects that can conflict with empty
439 // field subobjects are subobjects of empty bases that can be placed at offset
440 // zero. Because of this, we only need to keep track of empty field
441 // subobjects with offsets less than the size of the largest empty
442 // subobject for our class.
443 if (Offset >= SizeOfLargestEmptySubobject)
444 return;
446 AddSubobjectAtOffset(RD, Offset);
448 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450 // Traverse all non-virtual bases.
451 for (const CXXBaseSpecifier &Base : RD->bases()) {
452 if (Base.isVirtual())
453 continue;
455 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
457 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
458 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
461 if (RD == Class) {
462 // This is the most derived class, traverse virtual bases as well.
463 for (const CXXBaseSpecifier &Base : RD->vbases()) {
464 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
466 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
467 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
471 // Traverse all member variables.
472 unsigned FieldNo = 0;
473 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
474 I != E; ++I, ++FieldNo) {
475 if (I->isBitField())
476 continue;
478 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
480 UpdateEmptyFieldSubobjects(*I, FieldOffset);
484 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
485 CharUnits Offset) {
486 QualType T = FD->getType();
487 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
488 UpdateEmptyFieldSubobjects(RD, RD, Offset);
489 return;
492 // If we have an array type we need to update every element.
493 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
494 QualType ElemTy = Context.getBaseElementType(AT);
495 const RecordType *RT = ElemTy->getAs<RecordType>();
496 if (!RT)
497 return;
499 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
500 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
502 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
503 CharUnits ElementOffset = Offset;
505 for (uint64_t I = 0; I != NumElements; ++I) {
506 // We know that the only empty subobjects that can conflict with empty
507 // field subobjects are subobjects of empty bases that can be placed at
508 // offset zero. Because of this, we only need to keep track of empty field
509 // subobjects with offsets less than the size of the largest empty
510 // subobject for our class.
511 if (ElementOffset >= SizeOfLargestEmptySubobject)
512 return;
514 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
515 ElementOffset += Layout.getSize();
520 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
522 class RecordLayoutBuilder {
523 protected:
524 // FIXME: Remove this and make the appropriate fields public.
525 friend class clang::ASTContext;
527 const ASTContext &Context;
529 EmptySubobjectMap *EmptySubobjects;
531 /// Size - The current size of the record layout.
532 uint64_t Size;
534 /// Alignment - The current alignment of the record layout.
535 CharUnits Alignment;
537 /// \brief The alignment if attribute packed is not used.
538 CharUnits UnpackedAlignment;
540 SmallVector<uint64_t, 16> FieldOffsets;
542 /// \brief Whether the external AST source has provided a layout for this
543 /// record.
544 unsigned ExternalLayout : 1;
546 /// \brief Whether we need to infer alignment, even when we have an
547 /// externally-provided layout.
548 unsigned InferAlignment : 1;
550 /// Packed - Whether the record is packed or not.
551 unsigned Packed : 1;
553 unsigned IsUnion : 1;
555 unsigned IsMac68kAlign : 1;
557 unsigned IsMsStruct : 1;
559 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
560 /// this contains the number of bits in the last unit that can be used for
561 /// an adjacent bitfield if necessary. The unit in question is usually
562 /// a byte, but larger units are used if IsMsStruct.
563 unsigned char UnfilledBitsInLastUnit;
564 /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
565 /// of the previous field if it was a bitfield.
566 unsigned char LastBitfieldTypeSize;
568 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
569 /// #pragma pack.
570 CharUnits MaxFieldAlignment;
572 /// DataSize - The data size of the record being laid out.
573 uint64_t DataSize;
575 CharUnits NonVirtualSize;
576 CharUnits NonVirtualAlignment;
578 /// PrimaryBase - the primary base class (if one exists) of the class
579 /// we're laying out.
580 const CXXRecordDecl *PrimaryBase;
582 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
583 /// out is virtual.
584 bool PrimaryBaseIsVirtual;
586 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
587 /// pointer, as opposed to inheriting one from a primary base class.
588 bool HasOwnVFPtr;
590 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
592 /// Bases - base classes and their offsets in the record.
593 BaseOffsetsMapTy Bases;
595 // VBases - virtual base classes and their offsets in the record.
596 ASTRecordLayout::VBaseOffsetsMapTy VBases;
598 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
599 /// primary base classes for some other direct or indirect base class.
600 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
602 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
603 /// inheritance graph order. Used for determining the primary base class.
604 const CXXRecordDecl *FirstNearlyEmptyVBase;
606 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
607 /// avoid visiting virtual bases more than once.
608 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
610 /// \brief Externally-provided size.
611 uint64_t ExternalSize;
613 /// \brief Externally-provided alignment.
614 uint64_t ExternalAlign;
616 /// \brief Externally-provided field offsets.
617 llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
619 /// \brief Externally-provided direct, non-virtual base offsets.
620 llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
622 /// \brief Externally-provided virtual base offsets.
623 llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
625 RecordLayoutBuilder(const ASTContext &Context,
626 EmptySubobjectMap *EmptySubobjects)
627 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
628 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
629 ExternalLayout(false), InferAlignment(false),
630 Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
631 UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
632 MaxFieldAlignment(CharUnits::Zero()),
633 DataSize(0), NonVirtualSize(CharUnits::Zero()),
634 NonVirtualAlignment(CharUnits::One()),
635 PrimaryBase(nullptr), PrimaryBaseIsVirtual(false),
636 HasOwnVFPtr(false),
637 FirstNearlyEmptyVBase(nullptr) {}
639 void Layout(const RecordDecl *D);
640 void Layout(const CXXRecordDecl *D);
641 void Layout(const ObjCInterfaceDecl *D);
643 void LayoutFields(const RecordDecl *D);
644 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
645 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
646 bool FieldPacked, const FieldDecl *D);
647 void LayoutBitField(const FieldDecl *D);
649 TargetCXXABI getCXXABI() const {
650 return Context.getTargetInfo().getCXXABI();
653 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
654 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
656 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
657 BaseSubobjectInfoMapTy;
659 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
660 /// of the class we're laying out to their base subobject info.
661 BaseSubobjectInfoMapTy VirtualBaseInfo;
663 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
664 /// class we're laying out to their base subobject info.
665 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
667 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
668 /// bases of the given class.
669 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
671 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
672 /// single class and all of its base classes.
673 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
674 bool IsVirtual,
675 BaseSubobjectInfo *Derived);
677 /// DeterminePrimaryBase - Determine the primary base of the given class.
678 void DeterminePrimaryBase(const CXXRecordDecl *RD);
680 void SelectPrimaryVBase(const CXXRecordDecl *RD);
682 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
684 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
685 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
686 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
688 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
689 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
691 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
692 CharUnits Offset);
694 /// LayoutVirtualBases - Lays out all the virtual bases.
695 void LayoutVirtualBases(const CXXRecordDecl *RD,
696 const CXXRecordDecl *MostDerivedClass);
698 /// LayoutVirtualBase - Lays out a single virtual base.
699 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
701 /// LayoutBase - Will lay out a base and return the offset where it was
702 /// placed, in chars.
703 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
705 /// InitializeLayout - Initialize record layout for the given record decl.
706 void InitializeLayout(const Decl *D);
708 /// FinishLayout - Finalize record layout. Adjust record size based on the
709 /// alignment.
710 void FinishLayout(const NamedDecl *D);
712 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
713 void UpdateAlignment(CharUnits NewAlignment) {
714 UpdateAlignment(NewAlignment, NewAlignment);
717 /// \brief Retrieve the externally-supplied field offset for the given
718 /// field.
720 /// \param Field The field whose offset is being queried.
721 /// \param ComputedOffset The offset that we've computed for this field.
722 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
723 uint64_t ComputedOffset);
725 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
726 uint64_t UnpackedOffset, unsigned UnpackedAlign,
727 bool isPacked, const FieldDecl *D);
729 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
731 CharUnits getSize() const {
732 assert(Size % Context.getCharWidth() == 0);
733 return Context.toCharUnitsFromBits(Size);
735 uint64_t getSizeInBits() const { return Size; }
737 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
738 void setSize(uint64_t NewSize) { Size = NewSize; }
740 CharUnits getAligment() const { return Alignment; }
742 CharUnits getDataSize() const {
743 assert(DataSize % Context.getCharWidth() == 0);
744 return Context.toCharUnitsFromBits(DataSize);
746 uint64_t getDataSizeInBits() const { return DataSize; }
748 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
749 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
751 RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
752 void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
754 } // end anonymous namespace
756 void
757 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
758 for (const auto &I : RD->bases()) {
759 assert(!I.getType()->isDependentType() &&
760 "Cannot layout class with dependent bases.");
762 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
764 // Check if this is a nearly empty virtual base.
765 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
766 // If it's not an indirect primary base, then we've found our primary
767 // base.
768 if (!IndirectPrimaryBases.count(Base)) {
769 PrimaryBase = Base;
770 PrimaryBaseIsVirtual = true;
771 return;
774 // Is this the first nearly empty virtual base?
775 if (!FirstNearlyEmptyVBase)
776 FirstNearlyEmptyVBase = Base;
779 SelectPrimaryVBase(Base);
780 if (PrimaryBase)
781 return;
785 /// DeterminePrimaryBase - Determine the primary base of the given class.
786 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
787 // If the class isn't dynamic, it won't have a primary base.
788 if (!RD->isDynamicClass())
789 return;
791 // Compute all the primary virtual bases for all of our direct and
792 // indirect bases, and record all their primary virtual base classes.
793 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
795 // If the record has a dynamic base class, attempt to choose a primary base
796 // class. It is the first (in direct base class order) non-virtual dynamic
797 // base class, if one exists.
798 for (const auto &I : RD->bases()) {
799 // Ignore virtual bases.
800 if (I.isVirtual())
801 continue;
803 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
805 if (Base->isDynamicClass()) {
806 // We found it.
807 PrimaryBase = Base;
808 PrimaryBaseIsVirtual = false;
809 return;
813 // Under the Itanium ABI, if there is no non-virtual primary base class,
814 // try to compute the primary virtual base. The primary virtual base is
815 // the first nearly empty virtual base that is not an indirect primary
816 // virtual base class, if one exists.
817 if (RD->getNumVBases() != 0) {
818 SelectPrimaryVBase(RD);
819 if (PrimaryBase)
820 return;
823 // Otherwise, it is the first indirect primary base class, if one exists.
824 if (FirstNearlyEmptyVBase) {
825 PrimaryBase = FirstNearlyEmptyVBase;
826 PrimaryBaseIsVirtual = true;
827 return;
830 assert(!PrimaryBase && "Should not get here with a primary base!");
833 BaseSubobjectInfo *
834 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
835 bool IsVirtual,
836 BaseSubobjectInfo *Derived) {
837 BaseSubobjectInfo *Info;
839 if (IsVirtual) {
840 // Check if we already have info about this virtual base.
