etc/services - sync with NetBSD-8
[minix.git] / external / bsd / llvm / dist / clang / lib / Lex / LiteralSupport.cpp
blob03331fb33eb2742aef622e9fb54b7d09986234e1
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the NumericLiteralParser, CharLiteralParser, and
11 // StringLiteralParser interfaces.
13 //===----------------------------------------------------------------------===//
15 #include "clang/Lex/LiteralSupport.h"
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/LexDiagnostic.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/ConvertUTF.h"
22 #include "llvm/Support/ErrorHandling.h"
24 using namespace clang;
26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
27 switch (kind) {
28 default: llvm_unreachable("Unknown token type!");
29 case tok::char_constant:
30 case tok::string_literal:
31 case tok::utf8_char_constant:
32 case tok::utf8_string_literal:
33 return Target.getCharWidth();
34 case tok::wide_char_constant:
35 case tok::wide_string_literal:
36 return Target.getWCharWidth();
37 case tok::utf16_char_constant:
38 case tok::utf16_string_literal:
39 return Target.getChar16Width();
40 case tok::utf32_char_constant:
41 case tok::utf32_string_literal:
42 return Target.getChar32Width();
46 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
47 FullSourceLoc TokLoc,
48 const char *TokBegin,
49 const char *TokRangeBegin,
50 const char *TokRangeEnd) {
51 SourceLocation Begin =
52 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
53 TokLoc.getManager(), Features);
54 SourceLocation End =
55 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
56 TokLoc.getManager(), Features);
57 return CharSourceRange::getCharRange(Begin, End);
60 /// \brief Produce a diagnostic highlighting some portion of a literal.
61 ///
62 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
63 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
64 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
65 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
66 const LangOptions &Features, FullSourceLoc TokLoc,
67 const char *TokBegin, const char *TokRangeBegin,
68 const char *TokRangeEnd, unsigned DiagID) {
69 SourceLocation Begin =
70 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
71 TokLoc.getManager(), Features);
72 return Diags->Report(Begin, DiagID) <<
73 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
76 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
77 /// either a character or a string literal.
78 static unsigned ProcessCharEscape(const char *ThisTokBegin,
79 const char *&ThisTokBuf,
80 const char *ThisTokEnd, bool &HadError,
81 FullSourceLoc Loc, unsigned CharWidth,
82 DiagnosticsEngine *Diags,
83 const LangOptions &Features) {
84 const char *EscapeBegin = ThisTokBuf;
86 // Skip the '\' char.
87 ++ThisTokBuf;
89 // We know that this character can't be off the end of the buffer, because
90 // that would have been \", which would not have been the end of string.
91 unsigned ResultChar = *ThisTokBuf++;
92 switch (ResultChar) {
93 // These map to themselves.
94 case '\\': case '\'': case '"': case '?': break;
96 // These have fixed mappings.
97 case 'a':
98 // TODO: K&R: the meaning of '\\a' is different in traditional C
99 ResultChar = 7;
100 break;
101 case 'b':
102 ResultChar = 8;
103 break;
104 case 'e':
105 if (Diags)
106 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
107 diag::ext_nonstandard_escape) << "e";
108 ResultChar = 27;
109 break;
110 case 'E':
111 if (Diags)
112 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
113 diag::ext_nonstandard_escape) << "E";
114 ResultChar = 27;
115 break;
116 case 'f':
117 ResultChar = 12;
118 break;
119 case 'n':
120 ResultChar = 10;
121 break;
122 case 'r':
123 ResultChar = 13;
124 break;
125 case 't':
126 ResultChar = 9;
127 break;
128 case 'v':
129 ResultChar = 11;
130 break;
131 case 'x': { // Hex escape.
132 ResultChar = 0;
133 if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
134 if (Diags)
135 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
136 diag::err_hex_escape_no_digits) << "x";
137 HadError = 1;
138 break;
141 // Hex escapes are a maximal series of hex digits.
142 bool Overflow = false;
143 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
144 int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
145 if (CharVal == -1) break;
146 // About to shift out a digit?
147 Overflow |= (ResultChar & 0xF0000000) ? true : false;
148 ResultChar <<= 4;
149 ResultChar |= CharVal;
152 // See if any bits will be truncated when evaluated as a character.
153 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
154 Overflow = true;
155 ResultChar &= ~0U >> (32-CharWidth);
158 // Check for overflow.