841 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
842 if (InfoSlot) {
843 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
844 return InfoSlot;
847 // We don't, create it.
848 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
849 Info = InfoSlot;
850 } else {
851 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
854 Info->Class = RD;
855 Info->IsVirtual = IsVirtual;
856 Info->Derived = nullptr;
857 Info->PrimaryVirtualBaseInfo = nullptr;
859 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
860 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
862 // Check if this base has a primary virtual base.
863 if (RD->getNumVBases()) {
864 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
865 if (Layout.isPrimaryBaseVirtual()) {
866 // This base does have a primary virtual base.
867 PrimaryVirtualBase = Layout.getPrimaryBase();
868 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
870 // Now check if we have base subobject info about this primary base.
871 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
873 if (PrimaryVirtualBaseInfo) {
874 if (PrimaryVirtualBaseInfo->Derived) {
875 // We did have info about this primary base, and it turns out that it
876 // has already been claimed as a primary virtual base for another
877 // base.
878 PrimaryVirtualBase = nullptr;
879 } else {
880 // We can claim this base as our primary base.
881 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
882 PrimaryVirtualBaseInfo->Derived = Info;
888 // Now go through all direct bases.
889 for (const auto &I : RD->bases()) {
890 bool IsVirtual = I.isVirtual();
892 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
894 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
897 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
898 // Traversing the bases must have created the base info for our primary
899 // virtual base.
900 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
901 assert(PrimaryVirtualBaseInfo &&
902 "Did not create a primary virtual base!");
904 // Claim the primary virtual base as our primary virtual base.
905 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
906 PrimaryVirtualBaseInfo->Derived = Info;
909 return Info;
912 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
913 for (const auto &I : RD->bases()) {
914 bool IsVirtual = I.isVirtual();
916 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
918 // Compute the base subobject info for this base.
919 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
920 nullptr);
922 if (IsVirtual) {
923 // ComputeBaseInfo has already added this base for us.
924 assert(VirtualBaseInfo.count(BaseDecl) &&
925 "Did not add virtual base!");
926 } else {
927 // Add the base info to the map of non-virtual bases.
928 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
929 "Non-virtual base already exists!");
930 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
935 void
936 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
937 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
939 // The maximum field alignment overrides base align.
940 if (!MaxFieldAlignment.isZero()) {
941 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
942 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
945 // Round up the current record size to pointer alignment.
946 setSize(getSize().RoundUpToAlignment(BaseAlign));
947 setDataSize(getSize());
949 // Update the alignment.
950 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
953 void
954 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
955 // Then, determine the primary base class.
956 DeterminePrimaryBase(RD);
958 // Compute base subobject info.
959 ComputeBaseSubobjectInfo(RD);
961 // If we have a primary base class, lay it out.
962 if (PrimaryBase) {
963 if (PrimaryBaseIsVirtual) {
964 // If the primary virtual base was a primary virtual base of some other
965 // base class we'll have to steal it.
966 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
967 PrimaryBaseInfo->Derived = nullptr;
969 // We have a virtual primary base, insert it as an indirect primary base.
970 IndirectPrimaryBases.insert(PrimaryBase);
972 assert(!VisitedVirtualBases.count(PrimaryBase) &&
973 "vbase already visited!");
974 VisitedVirtualBases.insert(PrimaryBase);
976 LayoutVirtualBase(PrimaryBaseInfo);
977 } else {
978 BaseSubobjectInfo *PrimaryBaseInfo =
979 NonVirtualBaseInfo.lookup(PrimaryBase);
980 assert(PrimaryBaseInfo &&
981 "Did not find base info for non-virtual primary base!");
983 LayoutNonVirtualBase(PrimaryBaseInfo);
986 // If this class needs a vtable/vf-table and didn't get one from a
987 // primary base, add it in now.
988 } else if (RD->isDynamicClass()) {
989 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
990 CharUnits PtrWidth =
991 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
992 CharUnits PtrAlign =
993 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
994 EnsureVTablePointerAlignment(PtrAlign);
995 HasOwnVFPtr = true;
996 setSize(getSize() + PtrWidth);
997 setDataSize(getSize());
1000 // Now lay out the non-virtual bases.
1001 for (const auto &I : RD->bases()) {
1003 // Ignore virtual bases.
1004 if (I.isVirtual())
1005 continue;
1007 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1009 // Skip the primary base, because we've already laid it out. The
1010 // !PrimaryBaseIsVirtual check is required because we might have a
1011 // non-virtual base of the same type as a primary virtual base.
1012 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1013 continue;
1015 // Lay out the base.
1016 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1017 assert(BaseInfo && "Did not find base info for non-virtual base!");
1019 LayoutNonVirtualBase(BaseInfo);
1023 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
1024 // Layout the base.
1025 CharUnits Offset = LayoutBase(Base);
1027 // Add its base class offset.
1028 assert(!Bases.count(Base->Class) && "base offset already exists!");
1029 Bases.insert(std::make_pair(Base->Class, Offset));
1031 AddPrimaryVirtualBaseOffsets(Base, Offset);
1034 void
1035 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
1036 CharUnits Offset) {
1037 // This base isn't interesting, it has no virtual bases.
1038 if (!Info->Class->getNumVBases())
1039 return;
1041 // First, check if we have a virtual primary base to add offsets for.
1042 if (Info->PrimaryVirtualBaseInfo) {
1043 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1044 "Primary virtual base is not virtual!");
1045 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1046 // Add the offset.
1047 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1048 "primary vbase offset already exists!");
1049 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1050 ASTRecordLayout::VBaseInfo(Offset, false)));
1052 // Traverse the primary virtual base.
1053 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1057 // Now go through all direct non-virtual bases.
1058 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1059 for (const BaseSubobjectInfo *Base : Info->Bases) {
1060 if (Base->IsVirtual)
1061 continue;
1063 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1064 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1068 void
1069 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
1070 const CXXRecordDecl *MostDerivedClass) {
1071 const CXXRecordDecl *PrimaryBase;
1072 bool PrimaryBaseIsVirtual;
1074 if (MostDerivedClass == RD) {
1075 PrimaryBase = this->PrimaryBase;
1076 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1077 } else {
1078 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1079 PrimaryBase = Layout.getPrimaryBase();
1080 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1083 for (const CXXBaseSpecifier &Base : RD->bases()) {
1084 assert(!Base.getType()->isDependentType() &&
1085 "Cannot layout class with dependent bases.");
1087 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1089 if (Base.isVirtual()) {
1090 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1091 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1093 // Only lay out the virtual base if it's not an indirect primary base.
1094 if (!IndirectPrimaryBase) {
1095 // Only visit virtual bases once.
1096 if (!VisitedVirtualBases.insert(BaseDecl).second)
1097 continue;
1099 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1100 assert(BaseInfo && "Did not find virtual base info!");
1101 LayoutVirtualBase(BaseInfo);
1106 if (!BaseDecl->getNumVBases()) {
1107 // This base isn't interesting since it doesn't have any virtual bases.
1108 continue;
1111 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1115 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
1116 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1118 // Layout the base.
1119 CharUnits Offset = LayoutBase(Base);
1121 // Add its base class offset.
1122 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1123 VBases.insert(std::make_pair(Base->Class,
1124 ASTRecordLayout::VBaseInfo(Offset, false)));
1126 AddPrimaryVirtualBaseOffsets(Base, Offset);
1129 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1130 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1133 CharUnits Offset;
1135 // Query the external layout to see if it provides an offset.
1136 bool HasExternalLayout = false;
1137 if (ExternalLayout) {
1138 llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1139 if (Base->IsVirtual) {
1140 Known = ExternalVirtualBaseOffsets.find(Base->Class);
1141 if (Known != ExternalVirtualBaseOffsets.end()) {
1142 Offset = Known->second;
1143 HasExternalLayout = true;
1145 } else {
1146 Known = ExternalBaseOffsets.find(Base->Class);
1147 if (Known != ExternalBaseOffsets.end()) {
1148 Offset = Known->second;
1149 HasExternalLayout = true;
1154 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1155 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1157 // If we have an empty base class, try to place it at offset 0.
1158 if (Base->Class->isEmpty() &&
1159 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1160 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1161 setSize(std::max(getSize(), Layout.getSize()));
1162 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1164 return CharUnits::Zero();
1167 // The maximum field alignment overrides base align.
1168 if (!MaxFieldAlignment.isZero()) {
1169 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1170 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1173 if (!HasExternalLayout) {
1174 // Round up the current record size to the base's alignment boundary.
1175 Offset = getDataSize().RoundUpToAlignment(BaseAlign);
1177 // Try to place the base.
1178 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1179 Offset += BaseAlign;
1180 } else {
1181 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1182 (void)Allowed;
1183 assert(Allowed && "Base subobject externally placed at overlapping offset");
1185 if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
1186 // The externally-supplied base offset is before the base offset we
1187 // computed. Assume that the structure is packed.
1188 Alignment = CharUnits::One();
1189 InferAlignment = false;
1193 if (!Base->Class->isEmpty()) {
1194 // Update the data size.
1195 setDataSize(Offset + Layout.getNonVirtualSize());
1197 setSize(std::max(getSize(), getDataSize()));
1198 } else
1199 setSize(std::max(getSize(), Offset + Layout.getSize()));
1201 // Remember max struct/class alignment.
1202 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1204 return Offset;
1207 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
1208 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1209 IsUnion = RD->isUnion();
1210 IsMsStruct = RD->isMsStruct(Context);
1213 Packed = D->hasAttr<PackedAttr>();
1215 // Honor the default struct packing maximum alignment flag.
1216 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1217 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1220 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1221 // and forces all structures to have 2-byte alignment. The IBM docs on it
1222 // allude to additional (more complicated) semantics, especially with regard
1223 // to bit-fields, but gcc appears not to follow that.
1224 if (D->hasAttr<AlignMac68kAttr>()) {
1225 IsMac68kAlign = true;
1226 MaxFieldAlignment = CharUnits::fromQuantity(2);
1227 Alignment = CharUnits::fromQuantity(2);
1228 } else {
1229 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1230 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1232 if (unsigned MaxAlign = D->getMaxAlignment())
1233 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1236 // If there is an external AST source, ask it for the various offsets.
1237 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1238 if (ExternalASTSource *External = Context.getExternalSource()) {
1239 ExternalLayout = External->layoutRecordType(RD,
1240 ExternalSize,
1241 ExternalAlign,
1242 ExternalFieldOffsets,
1243 ExternalBaseOffsets,
1244 ExternalVirtualBaseOffsets);
1246 // Update based on external alignment.
1247 if (ExternalLayout) {
1248 if (ExternalAlign > 0) {
1249 Alignment = Context.toCharUnitsFromBits(ExternalAlign);
1250 } else {
1251 // The external source didn't have alignment information; infer it.
1252 InferAlignment = true;
1258 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
1259 InitializeLayout(D);
1260 LayoutFields(D);
1262 // Finally, round the size of the total struct up to the alignment of the
1263 // struct itself.
1264 FinishLayout(D);
1267 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1268 InitializeLayout(RD);
1270 // Lay out the vtable and the non-virtual bases.
1271 LayoutNonVirtualBases(RD);
1273 LayoutFields(RD);
1275 NonVirtualSize = Context.toCharUnitsFromBits(
1276 llvm::RoundUpToAlignment(getSizeInBits(),
1277 Context.getTargetInfo().getCharAlign()));
1278 NonVirtualAlignment = Alignment;
1280 // Lay out the virtual bases and add the primary virtual base offsets.
1281 LayoutVirtualBases(RD, RD);
1283 // Finally, round the size of the total struct up to the alignment
1284 // of the struct itself.
1285 FinishLayout(RD);
1287 #ifndef NDEBUG
1288 // Check that we have base offsets for all bases.
1289 for (const CXXBaseSpecifier &Base : RD->bases()) {
1290 if (Base.isVirtual())
1291 continue;
1293 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1295 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1298 // And all virtual bases.
1299 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1300 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1302 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1304 #endif
1307 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1308 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1309 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1311 UpdateAlignment(SL.getAlignment());
1313 // We start laying out ivars not at the end of the superclass
1314 // structure, but at the next byte following the last field.
1315 setSize(SL.getDataSize());
1316 setDataSize(getSize());
1319 InitializeLayout(D);
1320 // Layout each ivar sequentially.
1321 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1322 IVD = IVD->getNextIvar())
1323 LayoutField(IVD, false);
1325 // Finally, round the size of the total struct up to the alignment of the
1326 // struct itself.
1327 FinishLayout(D);
1330 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1331 // Layout each field, for now, just sequentially, respecting alignment. In
1332 // the future, this will need to be tweakable by targets.
1333 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1334 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1335 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1336 auto Next(I);
1337 ++Next;
1338 LayoutField(*I,
1339 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1343 // Rounds the specified size to have it a multiple of the char size.
1344 static uint64_t
1345 roundUpSizeToCharAlignment(uint64_t Size,
1346 const ASTContext &Context) {
1347 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1348 return llvm::RoundUpToAlignment(Size, CharAlignment);
1351 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1352 uint64_t TypeSize,
1353 bool FieldPacked,
1354 const FieldDecl *D) {
1355 assert(Context.getLangOpts().CPlusPlus &&
1356 "Can only have wide bit-fields in C++!");
1358 // Itanium C++ ABI 2.4:
1359 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1360 // sizeof(T')*8 <= n.
1362 QualType IntegralPODTypes[] = {
1363 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1364 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1367 QualType Type;
1368 for (const QualType &QT : IntegralPODTypes) {
1369 uint64_t Size = Context.getTypeSize(QT);
1371 if (Size > FieldSize)
1372 break;
1374 Type = QT;
1376 assert(!Type.isNull() && "Did not find a type!");
1378 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1380 // We're not going to use any of the unfilled bits in the last byte.
1381 UnfilledBitsInLastUnit = 0;
1382 LastBitfieldTypeSize = 0;
1384 uint64_t FieldOffset;
1385 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1387 if (IsUnion) {
1388 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1389 Context);
1390 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1391 FieldOffset = 0;
1392 } else {
1393 // The bitfield is allocated starting at the next offset aligned
1394 // appropriately for T', with length n bits.
1395 FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
1396 Context.toBits(TypeAlign));
1398 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1400 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1401 Context.getTargetInfo().getCharAlign()));
1402 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1405 // Place this field at the current location.
1406 FieldOffsets.push_back(FieldOffset);
1408 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1409 Context.toBits(TypeAlign), FieldPacked, D);
1411 // Update the size.
1412 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1414 // Remember max struct/class alignment.
1415 UpdateAlignment(TypeAlign);
1418 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1419 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1420 uint64_t FieldSize = D->getBitWidthValue(Context);
1421 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1422 uint64_t TypeSize = FieldInfo.Width;
1423 unsigned FieldAlign = FieldInfo.Align;
1425 // UnfilledBitsInLastUnit is the difference between the end of the
1426 // last allocated bitfield (i.e. the first bit offset available for
1427 // bitfields) and the end of the current data size in bits (i.e. the
1428 // first bit offset available for non-bitfields). The current data
1429 // size in bits is always a multiple of the char size; additionally,
1430 // for ms_struct records it's also a multiple of the
1431 // LastBitfieldTypeSize (if set).
1433 // The struct-layout algorithm is dictated by the platform ABI,
1434 // which in principle could use almost any rules it likes. In
1435 // practice, UNIXy targets tend to inherit the algorithm described
1436 // in the System V generic ABI. The basic bitfield layout rule in
1437 // System V is to place bitfields at the next available bit offset
1438 // where the entire bitfield would fit in an aligned storage unit of
1439 // the declared type; it's okay if an earlier or later non-bitfield
1440 // is allocated in the same storage unit. However, some targets
1441 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1442 // require this storage unit to be aligned, and therefore always put
1443 // the bitfield at the next available bit offset.
1445 // ms_struct basically requests a complete replacement of the
1446 // platform ABI's struct-layout algorithm, with the high-level goal
1447 // of duplicating MSVC's layout. For non-bitfields, this follows
1448 // the the standard algorithm. The basic bitfield layout rule is to
1449 // allocate an entire unit of the bitfield's declared type
1450 // (e.g. 'unsigned long'), then parcel it up among successive
1451 // bitfields whose declared types have the same size, making a new
1452 // unit as soon as the last can no longer store the whole value.
1453 // Since it completely replaces the platform ABI's algorithm,
1454 // settings like !useBitFieldTypeAlignment() do not apply.
1456 // A zero-width bitfield forces the use of a new storage unit for
1457 // later bitfields. In general, this occurs by rounding up the
1458 // current size of the struct as if the algorithm were about to
1459 // place a non-bitfield of the field's formal type. Usually this
1460 // does not change the alignment of the struct itself, but it does
1461 // on some targets (those that useZeroLengthBitfieldAlignment(),
1462 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1463 // ignored unless they follow a non-zero-width bitfield.
1465 // A field alignment restriction (e.g. from #pragma pack) or
1466 // specification (e.g. from __attribute__((aligned))) changes the
1467 // formal alignment of the field. For System V, this alters the
1468 // required alignment of the notional storage unit that must contain
1469 // the bitfield. For ms_struct, this only affects the placement of
1470 // new storage units. In both cases, the effect of #pragma pack is
1471 // ignored on zero-width bitfields.
1473 // On System V, a packed field (e.g. from #pragma pack or
1474 // __attribute__((packed))) always uses the next available bit
1475 // offset.
1477 // In an ms_struct struct, the alignment of a fundamental type is
1478 // always equal to its size. This is necessary in order to mimic
1479 // the i386 alignment rules on targets which might not fully align
1480 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1482 // First, some simple bookkeeping to perform for ms_struct structs.
1483 if (IsMsStruct) {
1484 // The field alignment for integer types is always the size.
1485 FieldAlign = TypeSize;
1487 // If the previous field was not a bitfield, or was a bitfield
1488 // with a different storage unit size, we're done with that
1489 // storage unit.
1490 if (LastBitfieldTypeSize != TypeSize) {
1491 // Also, ignore zero-length bitfields after non-bitfields.
1492 if (!LastBitfieldTypeSize && !FieldSize)
1493 FieldAlign = 1;
1495 UnfilledBitsInLastUnit = 0;
1496 LastBitfieldTypeSize = 0;
1500 // If the field is wider than its declared type, it follows
1501 // different rules in all cases.
1502 if (FieldSize > TypeSize) {
1503 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1504 return;
1507 // Compute the next available bit offset.
1508 uint64_t FieldOffset =
1509 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1511 // Handle targets that don't honor bitfield type alignment.
1512 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1513 // Some such targets do honor it on zero-width bitfields.
1514 if (FieldSize == 0 &&
1515 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1516 // The alignment to round up to is the max of the field's natural
1517 // alignment and a target-specific fixed value (sometimes zero).
1518 unsigned ZeroLengthBitfieldBoundary =
1519 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1520 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1522 // If that doesn't apply, just ignore the field alignment.
1523 } else {
1524 FieldAlign = 1;
1528 // Remember the alignment we would have used if the field were not packed.
1529 unsigned UnpackedFieldAlign = FieldAlign;
1531 // Ignore the field alignment if the field is packed unless it has zero-size.
1532 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1533 FieldAlign = 1;
1535 // But, if there's an 'aligned' attribute on the field, honor that.
1536 if (unsigned ExplicitFieldAlign = D->getMaxAlignment()) {
1537 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1538 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1541 // But, if there's a #pragma pack in play, that takes precedent over
1542 // even the 'aligned' attribute, for non-zero-width bitfields.
1543 if (!MaxFieldAlignment.isZero() && FieldSize) {
1544 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1545 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1546 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1549 // For purposes of diagnostics, we're going to simultaneously
1550 // compute the field offsets that we would have used if we weren't
1551 // adding any alignment padding or if the field weren't packed.
1552 uint64_t UnpaddedFieldOffset = FieldOffset;
1553 uint64_t UnpackedFieldOffset = FieldOffset;
1555 // Check if we need to add padding to fit the bitfield within an
1556 // allocation unit with the right size and alignment. The rules are
1557 // somewhat different here for ms_struct structs.
1558 if (IsMsStruct) {
1559 // If it's not a zero-width bitfield, and we can fit the bitfield
1560 // into the active storage unit (and we haven't already decided to
1561 // start a new storage unit), just do so, regardless of any other
1562 // other consideration. Otherwise, round up to the right alignment.
1563 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1564 FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1565 UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1566 UnpackedFieldAlign);
1567 UnfilledBitsInLastUnit = 0;
1570 } else {
1571 // #pragma pack, with any value, suppresses the insertion of padding.
1572 bool AllowPadding = MaxFieldAlignment.isZero();
1574 // Compute the real offset.
1575 if (FieldSize == 0 ||
1576 (AllowPadding &&
1577 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1578 FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1581 // Repeat the computation for diagnostic purposes.