159 if (Overflow && Diags) // Too many digits to fit in
160 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
161 diag::err_hex_escape_too_large);
162 break;
164 case '0': case '1': case '2': case '3':
165 case '4': case '5': case '6': case '7': {
166 // Octal escapes.
167 --ThisTokBuf;
168 ResultChar = 0;
170 // Octal escapes are a series of octal digits with maximum length 3.
171 // "\0123" is a two digit sequence equal to "\012" "3".
172 unsigned NumDigits = 0;
173 do {
174 ResultChar <<= 3;
175 ResultChar |= *ThisTokBuf++ - '0';
176 ++NumDigits;
177 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
178 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
180 // Check for overflow. Reject '\777', but not L'\777'.
181 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
182 if (Diags)
183 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
184 diag::err_octal_escape_too_large);
185 ResultChar &= ~0U >> (32-CharWidth);
187 break;
190 // Otherwise, these are not valid escapes.
191 case '(': case '{': case '[': case '%':
192 // GCC accepts these as extensions. We warn about them as such though.
193 if (Diags)
194 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
195 diag::ext_nonstandard_escape)
196 << std::string(1, ResultChar);
197 break;
198 default:
199 if (!Diags)
200 break;
202 if (isPrintable(ResultChar))
203 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
204 diag::ext_unknown_escape)
205 << std::string(1, ResultChar);
206 else
207 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
208 diag::ext_unknown_escape)
209 << "x" + llvm::utohexstr(ResultChar);
210 break;
213 return ResultChar;
216 static void appendCodePoint(unsigned Codepoint,
217 llvm::SmallVectorImpl<char> &Str) {
218 char ResultBuf[4];
219 char *ResultPtr = ResultBuf;
220 bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
221 (void)Res;
222 assert(Res && "Unexpected conversion failure");
223 Str.append(ResultBuf, ResultPtr);
226 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
227 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
228 if (*I != '\\') {
229 Buf.push_back(*I);
230 continue;
233 ++I;
234 assert(*I == 'u' || *I == 'U');
236 unsigned NumHexDigits;
237 if (*I == 'u')
238 NumHexDigits = 4;
239 else
240 NumHexDigits = 8;
242 assert(I + NumHexDigits <= E);
244 uint32_t CodePoint = 0;
245 for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
246 unsigned Value = llvm::hexDigitValue(*I);
247 assert(Value != -1U);
249 CodePoint <<= 4;
250 CodePoint += Value;
253 appendCodePoint(CodePoint, Buf);
254 --I;
258 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
259 /// return the UTF32.
260 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
261 const char *ThisTokEnd,
262 uint32_t &UcnVal, unsigned short &UcnLen,
263 FullSourceLoc Loc, DiagnosticsEngine *Diags,
264 const LangOptions &Features,
265 bool in_char_string_literal = false) {
266 const char *UcnBegin = ThisTokBuf;
268 // Skip the '\u' char's.
269 ThisTokBuf += 2;
271 if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
272 if (Diags)
273 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
274 diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
275 return false;
277 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
278 unsigned short UcnLenSave = UcnLen;
279 for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
280 int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
281 if (CharVal == -1) break;
282 UcnVal <<= 4;
283 UcnVal |= CharVal;
285 // If we didn't consume the proper number of digits, there is a problem.
286 if (UcnLenSave) {
287 if (Diags)
288 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
289 diag::err_ucn_escape_incomplete);
290 return false;
293 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
294 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
295 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
296 if (Diags)
297 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
298 diag::err_ucn_escape_invalid);
299 return false;
302 // C++11 allows UCNs that refer to control characters and basic source
303 // characters inside character and string literals
304 if (UcnVal < 0xa0 &&
305 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
306 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
307 if (Diags) {
308 char BasicSCSChar = UcnVal;
309 if (UcnVal >= 0x20 && UcnVal < 0x7f)
310 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
311 IsError ? diag::err_ucn_escape_basic_scs :
312 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
313 << StringRef(&BasicSCSChar, 1);
314 else
315 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
316 IsError ? diag::err_ucn_control_character :
317 diag::warn_cxx98_compat_literal_ucn_control_character);
319 if (IsError)
320 return false;
323 if (!Features.CPlusPlus && !Features.C99 && Diags)
324 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
325 diag::warn_ucn_not_valid_in_c89_literal);
327 return true;
330 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
331 /// which this UCN will occupy.