1582 if (FieldSize == 0 ||
1583 (AllowPadding &&
1584 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1585 UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1586 UnpackedFieldAlign);
1589 // If we're using external layout, give the external layout a chance
1590 // to override this information.
1591 if (ExternalLayout)
1592 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1594 // Okay, place the bitfield at the calculated offset.
1595 FieldOffsets.push_back(FieldOffset);
1597 // Bookkeeping:
1599 // Anonymous members don't affect the overall record alignment,
1600 // except on targets where they do.
1601 if (!IsMsStruct &&
1602 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1603 !D->getIdentifier())
1604 FieldAlign = UnpackedFieldAlign = 1;
1606 // Diagnose differences in layout due to padding or packing.
1607 if (!ExternalLayout)
1608 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1609 UnpackedFieldAlign, FieldPacked, D);
1611 // Update DataSize to include the last byte containing (part of) the bitfield.
1613 // For unions, this is just a max operation, as usual.
1614 if (IsUnion) {
1615 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1616 Context);
1617 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1618 // For non-zero-width bitfields in ms_struct structs, allocate a new
1619 // storage unit if necessary.
1620 } else if (IsMsStruct && FieldSize) {
1621 // We should have cleared UnfilledBitsInLastUnit in every case
1622 // where we changed storage units.
1623 if (!UnfilledBitsInLastUnit) {
1624 setDataSize(FieldOffset + TypeSize);
1625 UnfilledBitsInLastUnit = TypeSize;
1627 UnfilledBitsInLastUnit -= FieldSize;
1628 LastBitfieldTypeSize = TypeSize;
1630 // Otherwise, bump the data size up to include the bitfield,
1631 // including padding up to char alignment, and then remember how
1632 // bits we didn't use.
1633 } else {
1634 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1635 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1636 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, CharAlignment));
1637 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1639 // The only time we can get here for an ms_struct is if this is a
1640 // zero-width bitfield, which doesn't count as anything for the
1641 // purposes of unfilled bits.
1642 LastBitfieldTypeSize = 0;
1645 // Update the size.
1646 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1648 // Remember max struct/class alignment.
1649 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1650 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1653 void RecordLayoutBuilder::LayoutField(const FieldDecl *D,
1654 bool InsertExtraPadding) {
1655 if (D->isBitField()) {
1656 LayoutBitField(D);
1657 return;
1660 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1662 // Reset the unfilled bits.
1663 UnfilledBitsInLastUnit = 0;
1664 LastBitfieldTypeSize = 0;
1666 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1667 CharUnits FieldOffset =
1668 IsUnion ? CharUnits::Zero() : getDataSize();
1669 CharUnits FieldSize;
1670 CharUnits FieldAlign;
1672 if (D->getType()->isIncompleteArrayType()) {
1673 // This is a flexible array member; we can't directly
1674 // query getTypeInfo about these, so we figure it out here.
1675 // Flexible array members don't have any size, but they
1676 // have to be aligned appropriately for their element type.
1677 FieldSize = CharUnits::Zero();
1678 const ArrayType* ATy = Context.getAsArrayType(D->getType());
1679 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1680 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1681 unsigned AS = RT->getPointeeType().getAddressSpace();
1682 FieldSize =
1683 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1684 FieldAlign =
1685 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1686 } else {
1687 std::pair<CharUnits, CharUnits> FieldInfo =
1688 Context.getTypeInfoInChars(D->getType());
1689 FieldSize = FieldInfo.first;
1690 FieldAlign = FieldInfo.second;
1692 if (IsMsStruct) {
1693 // If MS bitfield layout is required, figure out what type is being
1694 // laid out and align the field to the width of that type.
1696 // Resolve all typedefs down to their base type and round up the field
1697 // alignment if necessary.
1698 QualType T = Context.getBaseElementType(D->getType());
1699 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1700 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1701 if (TypeSize > FieldAlign)
1702 FieldAlign = TypeSize;
1707 // The align if the field is not packed. This is to check if the attribute
1708 // was unnecessary (-Wpacked).
1709 CharUnits UnpackedFieldAlign = FieldAlign;
1710 CharUnits UnpackedFieldOffset = FieldOffset;
1712 if (FieldPacked)
1713 FieldAlign = CharUnits::One();
1714 CharUnits MaxAlignmentInChars =
1715 Context.toCharUnitsFromBits(D->getMaxAlignment());
1716 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1717 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1719 // The maximum field alignment overrides the aligned attribute.
1720 if (!MaxFieldAlignment.isZero()) {
1721 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1722 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1725 // Round up the current record size to the field's alignment boundary.
1726 FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
1727 UnpackedFieldOffset =
1728 UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
1730 if (ExternalLayout) {
1731 FieldOffset = Context.toCharUnitsFromBits(
1732 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1734 if (!IsUnion && EmptySubobjects) {
1735 // Record the fact that we're placing a field at this offset.
1736 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1737 (void)Allowed;
1738 assert(Allowed && "Externally-placed field cannot be placed here");
1740 } else {
1741 if (!IsUnion && EmptySubobjects) {
1742 // Check if we can place the field at this offset.
1743 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1744 // We couldn't place the field at the offset. Try again at a new offset.
1745 FieldOffset += FieldAlign;
1750 // Place this field at the current location.
1751 FieldOffsets.push_back(Context.toBits(FieldOffset));
1753 if (!ExternalLayout)
1754 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1755 Context.toBits(UnpackedFieldOffset),
1756 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1758 if (InsertExtraPadding) {
1759 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
1760 CharUnits ExtraSizeForAsan = ASanAlignment;
1761 if (FieldSize % ASanAlignment)
1762 ExtraSizeForAsan +=
1763 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
1764 FieldSize += ExtraSizeForAsan;
1767 // Reserve space for this field.
1768 uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1769 if (IsUnion)
1770 setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1771 else
1772 setDataSize(FieldOffset + FieldSize);
1774 // Update the size.
1775 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1777 // Remember max struct/class alignment.
1778 UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1781 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1782 // In C++, records cannot be of size 0.
1783 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1784 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1785 // Compatibility with gcc requires a class (pod or non-pod)
1786 // which is not empty but of size 0; such as having fields of
1787 // array of zero-length, remains of Size 0
1788 if (RD->isEmpty())
1789 setSize(CharUnits::One());
1791 else
1792 setSize(CharUnits::One());
1795 // Finally, round the size of the record up to the alignment of the
1796 // record itself.
1797 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1798 uint64_t UnpackedSizeInBits =
1799 llvm::RoundUpToAlignment(getSizeInBits(),
1800 Context.toBits(UnpackedAlignment));
1801 CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
1802 uint64_t RoundedSize
1803 = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
1805 if (ExternalLayout) {
1806 // If we're inferring alignment, and the external size is smaller than
1807 // our size after we've rounded up to alignment, conservatively set the
1808 // alignment to 1.
1809 if (InferAlignment && ExternalSize < RoundedSize) {
1810 Alignment = CharUnits::One();
1811 InferAlignment = false;
1813 setSize(ExternalSize);
1814 return;
1817 // Set the size to the final size.
1818 setSize(RoundedSize);
1820 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1821 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1822 // Warn if padding was introduced to the struct/class/union.
1823 if (getSizeInBits() > UnpaddedSize) {
1824 unsigned PadSize = getSizeInBits() - UnpaddedSize;
1825 bool InBits = true;
1826 if (PadSize % CharBitNum == 0) {
1827 PadSize = PadSize / CharBitNum;
1828 InBits = false;
1830 Diag(RD->getLocation(), diag::warn_padded_struct_size)
1831 << Context.getTypeDeclType(RD)
1832 << PadSize
1833 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
1836 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1837 // bother since there won't be alignment issues.
1838 if (Packed && UnpackedAlignment > CharUnits::One() &&
1839 getSize() == UnpackedSize)
1840 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1841 << Context.getTypeDeclType(RD);
1845 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
1846 CharUnits UnpackedNewAlignment) {
1847 // The alignment is not modified when using 'mac68k' alignment or when
1848 // we have an externally-supplied layout that also provides overall alignment.
1849 if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
1850 return;
1852 if (NewAlignment > Alignment) {
1853 assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
1854 "Alignment not a power of 2"));
1855 Alignment = NewAlignment;
1858 if (UnpackedNewAlignment > UnpackedAlignment) {
1859 assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
1860 "Alignment not a power of 2"));
1861 UnpackedAlignment = UnpackedNewAlignment;
1865 uint64_t
1866 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
1867 uint64_t ComputedOffset) {
1868 assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
1869 "Field does not have an external offset");
1871 uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
1873 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
1874 // The externally-supplied field offset is before the field offset we
1875 // computed. Assume that the structure is packed.
1876 Alignment = CharUnits::One();
1877 InferAlignment = false;
1880 // Use the externally-supplied field offset.
1881 return ExternalFieldOffset;
1884 /// \brief Get diagnostic %select index for tag kind for
1885 /// field padding diagnostic message.
1886 /// WARNING: Indexes apply to particular diagnostics only!
1888 /// \returns diagnostic %select index.
1889 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
1890 switch (Tag) {
1891 case TTK_Struct: return 0;
1892 case TTK_Interface: return 1;
1893 case TTK_Class: return 2;
1894 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
1898 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
1899 uint64_t UnpaddedOffset,
1900 uint64_t UnpackedOffset,
1901 unsigned UnpackedAlign,
1902 bool isPacked,
1903 const FieldDecl *D) {
1904 // We let objc ivars without warning, objc interfaces generally are not used
1905 // for padding tricks.
1906 if (isa<ObjCIvarDecl>(D))
1907 return;
1909 // Don't warn about structs created without a SourceLocation. This can
1910 // be done by clients of the AST, such as codegen.
1911 if (D->getLocation().isInvalid())
1912 return;
1914 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1916 // Warn if padding was introduced to the struct/class.
1917 if (!IsUnion && Offset > UnpaddedOffset) {
1918 unsigned PadSize = Offset - UnpaddedOffset;
1919 bool InBits = true;
1920 if (PadSize % CharBitNum == 0) {
1921 PadSize = PadSize / CharBitNum;
1922 InBits = false;
1924 if (D->getIdentifier())
1925 Diag(D->getLocation(), diag::warn_padded_struct_field)
1926 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1927 << Context.getTypeDeclType(D->getParent())
1928 << PadSize
1929 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
1930 << D->getIdentifier();
1931 else
1932 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
1933 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1934 << Context.getTypeDeclType(D->getParent())
1935 << PadSize
1936 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
1939 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1940 // bother since there won't be alignment issues.
1941 if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
1942 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1943 << D->getIdentifier();
1946 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
1947 const CXXRecordDecl *RD) {
1948 // If a class isn't polymorphic it doesn't have a key function.