332 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
333 const char *ThisTokEnd, unsigned CharByteWidth,
334 const LangOptions &Features, bool &HadError) {
335 // UTF-32: 4 bytes per escape.
336 if (CharByteWidth == 4)
337 return 4;
339 uint32_t UcnVal = 0;
340 unsigned short UcnLen = 0;
341 FullSourceLoc Loc;
343 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
344 UcnLen, Loc, nullptr, Features, true)) {
345 HadError = true;
346 return 0;
349 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
350 if (CharByteWidth == 2)
351 return UcnVal <= 0xFFFF ? 2 : 4;
353 // UTF-8.
354 if (UcnVal < 0x80)
355 return 1;
356 if (UcnVal < 0x800)
357 return 2;
358 if (UcnVal < 0x10000)
359 return 3;
360 return 4;
363 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
364 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
365 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
366 /// we will likely rework our support for UCN's.
367 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
368 const char *ThisTokEnd,
369 char *&ResultBuf, bool &HadError,
370 FullSourceLoc Loc, unsigned CharByteWidth,
371 DiagnosticsEngine *Diags,
372 const LangOptions &Features) {
373 typedef uint32_t UTF32;
374 UTF32 UcnVal = 0;
375 unsigned short UcnLen = 0;
376 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
377 Loc, Diags, Features, true)) {
378 HadError = true;
379 return;
382 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
383 "only character widths of 1, 2, or 4 bytes supported");
385 (void)UcnLen;
386 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
388 if (CharByteWidth == 4) {
389 // FIXME: Make the type of the result buffer correct instead of
390 // using reinterpret_cast.
391 UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
392 *ResultPtr = UcnVal;
393 ResultBuf += 4;
394 return;
397 if (CharByteWidth == 2) {
398 // FIXME: Make the type of the result buffer correct instead of
399 // using reinterpret_cast.
400 UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
402 if (UcnVal <= (UTF32)0xFFFF) {
403 *ResultPtr = UcnVal;
404 ResultBuf += 2;
405 return;
408 // Convert to UTF16.
409 UcnVal -= 0x10000;
410 *ResultPtr = 0xD800 + (UcnVal >> 10);
411 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
412 ResultBuf += 4;
413 return;
416 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
418 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
419 // The conversion below was inspired by:
420 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
421 // First, we determine how many bytes the result will require.
422 typedef uint8_t UTF8;
424 unsigned short bytesToWrite = 0;
425 if (UcnVal < (UTF32)0x80)
426 bytesToWrite = 1;
427 else if (UcnVal < (UTF32)0x800)
428 bytesToWrite = 2;
429 else if (UcnVal < (UTF32)0x10000)
430 bytesToWrite = 3;
431 else
432 bytesToWrite = 4;
434 const unsigned byteMask = 0xBF;
435 const unsigned byteMark = 0x80;
437 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
438 // into the first byte, depending on how many bytes follow.
439 static const UTF8 firstByteMark[5] = {
440 0x00, 0x00, 0xC0, 0xE0, 0xF0
442 // Finally, we write the bytes into ResultBuf.
443 ResultBuf += bytesToWrite;
444 switch (bytesToWrite) { // note: everything falls through.
445 case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
446 case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
447 case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
448 case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
450 // Update the buffer.
451 ResultBuf += bytesToWrite;
455 /// integer-constant: [C99 6.4.4.1]
456 /// decimal-constant integer-suffix
457 /// octal-constant integer-suffix
458 /// hexadecimal-constant integer-suffix
459 /// binary-literal integer-suffix [GNU, C++1y]
460 /// user-defined-integer-literal: [C++11 lex.ext]
461 /// decimal-literal ud-suffix
462 /// octal-literal ud-suffix
463 /// hexadecimal-literal ud-suffix
464 /// binary-literal ud-suffix [GNU, C++1y]
465 /// decimal-constant:
466 /// nonzero-digit
467 /// decimal-constant digit
468 /// octal-constant:
469 /// 0
470 /// octal-constant octal-digit
471 /// hexadecimal-constant:
472 /// hexadecimal-prefix hexadecimal-digit
473 /// hexadecimal-constant hexadecimal-digit
474 /// hexadecimal-prefix: one of
475 /// 0x 0X
476 /// binary-literal:
477 /// 0b binary-digit
478 /// 0B binary-digit
479 /// binary-literal binary-digit
480 /// integer-suffix:
481 /// unsigned-suffix [long-suffix]
482 /// unsigned-suffix [long-long-suffix]
483 /// long-suffix [unsigned-suffix]
484 /// long-long-suffix [unsigned-sufix]
485 /// nonzero-digit:
486 /// 1 2 3 4 5 6 7 8 9
487 /// octal-digit:
488 /// 0 1 2 3 4 5 6 7
489 /// hexadecimal-digit:
490 /// 0 1 2 3 4 5 6 7 8 9
491 /// a b c d e f
492 /// A B C D E F
493 /// binary-digit:
494 /// 0
495 /// 1
496 /// unsigned-suffix: one of
497 /// u U
498 /// long-suffix: one of
499 /// l L
500 /// long-long-suffix: one of
501 /// ll LL
503 /// floating-constant: [C99 6.4.4.2]
504 /// TODO: add rules...