1949 if (!RD->isPolymorphic())
1950 return nullptr;
1952 // A class that is not externally visible doesn't have a key function. (Or
1953 // at least, there's no point to assigning a key function to such a class;
1954 // this doesn't affect the ABI.)
1955 if (!RD->isExternallyVisible())
1956 return nullptr;
1958 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
1959 // Same behavior as GCC.
1960 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1961 if (TSK == TSK_ImplicitInstantiation ||
1962 TSK == TSK_ExplicitInstantiationDeclaration ||
1963 TSK == TSK_ExplicitInstantiationDefinition)
1964 return nullptr;
1966 bool allowInlineFunctions =
1967 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
1969 for (const CXXMethodDecl *MD : RD->methods()) {
1970 if (!MD->isVirtual())
1971 continue;
1973 if (MD->isPure())
1974 continue;
1976 // Ignore implicit member functions, they are always marked as inline, but
1977 // they don't have a body until they're defined.
1978 if (MD->isImplicit())
1979 continue;
1981 if (MD->isInlineSpecified())
1982 continue;
1984 if (MD->hasInlineBody())
1985 continue;
1987 // Ignore inline deleted or defaulted functions.
1988 if (!MD->isUserProvided())
1989 continue;
1991 // In certain ABIs, ignore functions with out-of-line inline definitions.
1992 if (!allowInlineFunctions) {
1993 const FunctionDecl *Def;
1994 if (MD->hasBody(Def) && Def->isInlineSpecified())
1995 continue;
1998 // We found it.
1999 return MD;
2002 return nullptr;
2005 DiagnosticBuilder
2006 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
2007 return Context.getDiagnostics().Report(Loc, DiagID);
2010 /// Does the target C++ ABI require us to skip over the tail-padding
2011 /// of the given class (considering it as a base class) when allocating
2012 /// objects?
2013 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2014 switch (ABI.getTailPaddingUseRules()) {
2015 case TargetCXXABI::AlwaysUseTailPadding:
2016 return false;
2018 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2019 // FIXME: To the extent that this is meant to cover the Itanium ABI
2020 // rules, we should implement the restrictions about over-sized
2021 // bitfields:
2023 // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
2024 // In general, a type is considered a POD for the purposes of
2025 // layout if it is a POD type (in the sense of ISO C++
2026 // [basic.types]). However, a POD-struct or POD-union (in the
2027 // sense of ISO C++ [class]) with a bitfield member whose
2028 // declared width is wider than the declared type of the
2029 // bitfield is not a POD for the purpose of layout. Similarly,
2030 // an array type is not a POD for the purpose of layout if the
2031 // element type of the array is not a POD for the purpose of
2032 // layout.
2034 // Where references to the ISO C++ are made in this paragraph,
2035 // the Technical Corrigendum 1 version of the standard is
2036 // intended.
2037 return RD->isPOD();
2039 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2040 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2041 // but with a lot of abstraction penalty stripped off. This does
2042 // assume that these properties are set correctly even in C++98
2043 // mode; fortunately, that is true because we want to assign
2044 // consistently semantics to the type-traits intrinsics (or at
2045 // least as many of them as possible).
2046 return RD->isTrivial() && RD->isStandardLayout();
2049 llvm_unreachable("bad tail-padding use kind");
2052 static bool isMsLayout(const RecordDecl* D) {
2053 return D->getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
2056 // This section contains an implementation of struct layout that is, up to the
2057 // included tests, compatible with cl.exe (2013). The layout produced is
2058 // significantly different than those produced by the Itanium ABI. Here we note
2059 // the most important differences.
2061 // * The alignment of bitfields in unions is ignored when computing the
2062 // alignment of the union.
2063 // * The existence of zero-width bitfield that occurs after anything other than
2064 // a non-zero length bitfield is ignored.
2065 // * There is no explicit primary base for the purposes of layout. All bases
2066 // with vfptrs are laid out first, followed by all bases without vfptrs.
2067 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2068 // function pointer) and a vbptr (virtual base pointer). They can each be
2069 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2070 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2071 // placed after the lexiographically last non-virtual base. This placement
2072 // is always before fields but can be in the middle of the non-virtual bases
2073 // due to the two-pass layout scheme for non-virtual-bases.
2074 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2075 // the virtual base and is used in conjunction with virtual overrides during
2076 // construction and destruction. This is always a 4 byte value and is used as
2077 // an alternative to constructor vtables.
2078 // * vtordisps are allocated in a block of memory with size and alignment equal
2079 // to the alignment of the completed structure (before applying __declspec(
2080 // align())). The vtordisp always occur at the end of the allocation block,
2081 // immediately prior to the virtual base.
2082 // * vfptrs are injected after all bases and fields have been laid out. In
2083 // order to guarantee proper alignment of all fields, the vfptr injection
2084 // pushes all bases and fields back by the alignment imposed by those bases
2085 // and fields. This can potentially add a significant amount of padding.
2086 // vfptrs are always injected at offset 0.
2087 // * vbptrs are injected after all bases and fields have been laid out. In
2088 // order to guarantee proper alignment of all fields, the vfptr injection
2089 // pushes all bases and fields back by the alignment imposed by those bases
2090 // and fields. This can potentially add a significant amount of padding.
2091 // vbptrs are injected immediately after the last non-virtual base as
2092 // lexiographically ordered in the code. If this site isn't pointer aligned
2093 // the vbptr is placed at the next properly aligned location. Enough padding
2094 // is added to guarantee a fit.
2095 // * The last zero sized non-virtual base can be placed at the end of the
2096 // struct (potentially aliasing another object), or may alias with the first
2097 // field, even if they are of the same type.
2098 // * The last zero size virtual base may be placed at the end of the struct
2099 // potentially aliasing another object.
2100 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2101 // between bases or vbases with specific properties. The criteria for
2102 // additional padding between two bases is that the first base is zero sized
2103 // or ends with a zero sized subobject and the second base is zero sized or
2104 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2105 // layout of the so the leading base is not always the first one declared).
2106 // This rule does take into account fields that are not records, so padding
2107 // will occur even if the last field is, e.g. an int. The padding added for
2108 // bases is 1 byte. The padding added between vbases depends on the alignment
2109 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2110 // * There is no concept of non-virtual alignment, non-virtual alignment and
2111 // alignment are always identical.
2112 // * There is a distinction between alignment and required alignment.
2113 // __declspec(align) changes the required alignment of a struct. This
2114 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2115 // record inherits required alignment from all of its fields and bases.
2116 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2117 // alignment instead of its required alignment. This is the only known way
2118 // to make the alignment of a struct bigger than 8. Interestingly enough
2119 // this alignment is also immune to the effects of #pragma pack and can be
2120 // used to create structures with large alignment under #pragma pack.
2121 // However, because it does not impact required alignment, such a structure,
2122 // when used as a field or base, will not be aligned if #pragma pack is
2123 // still active at the time of use.
2125 // Known incompatibilities:
2126 // * all: #pragma pack between fields in a record
2127 // * 2010 and back: If the last field in a record is a bitfield, every object
2128 // laid out after the record will have extra padding inserted before it. The
2129 // extra padding will have size equal to the size of the storage class of the
2130 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2131 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2132 // sized bitfield.
2133 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2134 // greater due to __declspec(align()) then a second layout phase occurs after
2135 // The locations of the vf and vb pointers are known. This layout phase
2136 // suffers from the "last field is a bitfield" bug in 2010 and results in
2137 // _every_ field getting padding put in front of it, potentially including the
2138 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2139 // anything tries to read the vftbl. The second layout phase also treats
2140 // bitfields as separate entities and gives them each storage rather than
2141 // packing them. Additionally, because this phase appears to perform a
2142 // (an unstable) sort on the members before laying them out and because merged
2143 // bitfields have the same address, the bitfields end up in whatever order
2144 // the sort left them in, a behavior we could never hope to replicate.
2146 namespace {
2147 struct MicrosoftRecordLayoutBuilder {
2148 struct ElementInfo {
2149 CharUnits Size;
2150 CharUnits Alignment;
2152 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2153 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2154 private:
2155 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &)
2156 LLVM_DELETED_FUNCTION;
2157 void operator=(const MicrosoftRecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
2158 public:
2159 void layout(const RecordDecl *RD);
2160 void cxxLayout(const CXXRecordDecl *RD);
2161 /// \brief Initializes size and alignment and honors some flags.
2162 void initializeLayout(const RecordDecl *RD);
2163 /// \brief Initialized C++ layout, compute alignment and virtual alignment and
2164 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2165 /// laid out.
2166 void initializeCXXLayout(const CXXRecordDecl *RD);
2167 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2168 void layoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
2169 const ASTRecordLayout &BaseLayout,
2170 const ASTRecordLayout *&PreviousBaseLayout);
2171 void injectVFPtr(const CXXRecordDecl *RD);
2172 void injectVBPtr(const CXXRecordDecl *RD);
2173 /// \brief Lays out the fields of the record. Also rounds size up to
2174 /// alignment.
2175 void layoutFields(const RecordDecl *RD);
2176 void layoutField(const FieldDecl *FD);
2177 void layoutBitField(const FieldDecl *FD);
2178 /// \brief Lays out a single zero-width bit-field in the record and handles
2179 /// special cases associated with zero-width bit-fields.
2180 void layoutZeroWidthBitField(const FieldDecl *FD);
2181 void layoutVirtualBases(const CXXRecordDecl *RD);
2182 void finalizeLayout(const RecordDecl *RD);
2183 /// \brief Gets the size and alignment of a base taking pragma pack and
2184 /// __declspec(align) into account.
2185 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2186 /// \brief Gets the size and alignment of a field taking pragma pack and
2187 /// __declspec(align) into account. It also updates RequiredAlignment as a
2188 /// side effect because it is most convenient to do so here.
2189 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2190 /// \brief Places a field at an offset in CharUnits.
2191 void placeFieldAtOffset(CharUnits FieldOffset) {
2192 FieldOffsets.push_back(Context.toBits(FieldOffset));
2194 /// \brief Places a bitfield at a bit offset.
2195 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2196 FieldOffsets.push_back(FieldOffset);
2198 /// \brief Compute the set of virtual bases for which vtordisps are required.
2199 void computeVtorDispSet(
2200 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2201 const CXXRecordDecl *RD) const;
2202 const ASTContext &Context;
2203 /// \brief The size of the record being laid out.
2204 CharUnits Size;
2205 /// \brief The non-virtual size of the record layout.
2206 CharUnits NonVirtualSize;
2207 /// \brief The data size of the record layout.
2208 CharUnits DataSize;
2209 /// \brief The current alignment of the record layout.