506 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
507 SourceLocation TokLoc,
508 Preprocessor &PP)
509 : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
511 // This routine assumes that the range begin/end matches the regex for integer
512 // and FP constants (specifically, the 'pp-number' regex), and assumes that
513 // the byte at "*end" is both valid and not part of the regex. Because of
514 // this, it doesn't have to check for 'overscan' in various places.
515 assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
517 s = DigitsBegin = ThisTokBegin;
518 saw_exponent = false;
519 saw_period = false;
520 saw_ud_suffix = false;
521 isLong = false;
522 isUnsigned = false;
523 isLongLong = false;
524 isFloat = false;
525 isImaginary = false;
526 MicrosoftInteger = 0;
527 hadError = false;
529 if (*s == '0') { // parse radix
530 ParseNumberStartingWithZero(TokLoc);
531 if (hadError)
532 return;
533 } else { // the first digit is non-zero
534 radix = 10;
535 s = SkipDigits(s);
536 if (s == ThisTokEnd) {
537 // Done.
538 } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
539 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
540 diag::err_invalid_decimal_digit) << StringRef(s, 1);
541 hadError = true;
542 return;
543 } else if (*s == '.') {
544 checkSeparator(TokLoc, s, CSK_AfterDigits);
545 s++;
546 saw_period = true;
547 checkSeparator(TokLoc, s, CSK_BeforeDigits);
548 s = SkipDigits(s);
550 if ((*s == 'e' || *s == 'E')) { // exponent
551 checkSeparator(TokLoc, s, CSK_AfterDigits);
552 const char *Exponent = s;
553 s++;
554 saw_exponent = true;
555 if (*s == '+' || *s == '-') s++; // sign
556 checkSeparator(TokLoc, s, CSK_BeforeDigits);
557 const char *first_non_digit = SkipDigits(s);
558 if (first_non_digit != s) {
559 s = first_non_digit;
560 } else {
561 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
562 diag::err_exponent_has_no_digits);
563 hadError = true;
564 return;
569 SuffixBegin = s;
570 checkSeparator(TokLoc, s, CSK_AfterDigits);
572 // Parse the suffix. At this point we can classify whether we have an FP or
573 // integer constant.
574 bool isFPConstant = isFloatingLiteral();
575 const char *ImaginarySuffixLoc = nullptr;
577 // Loop over all of the characters of the suffix. If we see something bad,
578 // we break out of the loop.
579 for (; s != ThisTokEnd; ++s) {
580 switch (*s) {
581 case 'f': // FP Suffix for "float"
582 case 'F':
583 if (!isFPConstant) break; // Error for integer constant.
584 if (isFloat || isLong) break; // FF, LF invalid.
585 isFloat = true;
586 continue; // Success.
587 case 'u':
588 case 'U':
589 if (isFPConstant) break; // Error for floating constant.
590 if (isUnsigned) break; // Cannot be repeated.
591 isUnsigned = true;
592 continue; // Success.
593 case 'l':
594 case 'L':
595 if (isLong || isLongLong) break; // Cannot be repeated.
596 if (isFloat) break; // LF invalid.
598 // Check for long long. The L's need to be adjacent and the same case.
599 if (s+1 != ThisTokEnd && s[1] == s[0]) {
600 if (isFPConstant) break; // long long invalid for floats.
601 isLongLong = true;
602 ++s; // Eat both of them.
603 } else {
604 isLong = true;
606 continue; // Success.
607 case 'i':
608 case 'I':
609 if (PP.getLangOpts().MicrosoftExt) {
610 if (isLong || isLongLong || MicrosoftInteger)
611 break;
613 // Allow i8, i16, i32, i64, and i128.
614 if (s + 1 != ThisTokEnd) {
615 switch (s[1]) {
616 case '8':
617 if (isFPConstant) break;
618 s += 2; // i8 suffix
619 MicrosoftInteger = 8;
620 break;
621 case '1':
622 if (isFPConstant) break;
623 if (s + 2 == ThisTokEnd) break;
624 if (s[2] == '6') {
625 s += 3; // i16 suffix
626 MicrosoftInteger = 16;
628 else if (s[2] == '2') {
629 if (s + 3 == ThisTokEnd) break;
630 if (s[3] == '8') {
631 s += 4; // i128 suffix
632 MicrosoftInteger = 128;
635 break;
636 case '3':
637 if (isFPConstant) break;
638 if (s + 2 == ThisTokEnd) break;
639 if (s[2] == '2') {
640 s += 3; // i32 suffix
641 MicrosoftInteger = 32;
643 break;
644 case '6':
645 if (isFPConstant) break;
646 if (s + 2 == ThisTokEnd) break;
647 if (s[2] == '4') {
648 s += 3; // i64 suffix
649 MicrosoftInteger = 64;
651 break;
652 default:
653 break;
655 if (MicrosoftInteger)
656 break;
659 // "i", "if", and "il" are user-defined suffixes in C++1y.
660 if (PP.getLangOpts().CPlusPlus14 && *s == 'i')
661 break;
662 // fall through.
663 case 'j':
664 case 'J':
665 if (isImaginary) break; // Cannot be repeated.
666 isImaginary = true;
667 ImaginarySuffixLoc = s;
668 continue; // Success.
670 // If we reached here, there was an error or a ud-suffix.
671 break;
674 if (s != ThisTokEnd) {
675 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
676 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
677 if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
678 // Any suffix pieces we might have parsed are actually part of the
679 // ud-suffix.
680 isLong = false;
681 isUnsigned = false;
682 isLongLong = false;
683 isFloat = false;
684 isImaginary = false;
685 MicrosoftInteger = 0;
687 saw_ud_suffix = true;
688 return;
691 // Report an error if there are any.
692 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
693 isFPConstant ? diag::err_invalid_suffix_float_constant :
694 diag::err_invalid_suffix_integer_constant)
695 << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
696 hadError = true;
697 return;
700 if (isImaginary) {
701 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
702 ImaginarySuffixLoc - ThisTokBegin),
703 diag::ext_imaginary_constant);
707 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
708 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
709 /// treat it as an invalid suffix.
710 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
711 StringRef Suffix) {
712 if (!LangOpts.CPlusPlus11 || Suffix.empty())
713 return false;
715 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
716 if (Suffix[0] == '_')
717 return true;
719 // In C++11, there are no library suffixes.
720 if (!LangOpts.CPlusPlus14)
721 return false;
723 // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
724 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
725 return llvm::StringSwitch<bool>(Suffix)
726 .Cases("h", "min", "s", true)
727 .Cases("ms", "us", "ns", true)
728 .Cases("il", "i", "if", true)
729 .Default(false);
732 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
733 const char *Pos,
734 CheckSeparatorKind IsAfterDigits) {
735 if (IsAfterDigits == CSK_AfterDigits) {
736 if (Pos == ThisTokBegin)
737 return;
738 --Pos;
739 } else if (Pos == ThisTokEnd)
740 return;
742 if (isDigitSeparator(*Pos))
743 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
744 diag::err_digit_separator_not_between_digits)
745 << IsAfterDigits;
748 /// ParseNumberStartingWithZero - This method is called when the first character
749 /// of the number is found to be a zero. This means it is either an octal
750 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
751 /// a floating point number (01239.123e4). Eat the prefix, determining the
752 /// radix etc.
753 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
754 assert(s[0] == '0' && "Invalid method call");
755 s++;
757 int c1 = s[0];
758 int c2 = s[1];
760 // Handle a hex number like 0x1234.
761 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(c2) || c2 == '.')) {
762 s++;
763 radix = 16;
764 DigitsBegin = s;
765 s = SkipHexDigits(s);
766 bool noSignificand = (s == DigitsBegin);
767 if (s == ThisTokEnd) {
768 // Done.