2210 CharUnits Alignment;
2211 /// \brief The maximum allowed field alignment. This is set by #pragma pack.
2212 CharUnits MaxFieldAlignment;
2213 /// \brief The alignment that this record must obey. This is imposed by
2214 /// __declspec(align()) on the record itself or one of its fields or bases.
2215 CharUnits RequiredAlignment;
2216 /// \brief The size of the allocation of the currently active bitfield.
2217 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2218 /// is true.
2219 CharUnits CurrentBitfieldSize;
2220 /// \brief Offset to the virtual base table pointer (if one exists).
2221 CharUnits VBPtrOffset;
2222 /// \brief Minimum record size possible.
2223 CharUnits MinEmptyStructSize;
2224 /// \brief The size and alignment info of a pointer.
2225 ElementInfo PointerInfo;
2226 /// \brief The primary base class (if one exists).
2227 const CXXRecordDecl *PrimaryBase;
2228 /// \brief The class we share our vb-pointer with.
2229 const CXXRecordDecl *SharedVBPtrBase;
2230 /// \brief The collection of field offsets.
2231 SmallVector<uint64_t, 16> FieldOffsets;
2232 /// \brief Base classes and their offsets in the record.
2233 BaseOffsetsMapTy Bases;
2234 /// \brief virtual base classes and their offsets in the record.
2235 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2236 /// \brief The number of remaining bits in our last bitfield allocation.
2237 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2238 /// true.
2239 unsigned RemainingBitsInField;
2240 bool IsUnion : 1;
2241 /// \brief True if the last field laid out was a bitfield and was not 0
2242 /// width.
2243 bool LastFieldIsNonZeroWidthBitfield : 1;
2244 /// \brief True if the class has its own vftable pointer.
2245 bool HasOwnVFPtr : 1;
2246 /// \brief True if the class has a vbtable pointer.
2247 bool HasVBPtr : 1;
2248 /// \brief True if the last sub-object within the type is zero sized or the
2249 /// object itself is zero sized. This *does not* count members that are not
2250 /// records. Only used for MS-ABI.
2251 bool EndsWithZeroSizedObject : 1;
2252 /// \brief True if this class is zero sized or first base is zero sized or
2253 /// has this property. Only used for MS-ABI.
2254 bool LeadsWithZeroSizedBase : 1;
2256 } // namespace
2258 MicrosoftRecordLayoutBuilder::ElementInfo
2259 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2260 const ASTRecordLayout &Layout) {
2261 ElementInfo Info;
2262 Info.Alignment = Layout.getAlignment();
2263 // Respect pragma pack.
2264 if (!MaxFieldAlignment.isZero())
2265 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2266 // Track zero-sized subobjects here where it's already available.
2267 EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2268 // Respect required alignment, this is necessary because we may have adjusted
2269 // the alignment in the case of pragam pack. Note that the required alignment
2270 // doesn't actually apply to the struct alignment at this point.
2271 Alignment = std::max(Alignment, Info.Alignment);
2272 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2273 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2274 Info.Size = Layout.getNonVirtualSize();
2275 return Info;
2278 MicrosoftRecordLayoutBuilder::ElementInfo
2279 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2280 const FieldDecl *FD) {
2281 // Get the alignment of the field type's natural alignment, ignore any
2282 // alignment attributes.
2283 ElementInfo Info;
2284 std::tie(Info.Size, Info.Alignment) =
2285 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2286 // Respect align attributes on the field.
2287 CharUnits FieldRequiredAlignment =
2288 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2289 // Respect align attributes on the type.
2290 if (Context.isAlignmentRequired(FD->getType()))
2291 FieldRequiredAlignment = std::max(
2292 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2293 // Respect attributes applied to subobjects of the field.
2294 if (FD->isBitField())
2295 // For some reason __declspec align impacts alignment rather than required
2296 // alignment when it is applied to bitfields.
2297 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2298 else {
2299 if (auto RT =
2300 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2301 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2302 EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2303 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2304 Layout.getRequiredAlignment());
2306 // Capture required alignment as a side-effect.
2307 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2309 // Respect pragma pack, attribute pack and declspec align
2310 if (!MaxFieldAlignment.isZero())
2311 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2312 if (FD->hasAttr<PackedAttr>())
2313 Info.Alignment = CharUnits::One();
2314 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2315 return Info;
2318 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2319 // For C record layout, zero-sized records always have size 4.
2320 MinEmptyStructSize = CharUnits::fromQuantity(4);
2321 initializeLayout(RD);
2322 layoutFields(RD);
2323 DataSize = Size = Size.RoundUpToAlignment(Alignment);
2324 RequiredAlignment = std::max(
2325 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2326 finalizeLayout(RD);
2329 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2330 // The C++ standard says that empty structs have size 1.
2331 MinEmptyStructSize = CharUnits::One();
2332 initializeLayout(RD);
2333 initializeCXXLayout(RD);
2334 layoutNonVirtualBases(RD);
2335 layoutFields(RD);
2336 injectVBPtr(RD);
2337 injectVFPtr(RD);
2338 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2339 Alignment = std::max(Alignment, PointerInfo.Alignment);
2340 auto RoundingAlignment = Alignment;
2341 if (!MaxFieldAlignment.isZero())
2342 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2343 NonVirtualSize = Size = Size.RoundUpToAlignment(RoundingAlignment);
2344 RequiredAlignment = std::max(
2345 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2346 layoutVirtualBases(RD);
2347 finalizeLayout(RD);
2350 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2351 IsUnion = RD->isUnion();
2352 Size = CharUnits::Zero();
2353 Alignment = CharUnits::One();
2354 // In 64-bit mode we always perform an alignment step after laying out vbases.
2355 // In 32-bit mode we do not. The check to see if we need to perform alignment
2356 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2357 RequiredAlignment = Context.getTargetInfo().getPointerWidth(0) == 64 ?
2358 CharUnits::One() : CharUnits::Zero();
2359 // Compute the maximum field alignment.
2360 MaxFieldAlignment = CharUnits::Zero();
2361 // Honor the default struct packing maximum alignment flag.
2362 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2363 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2364 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2365 // than the pointer size.
2366 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2367 unsigned PackedAlignment = MFAA->getAlignment();
2368 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2369 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2371 // Packed attribute forces max field alignment to be 1.
2372 if (RD->hasAttr<PackedAttr>())
2373 MaxFieldAlignment = CharUnits::One();
2376 void
2377 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2378 EndsWithZeroSizedObject = false;
2379 LeadsWithZeroSizedBase = false;
2380 HasOwnVFPtr = false;
2381 HasVBPtr = false;
2382 PrimaryBase = nullptr;
2383 SharedVBPtrBase = nullptr;
2384 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2385 // injection.
2386 PointerInfo.Size =
2387 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2388 PointerInfo.Alignment = PointerInfo.Size;
2389 // Respect pragma pack.
2390 if (!MaxFieldAlignment.isZero())
2391 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2394 void
2395 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2396 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2397 // out any bases that do not contain vfptrs. We implement this as two passes
2398 // over the bases. This approach guarantees that the primary base is laid out
2399 // first. We use these passes to calculate some additional aggregated
2400 // information about the bases, such as reqruied alignment and the presence of
2401 // zero sized members.
2402 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2403 // Iterate through the bases and lay out the non-virtual ones.
2404 for (const CXXBaseSpecifier &Base : RD->bases()) {
2405 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2406 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2407 // Mark and skip virtual bases.
2408 if (Base.isVirtual()) {
2409 HasVBPtr = true;
2410 continue;
2412 // Check fo a base to share a VBPtr with.
2413 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2414 SharedVBPtrBase = BaseDecl;
2415 HasVBPtr = true;
2417 // Only lay out bases with extendable VFPtrs on the first pass.
2418 if (!BaseLayout.hasExtendableVFPtr())
2419 continue;
2420 // If we don't have a primary base, this one qualifies.
2421 if (!PrimaryBase) {
2422 PrimaryBase = BaseDecl;
2423 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2425 // Lay out the base.
2426 layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2428 // Figure out if we need a fresh VFPtr for this class.
2429 if (!PrimaryBase && RD->isDynamicClass())
2430 for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2431 e = RD->method_end();
2432 !HasOwnVFPtr && i != e; ++i)
2433 HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
2434 // If we don't have a primary base then we have a leading object that could
2435 // itself lead with a zero-sized object, something we track.
2436 bool CheckLeadingLayout = !PrimaryBase;
2437 // Iterate through the bases and lay out the non-virtual ones.
2438 for (const CXXBaseSpecifier &Base : RD->bases()) {
2439 if (Base.isVirtual())
2440 continue;
2441 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2442 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2443 // Only lay out bases without extendable VFPtrs on the second pass.
2444 if (BaseLayout.hasExtendableVFPtr()) {
2445 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2446 continue;
2448 // If this is the first layout, check to see if it leads with a zero sized
2449 // object. If it does, so do we.
2450 if (CheckLeadingLayout) {
2451 CheckLeadingLayout = false;
2452 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2454 // Lay out the base.
2455 layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2456 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2458 // Set our VBPtroffset if we know it at this point.
2459 if (!HasVBPtr)
2460 VBPtrOffset = CharUnits::fromQuantity(-1);
2461 else if (SharedVBPtrBase) {
2462 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2463 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2467 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2468 const CXXRecordDecl *BaseDecl,
2469 const ASTRecordLayout &BaseLayout,
2470 const ASTRecordLayout *&PreviousBaseLayout) {
2471 // Insert padding between two bases if the left first one is zero sized or
2472 // contains a zero sized subobject and the right is zero sized or one leads
2473 // with a zero sized base.
2474 if (PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2475 BaseLayout.leadsWithZeroSizedBase())
2476 Size++;
2477 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2478 CharUnits BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2479 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2480 Size = BaseOffset + BaseLayout.getNonVirtualSize();
2481 PreviousBaseLayout = &BaseLayout;
2484 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2485 LastFieldIsNonZeroWidthBitfield = false;
2486 for (const FieldDecl *Field : RD->fields())
2487 layoutField(Field);
2490 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2491 if (FD->isBitField()) {
2492 layoutBitField(FD);
2493 return;
2495 LastFieldIsNonZeroWidthBitfield = false;
2496 ElementInfo Info = getAdjustedElementInfo(FD);
2497 Alignment = std::max(Alignment, Info.Alignment);
2498 if (IsUnion) {
2499 placeFieldAtOffset(CharUnits::Zero());
2500 Size = std::max(Size, Info.Size);
2501 } else {
2502 CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2503 placeFieldAtOffset(FieldOffset);
2504 Size = FieldOffset + Info.Size;
2508 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2509 unsigned Width = FD->getBitWidthValue(Context);
2510 if (Width == 0) {
2511 layoutZeroWidthBitField(FD);
2512 return;
2514 ElementInfo Info = getAdjustedElementInfo(FD);
2515 // Clamp the bitfield to a containable size for the sake of being able
2516 // to lay them out. Sema will throw an error.
2517 if (Width > Context.toBits(Info.Size))
2518 Width = Context.toBits(Info.Size);
2519 // Check to see if this bitfield fits into an existing allocation. Note:
2520 // MSVC refuses to pack bitfields of formal types with different sizes
2521 // into the same allocation.
2522 if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
2523 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2524 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2525 RemainingBitsInField -= Width;
2526 return;
2528 LastFieldIsNonZeroWidthBitfield = true;
2529 CurrentBitfieldSize = Info.Size;
2530 if (IsUnion) {
2531 placeFieldAtOffset(CharUnits::Zero());
2532 Size = std::max(Size, Info.Size);
2533 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2534 } else {
2535 // Allocate a new block of memory and place the bitfield in it.
2536 CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2537 placeFieldAtOffset(FieldOffset);
2538 Size = FieldOffset + Info.Size;
2539 Alignment = std::max(Alignment, Info.Alignment);
2540 RemainingBitsInField = Context.toBits(Info.Size) - Width;
2544 void
2545 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2546 // Zero-width bitfields are ignored unless they follow a non-zero-width
2547 // bitfield.
2548 if (!LastFieldIsNonZeroWidthBitfield) {
2549 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2550 // TODO: Add a Sema warning that MS ignores alignment for zero
2551 // sized bitfields that occur after zero-size bitfields or non-bitfields.
2552 return;
2554 LastFieldIsNonZeroWidthBitfield = false;
2555 ElementInfo Info = getAdjustedElementInfo(FD);
2556 if (IsUnion) {
2557 placeFieldAtOffset(CharUnits::Zero());
2558 Size = std::max(Size, Info.Size);
2559 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2560 } else {
2561 // Round up the current record size to the field's alignment boundary.
2562 CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2563 placeFieldAtOffset(FieldOffset);
2564 Size = FieldOffset;
2565 Alignment = std::max(Alignment, Info.Alignment);
2569 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2570 if (!HasVBPtr || SharedVBPtrBase)
2571 return;
2572 // Inject the VBPointer at the injection site.
2573 CharUnits InjectionSite = VBPtrOffset;
2574 // But before we do, make sure it's properly aligned.
2575 VBPtrOffset = VBPtrOffset.RoundUpToAlignment(PointerInfo.Alignment);
2576 // Determine where the first field should be laid out after the vbptr.
2577 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2578 // Make sure that the amount we push the fields back by is a multiple of the
2579 // alignment.
2580 CharUnits Offset = (FieldStart - InjectionSite).RoundUpToAlignment(
2581 std::max(RequiredAlignment, Alignment));
2582 // Increase the size of the object and push back all fields by the offset
2583 // amount.
2584 Size += Offset;
2585 for (uint64_t &FieldOffset : FieldOffsets)
2586 FieldOffset += Context.toBits(Offset);
2587 for (BaseOffsetsMapTy::value_type &Base : Bases)
2588 if (Base.second >= InjectionSite)
2589 Base.second += Offset;
2592 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2593 if (!HasOwnVFPtr)
2594 return;
2595 // Make sure that the amount we push the struct back by is a multiple of the
2596 // alignment.
2597 CharUnits Offset = PointerInfo.Size.RoundUpToAlignment(
2598 std::max(RequiredAlignment, Alignment));
2599 // Increase the size of the object and push back all fields, the vbptr and all
2600 // bases by the offset amount.
2601 Size += Offset;
2602 for (uint64_t &FieldOffset : FieldOffsets)
2603 FieldOffset += Context.toBits(Offset);
2604 if (HasVBPtr)
2605 VBPtrOffset += Offset;
2606 for (BaseOffsetsMapTy::value_type &Base : Bases)
2607 Base.second += Offset;
2610 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2611 if (!HasVBPtr)
2612 return;
2613 // Vtordisps are always 4 bytes (even in 64-bit mode)
2614 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2615 CharUnits VtorDispAlignment = VtorDispSize;
2616 // vtordisps respect pragma pack.
2617 if (!MaxFieldAlignment.isZero())
2618 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2619 // The alignment of the vtordisp is at least the required alignment of the
2620 // entire record. This requirement may be present to support vtordisp
2621 // injection.
2622 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2623 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2624 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2625 RequiredAlignment =
2626 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2628 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2629 // Compute the vtordisp set.
2630 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
2631 computeVtorDispSet(HasVtorDispSet, RD);
2632 // Iterate through the virtual bases and lay them out.
2633 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2634 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2635 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2636 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2637 bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
2638 // Insert padding between two bases if the left first one is zero sized or
2639 // contains a zero sized subobject and the right is zero sized or one leads
2640 // with a zero sized base. The padding between virtual bases is 4
2641 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2642 // the required alignment, we don't know why.
2643 if ((PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2644 BaseLayout.leadsWithZeroSizedBase()) || HasVtordisp) {
2645 Size = Size.RoundUpToAlignment(VtorDispAlignment) + VtorDispSize;
2646 Alignment = std::max(VtorDispAlignment, Alignment);
2648 // Insert the virtual base.
2649 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2650 CharUnits BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2651 VBases.insert(std::make_pair(BaseDecl,
2652 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2653 Size = BaseOffset + BaseLayout.getNonVirtualSize();
2654 PreviousBaseLayout = &BaseLayout;
2658 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2659 // Respect required alignment. Note that in 32-bit mode Required alignment
2660 // may be 0 and cause size not to be updated.
2661 DataSize = Size;
2662 if (!RequiredAlignment.isZero()) {
2663 Alignment = std::max(Alignment, RequiredAlignment);
2664 auto RoundingAlignment = Alignment;
2665 if (!MaxFieldAlignment.isZero())
2666 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2667 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2668 Size = Size.RoundUpToAlignment(RoundingAlignment);
2670 if (Size.isZero()) {
2671 EndsWithZeroSizedObject = true;
2672 LeadsWithZeroSizedBase = true;
2673 // Zero-sized structures have size equal to their alignment if a
2674 // __declspec(align) came into play.
2675 if (RequiredAlignment >= MinEmptyStructSize)
2676 Size = Alignment;
2677 else
2678 Size = MinEmptyStructSize;
2682 // Recursively walks the non-virtual bases of a class and determines if any of
2683 // them are in the bases with overridden methods set.
2684 static bool
2685 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
2686 BasesWithOverriddenMethods,
2687 const CXXRecordDecl *RD) {
2688 if (BasesWithOverriddenMethods.count(RD))
2689 return true;
2690 // If any of a virtual bases non-virtual bases (recursively) requires a
2691 // vtordisp than so does this virtual base.
2692 for (const CXXBaseSpecifier &Base : RD->bases())
2693 if (!Base.isVirtual() &&
2694 RequiresVtordisp(BasesWithOverriddenMethods,
2695 Base.getType()->getAsCXXRecordDecl()))
2696 return true;
2697 return false;
2700 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
2701 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
2702 const CXXRecordDecl *RD) const {
2703 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2704 // vftables.
2705 if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
2706 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2707 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2708 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2709 if (Layout.hasExtendableVFPtr())
2710 HasVtordispSet.insert(BaseDecl);
2712 return;
2715 // If any of our bases need a vtordisp for this type, so do we. Check our
2716 // direct bases for vtordisp requirements.
2717 for (const CXXBaseSpecifier &Base : RD->bases()) {
2718 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2719 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2720 for (const auto &bi : Layout.getVBaseOffsetsMap())
2721 if (bi.second.hasVtorDisp())
2722 HasVtordispSet.insert(bi.first);
2724 // We don't introduce any additional vtordisps if either:
2725 // * A user declared constructor or destructor aren't declared.
2726 // * #pragma vtordisp(0) or the /vd0 flag are in use.
2727 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
2728 RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
2729 return;
2730 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
2731 // possible for a partially constructed object with virtual base overrides to
2732 // escape a non-trivial constructor.
2733 assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
2734 // Compute a set of base classes which define methods we override. A virtual
2735 // base in this set will require a vtordisp. A virtual base that transitively
2736 // contains one of these bases as a non-virtual base will also require a
2737 // vtordisp.
2738 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
2739 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
2740 // Seed the working set with our non-destructor, non-pure virtual methods.
2741 for (const CXXMethodDecl *MD : RD->methods())
2742 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
2743 Work.insert(MD);
2744 while (!Work.empty()) {
2745 const CXXMethodDecl *MD = *Work.begin();
2746 CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
2747 e = MD->end_overridden_methods();
2748 // If a virtual method has no-overrides it lives in its parent's vtable.
2749 if (i == e)
2750 BasesWithOverriddenMethods.insert(MD->getParent());
2751 else
2752 Work.insert(i, e);
2753 // We've finished processing this element, remove it from the working set.
2754 Work.erase(MD);
2756 // For each of our virtual bases, check if it is in the set of overridden
2757 // bases or if it transitively contains a non-virtual base that is.
2758 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2759 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2760 if (!HasVtordispSet.count(BaseDecl) &&
2761 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
2762 HasVtordispSet.insert(BaseDecl);
2766 /// \brief Get or compute information about the layout of the specified record
2767 /// (struct/union/class), which indicates its size and field position
2768 /// information.
2769 const ASTRecordLayout *
2770 ASTContext::BuildMicrosoftASTRecordLayout(const RecordDecl *D) const {
2771 MicrosoftRecordLayoutBuilder Builder(*this);
2772 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2773 Builder.cxxLayout(RD);
2774 return new (*this) ASTRecordLayout(
2775 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2776 Builder.HasOwnVFPtr,
2777 Builder.HasOwnVFPtr || Builder.PrimaryBase,
2778 Builder.VBPtrOffset, Builder.NonVirtualSize, Builder.FieldOffsets.data(),
2779 Builder.FieldOffsets.size(), Builder.NonVirtualSize,
2780 Builder.Alignment, CharUnits::Zero(), Builder.PrimaryBase,
2781 false, Builder.SharedVBPtrBase,
2782 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
2783 Builder.Bases, Builder.VBases);
2784 } else {
2785 Builder.layout(D);
2786 return new (*this) ASTRecordLayout(
2787 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2788 Builder.Size, Builder.FieldOffsets.data(), Builder.FieldOffsets.size());
2792 /// getASTRecordLayout - Get or compute information about the layout of the
2793 /// specified record (struct/union/class), which indicates its size and field
2794 /// position information.