769 } else if (*s == '.') {
770 s++;
771 saw_period = true;
772 const char *floatDigitsBegin = s;
773 checkSeparator(TokLoc, s, CSK_BeforeDigits);
774 s = SkipHexDigits(s);
775 noSignificand &= (floatDigitsBegin == s);
778 if (noSignificand) {
779 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
780 diag::err_hexconstant_requires_digits);
781 hadError = true;
782 return;
785 // A binary exponent can appear with or with a '.'. If dotted, the
786 // binary exponent is required.
787 if (*s == 'p' || *s == 'P') {
788 checkSeparator(TokLoc, s, CSK_AfterDigits);
789 const char *Exponent = s;
790 s++;
791 saw_exponent = true;
792 if (*s == '+' || *s == '-') s++; // sign
793 const char *first_non_digit = SkipDigits(s);
794 if (first_non_digit == s) {
795 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
796 diag::err_exponent_has_no_digits);
797 hadError = true;
798 return;
800 checkSeparator(TokLoc, s, CSK_BeforeDigits);
801 s = first_non_digit;
803 if (!PP.getLangOpts().HexFloats)
804 PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
805 } else if (saw_period) {
806 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
807 diag::err_hexconstant_requires_exponent);
808 hadError = true;
810 return;
813 // Handle simple binary numbers 0b01010
814 if ((c1 == 'b' || c1 == 'B') && (c2 == '0' || c2 == '1')) {
815 // 0b101010 is a C++1y / GCC extension.
816 PP.Diag(TokLoc,
817 PP.getLangOpts().CPlusPlus14
818 ? diag::warn_cxx11_compat_binary_literal
819 : PP.getLangOpts().CPlusPlus
820 ? diag::ext_binary_literal_cxx14
821 : diag::ext_binary_literal);
822 ++s;
823 radix = 2;
824 DigitsBegin = s;
825 s = SkipBinaryDigits(s);
826 if (s == ThisTokEnd) {
827 // Done.
828 } else if (isHexDigit(*s)) {
829 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
830 diag::err_invalid_binary_digit) << StringRef(s, 1);
831 hadError = true;
833 // Other suffixes will be diagnosed by the caller.
834 return;
837 // For now, the radix is set to 8. If we discover that we have a
838 // floating point constant, the radix will change to 10. Octal floating
839 // point constants are not permitted (only decimal and hexadecimal).
840 radix = 8;
841 DigitsBegin = s;
842 s = SkipOctalDigits(s);
843 if (s == ThisTokEnd)
844 return; // Done, simple octal number like 01234
846 // If we have some other non-octal digit that *is* a decimal digit, see if
847 // this is part of a floating point number like 094.123 or 09e1.
848 if (isDigit(*s)) {
849 const char *EndDecimal = SkipDigits(s);
850 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
851 s = EndDecimal;
852 radix = 10;
856 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
857 // the code is using an incorrect base.
858 if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
859 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
860 diag::err_invalid_octal_digit) << StringRef(s, 1);
861 hadError = true;
862 return;
865 if (*s == '.') {
866 s++;
867 radix = 10;
868 saw_period = true;
869 checkSeparator(TokLoc, s, CSK_BeforeDigits);
870 s = SkipDigits(s); // Skip suffix.
872 if (*s == 'e' || *s == 'E') { // exponent
873 checkSeparator(TokLoc, s, CSK_AfterDigits);
874 const char *Exponent = s;
875 s++;
876 radix = 10;
877 saw_exponent = true;
878 if (*s == '+' || *s == '-') s++; // sign
879 const char *first_non_digit = SkipDigits(s);
880 if (first_non_digit != s) {
881 checkSeparator(TokLoc, s, CSK_BeforeDigits);
882 s = first_non_digit;
883 } else {
884 PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
885 diag::err_exponent_has_no_digits);
886 hadError = true;
887 return;
892 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
893 switch (Radix) {
894 case 2:
895 return NumDigits <= 64;
896 case 8:
897 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
898 case 10:
899 return NumDigits <= 19; // floor(log10(2^64))
900 case 16:
901 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
902 default:
903 llvm_unreachable("impossible Radix");
907 /// GetIntegerValue - Convert this numeric literal value to an APInt that
908 /// matches Val's input width. If there is an overflow, set Val to the low bits
909 /// of the result and return true. Otherwise, return false.