2795 const ASTRecordLayout &
2796 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2797 // These asserts test different things. A record has a definition
2798 // as soon as we begin to parse the definition. That definition is
2799 // not a complete definition (which is what isDefinition() tests)
2800 // until we *finish* parsing the definition.
2802 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2803 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2805 D = D->getDefinition();
2806 assert(D && "Cannot get layout of forward declarations!");
2807 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
2808 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2810 // Look up this layout, if already laid out, return what we have.
2811 // Note that we can't save a reference to the entry because this function
2812 // is recursive.
2813 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2814 if (Entry) return *Entry;
2816 const ASTRecordLayout *NewEntry = nullptr;
2818 if (isMsLayout(D) && !D->getASTContext().getExternalSource()) {
2819 NewEntry = BuildMicrosoftASTRecordLayout(D);
2820 } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2821 EmptySubobjectMap EmptySubobjects(*this, RD);
2822 RecordLayoutBuilder Builder(*this, &EmptySubobjects);
2823 Builder.Layout(RD);
2825 // In certain situations, we are allowed to lay out objects in the
2826 // tail-padding of base classes. This is ABI-dependent.
2827 // FIXME: this should be stored in the record layout.
2828 bool skipTailPadding =
2829 mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
2831 // FIXME: This should be done in FinalizeLayout.
2832 CharUnits DataSize =
2833 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
2834 CharUnits NonVirtualSize =
2835 skipTailPadding ? DataSize : Builder.NonVirtualSize;
2836 NewEntry =
2837 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2838 Builder.Alignment,
2839 /*RequiredAlignment : used by MS-ABI)*/
2840 Builder.Alignment,
2841 Builder.HasOwnVFPtr,
2842 RD->isDynamicClass(),
2843 CharUnits::fromQuantity(-1),
2844 DataSize,
2845 Builder.FieldOffsets.data(),
2846 Builder.FieldOffsets.size(),
2847 NonVirtualSize,
2848 Builder.NonVirtualAlignment,
2849 EmptySubobjects.SizeOfLargestEmptySubobject,
2850 Builder.PrimaryBase,
2851 Builder.PrimaryBaseIsVirtual,
2852 nullptr, false, false,
2853 Builder.Bases, Builder.VBases);
2854 } else {
2855 RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
2856 Builder.Layout(D);
2858 NewEntry =
2859 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2860 Builder.Alignment,
2861 /*RequiredAlignment : used by MS-ABI)*/
2862 Builder.Alignment,
2863 Builder.getSize(),
2864 Builder.FieldOffsets.data(),
2865 Builder.FieldOffsets.size());
2868 ASTRecordLayouts[D] = NewEntry;
2870 if (getLangOpts().DumpRecordLayouts) {
2871 llvm::outs() << "\n*** Dumping AST Record Layout\n";
2872 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
2875 return *NewEntry;
2878 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
2879 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
2880 return nullptr;
2882 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
2883 RD = cast<CXXRecordDecl>(RD->getDefinition());
2885 // Beware:
2886 // 1) computing the key function might trigger deserialization, which might
2887 // invalidate iterators into KeyFunctions
2888 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
2889 // invalidate the LazyDeclPtr within the map itself
2890 LazyDeclPtr Entry = KeyFunctions[RD];
2891 const Decl *Result =
2892 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
2894 // Store it back if it changed.
2895 if (Entry.isOffset() || Entry.isValid() != bool(Result))
2896 KeyFunctions[RD] = const_cast<Decl*>(Result);
2898 return cast_or_null<CXXMethodDecl>(Result);
2901 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
2902 assert(Method == Method->getFirstDecl() &&
2903 "not working with method declaration from class definition");
2905 // Look up the cache entry. Since we're working with the first
2906 // declaration, its parent must be the class definition, which is
2907 // the correct key for the KeyFunctions hash.
2908 llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr>::iterator
2909 I = KeyFunctions.find(Method->getParent());
2911 // If it's not cached, there's nothing to do.
2912 if (I == KeyFunctions.end()) return;
2914 // If it is cached, check whether it's the target method, and if so,
2915 // remove it from the cache. Note, the call to 'get' might invalidate
2916 // the iterator and the LazyDeclPtr object within the map.
2917 LazyDeclPtr Ptr = I->second;
2918 if (Ptr.get(getExternalSource()) == Method) {
2919 // FIXME: remember that we did this for module / chained PCH state?
2920 KeyFunctions.erase(Method->getParent());
2924 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
2925 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
2926 return Layout.getFieldOffset(FD->getFieldIndex());
2929 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
2930 uint64_t OffsetInBits;
2931 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
2932 OffsetInBits = ::getFieldOffset(*this, FD);
2933 } else {
2934 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
2936 OffsetInBits = 0;
2937 for (const NamedDecl *ND : IFD->chain())
2938 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
2941 return OffsetInBits;
2944 /// getObjCLayout - Get or compute information about the layout of the
2945 /// given interface.
2947 /// \param Impl - If given, also include the layout of the interface's
2948 /// implementation. This may differ by including synthesized ivars.
2949 const ASTRecordLayout &
2950 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
2951 const ObjCImplementationDecl *Impl) const {
2952 // Retrieve the definition
2953 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2954 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
2955 D = D->getDefinition();
2956 assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
2958 // Look up this layout, if already laid out, return what we have.
2959 const ObjCContainerDecl *Key =
2960 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
2961 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
2962 return *Entry;
2964 // Add in synthesized ivar count if laying out an implementation.
2965 if (Impl) {
2966 unsigned SynthCount = CountNonClassIvars(D);
2967 // If there aren't any sythesized ivars then reuse the interface
2968 // entry. Note we can't cache this because we simply free all
2969 // entries later; however we shouldn't look up implementations
2970 // frequently.
2971 if (SynthCount == 0)
2972 return getObjCLayout(D, nullptr);
2975 RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
2976 Builder.Layout(D);
2978 const ASTRecordLayout *NewEntry =
2979 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2980 Builder.Alignment,
2981 /*RequiredAlignment : used by MS-ABI)*/
2982 Builder.Alignment,
2983 Builder.getDataSize(),
2984 Builder.FieldOffsets.data(),
2985 Builder.FieldOffsets.size());
2987 ObjCLayouts[Key] = NewEntry;
2989 return *NewEntry;
2992 static void PrintOffset(raw_ostream &OS,
2993 CharUnits Offset, unsigned IndentLevel) {
2994 OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
2995 OS.indent(IndentLevel * 2);
2998 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
2999 OS << " | ";
3000 OS.indent(IndentLevel * 2);
3003 static void DumpCXXRecordLayout(raw_ostream &OS,
3004 const CXXRecordDecl *RD, const ASTContext &C,
3005 CharUnits Offset,
3006 unsigned IndentLevel,
3007 const char* Description,
3008 bool IncludeVirtualBases) {
3009 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3011 PrintOffset(OS, Offset, IndentLevel);
3012 OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
3013 if (Description)
3014 OS << ' ' << Description;
3015 if (RD->isEmpty())
3016 OS << " (empty)";
3017 OS << '\n';
3019 IndentLevel++;
3021 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3022 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3023 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3025 // Vtable pointer.
3026 if (RD->isDynamicClass() && !PrimaryBase && !isMsLayout(RD)) {
3027 PrintOffset(OS, Offset, IndentLevel);
3028 OS << '(' << *RD << " vtable pointer)\n";
3029 } else if (HasOwnVFPtr) {
3030 PrintOffset(OS, Offset, IndentLevel);
3031 // vfptr (for Microsoft C++ ABI)
3032 OS << '(' << *RD << " vftable pointer)\n";
3035 // Collect nvbases.
3036 SmallVector<const CXXRecordDecl *, 4> Bases;
3037 for (const CXXBaseSpecifier &Base : RD->bases()) {
3038 assert(!Base.getType()->isDependentType() &&
3039 "Cannot layout class with dependent bases.");
3040 if (!Base.isVirtual())
3041 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3044 // Sort nvbases by offset.
3045 std::stable_sort(Bases.begin(), Bases.end(),
3046 [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3047 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3050 // Dump (non-virtual) bases
3051 for (const CXXRecordDecl *Base : Bases) {
3052 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3053 DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3054 Base == PrimaryBase ? "(primary base)" : "(base)",
3055 /*IncludeVirtualBases=*/false);
3058 // vbptr (for Microsoft C++ ABI)
3059 if (HasOwnVBPtr) {
3060 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3061 OS << '(' << *RD << " vbtable pointer)\n";
3064 // Dump fields.
3065 uint64_t FieldNo = 0;
3066 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
3067 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3068 const FieldDecl &Field = **I;
3069 CharUnits FieldOffset = Offset +
3070 C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
3072 if (const CXXRecordDecl *D = Field.getType()->getAsCXXRecordDecl()) {
3073 DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
3074 Field.getName().data(),
3075 /*IncludeVirtualBases=*/true);
3076 continue;
3079 PrintOffset(OS, FieldOffset, IndentLevel);
3080 OS << Field.getType().getAsString() << ' ' << Field << '\n';
3083 if (!IncludeVirtualBases)
3084 return;
3086 // Dump virtual bases.
3087 const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
3088 Layout.getVBaseOffsetsMap();
3089 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3090 assert(Base.isVirtual() && "Found non-virtual class!");
3091 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3093 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3095 if (vtordisps.find(VBase)->second.hasVtorDisp()) {
3096 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3097 OS << "(vtordisp for vbase " << *VBase << ")\n";
3100 DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3101 VBase == PrimaryBase ?
3102 "(primary virtual base)" : "(virtual base)",
3103 /*IncludeVirtualBases=*/false);
3106 PrintIndentNoOffset(OS, IndentLevel - 1);
3107 OS << "[sizeof=" << Layout.getSize().getQuantity();
3108 if (!isMsLayout(RD))
3109 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3110 OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
3112 PrintIndentNoOffset(OS, IndentLevel - 1);
3113 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3114 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity() << "]\n";
3117 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3118 raw_ostream &OS,
3119 bool Simple) const {
3120 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3122 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3123 if (!Simple)
3124 return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, nullptr,
3125 /*IncludeVirtualBases=*/true);
3127 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3128 if (!Simple) {
3129 OS << "Record: ";
3130 RD->dump();
3132 OS << "\nLayout: ";
3133 OS << "<ASTRecordLayout\n";
3134 OS << " Size:" << toBits(Info.getSize()) << "\n";
3135 if (!isMsLayout(RD))
3136 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3137 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3138 OS << " FieldOffsets: [";
3139 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3140 if (i) OS << ", ";
3141 OS << Info.getFieldOffset(i);
3143 OS << "]>\n";