910 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
911 // Fast path: Compute a conservative bound on the maximum number of
912 // bits per digit in this radix. If we can't possibly overflow a
913 // uint64 based on that bound then do the simple conversion to
914 // integer. This avoids the expensive overflow checking below, and
915 // handles the common cases that matter (small decimal integers and
916 // hex/octal values which don't overflow).
917 const unsigned NumDigits = SuffixBegin - DigitsBegin;
918 if (alwaysFitsInto64Bits(radix, NumDigits)) {
919 uint64_t N = 0;
920 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
921 if (!isDigitSeparator(*Ptr))
922 N = N * radix + llvm::hexDigitValue(*Ptr);
924 // This will truncate the value to Val's input width. Simply check
925 // for overflow by comparing.
926 Val = N;
927 return Val.getZExtValue() != N;
930 Val = 0;
931 const char *Ptr = DigitsBegin;
933 llvm::APInt RadixVal(Val.getBitWidth(), radix);
934 llvm::APInt CharVal(Val.getBitWidth(), 0);
935 llvm::APInt OldVal = Val;
937 bool OverflowOccurred = false;
938 while (Ptr < SuffixBegin) {
939 if (isDigitSeparator(*Ptr)) {
940 ++Ptr;
941 continue;
944 unsigned C = llvm::hexDigitValue(*Ptr++);
946 // If this letter is out of bound for this radix, reject it.
947 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
949 CharVal = C;
951 // Add the digit to the value in the appropriate radix. If adding in digits
952 // made the value smaller, then this overflowed.
953 OldVal = Val;
955 // Multiply by radix, did overflow occur on the multiply?
956 Val *= RadixVal;
957 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
959 // Add value, did overflow occur on the value?
960 // (a + b) ult b <=> overflow
961 Val += CharVal;
962 OverflowOccurred |= Val.ult(CharVal);
964 return OverflowOccurred;
967 llvm::APFloat::opStatus
968 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
969 using llvm::APFloat;
971 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
973 llvm::SmallString<16> Buffer;
974 StringRef Str(ThisTokBegin, n);
975 if (Str.find('\'') != StringRef::npos) {
976 Buffer.reserve(n);
977 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
978 &isDigitSeparator);
979 Str = Buffer;
982 return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
986 /// \verbatim
987 /// user-defined-character-literal: [C++11 lex.ext]
988 /// character-literal ud-suffix
989 /// ud-suffix:
990 /// identifier
991 /// character-literal: [C++11 lex.ccon]
992 /// ' c-char-sequence '
993 /// u' c-char-sequence '
994 /// U' c-char-sequence '
995 /// L' c-char-sequence '
996 /// c-char-sequence:
997 /// c-char
998 /// c-char-sequence c-char
999 /// c-char:
1000 /// any member of the source character set except the single-quote ',
1001 /// backslash \, or new-line character
1002 /// escape-sequence
1003 /// universal-character-name
1004 /// escape-sequence:
1005 /// simple-escape-sequence
1006 /// octal-escape-sequence
1007 /// hexadecimal-escape-sequence
1008 /// simple-escape-sequence:
1009 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1010 /// octal-escape-sequence:
1011 /// \ octal-digit
1012 /// \ octal-digit octal-digit
1013 /// \ octal-digit octal-digit octal-digit
1014 /// hexadecimal-escape-sequence:
1015 /// \x hexadecimal-digit
1016 /// hexadecimal-escape-sequence hexadecimal-digit
1017 /// universal-character-name: [C++11 lex.charset]
1018 /// \u hex-quad
1019 /// \U hex-quad hex-quad
1020 /// hex-quad:
1021 /// hex-digit hex-digit hex-digit hex-digit
1022 /// \endverbatim
1024 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1025 SourceLocation Loc, Preprocessor &PP,
1026 tok::TokenKind kind) {
1027 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1028 HadError = false;
1030 Kind = kind;
1032 const char *TokBegin = begin;
1034 // Skip over wide character determinant.
1035 if (Kind != tok::char_constant)
1036 ++begin;
1037 if (Kind == tok::utf8_char_constant)
1038 ++begin;
1040 // Skip over the entry quote.
1041 assert(begin[0] == '\'' && "Invalid token lexed");
1042 ++begin;
1044 // Remove an optional ud-suffix.
1045 if (end[-1] != '\'') {
1046 const char *UDSuffixEnd = end;
1047 do {
1048 --end;
1049 } while (end[-1] != '\'');
1050 // FIXME: Don't bother with this if !tok.hasUCN().
1051 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1052 UDSuffixOffset = end - TokBegin;
1055 // Trim the ending quote.
1056 assert(end != begin && "Invalid token lexed");
1057 --end;
1059 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1060 // up to 64-bits.
1061 // FIXME: This extensively assumes that 'char' is 8-bits.
1062 assert(PP.getTargetInfo().getCharWidth() == 8 &&
1063 "Assumes char is 8 bits");
1064 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1065 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1066 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1067 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1068 "Assumes sizeof(wchar) on target is <= 64");
1070 SmallVector<uint32_t, 4> codepoint_buffer;
1071 codepoint_buffer.resize(end - begin);
1072 uint32_t *buffer_begin = &codepoint_buffer.front();
1073 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1075 // Unicode escapes representing characters that cannot be correctly
1076 // represented in a single code unit are disallowed in character literals
1077 // by this implementation.
1078 uint32_t largest_character_for_kind;
1079 if (tok::wide_char_constant == Kind) {
1080 largest_character_for_kind =
1081 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1082 } else if (tok::utf8_char_constant == Kind) {
1083 largest_character_for_kind = 0x7F;
1084 } else if (tok::utf16_char_constant == Kind) {
1085 largest_character_for_kind = 0xFFFF;
1086 } else if (tok::utf32_char_constant == Kind) {
1087 largest_character_for_kind = 0x10FFFF;
1088 } else {
1089 largest_character_for_kind = 0x7Fu;
1092 while (begin != end) {
1093 // Is this a span of non-escape characters?
1094 if (begin[0] != '\\') {
1095 char const *start = begin;
1096 do {
1097 ++begin;
1098 } while (begin != end && *begin != '\\');
1100 char const *tmp_in_start = start;
1101 uint32_t *tmp_out_start = buffer_begin;
1102 ConversionResult res =
1103 ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
1104 reinterpret_cast<UTF8 const *>(begin),
1105 &buffer_begin, buffer_end, strictConversion);
1106 if (res != conversionOK) {
1107 // If we see bad encoding for unprefixed character literals, warn and
1108 // simply copy the byte values, for compatibility with gcc and
1109 // older versions of clang.
1110 bool NoErrorOnBadEncoding = isAscii();
1111 unsigned Msg = diag::err_bad_character_encoding;
1112 if (NoErrorOnBadEncoding)
1113 Msg = diag::warn_bad_character_encoding;
1114 PP.Diag(Loc, Msg);
1115 if (NoErrorOnBadEncoding) {
1116 start = tmp_in_start;
1117 buffer_begin = tmp_out_start;
1118 for (; start != begin; ++start, ++buffer_begin)
1119 *buffer_begin = static_cast<uint8_t>(*start);
1120 } else {
1121 HadError = true;
1123 } else {
1124 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1125 if (*tmp_out_start > largest_character_for_kind) {
1126 HadError = true;
1127 PP.Diag(Loc, diag::err_character_too_large);
1132 continue;
1134 // Is this a Universal Character Name escape?
1135 if (begin[1] == 'u' || begin[1] == 'U') {
1136 unsigned short UcnLen = 0;
1137 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1138 FullSourceLoc(Loc, PP.getSourceManager()),
1139 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1140 HadError = true;
1141 } else if (*buffer_begin > largest_character_for_kind) {
1142 HadError = true;
1143 PP.Diag(Loc, diag::err_character_too_large);
1146 ++buffer_begin;
1147 continue;
1149 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1150 uint64_t result =
1151 ProcessCharEscape(TokBegin, begin, end, HadError,
1152 FullSourceLoc(Loc,PP.getSourceManager()),
1153 CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1154 *buffer_begin++ = result;
1157 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1159 if (NumCharsSoFar > 1) {
1160 if (isWide())
1161 PP.Diag(Loc, diag::warn_extraneous_char_constant);
1162 else if (isAscii() && NumCharsSoFar == 4)
1163 PP.Diag(Loc, diag::ext_four_char_character_literal);
1164 else if (isAscii())
1165 PP.Diag(Loc, diag::ext_multichar_character_literal);
1166 else
1167 PP.Diag(Loc, diag::err_multichar_utf_character_literal);
1168 IsMultiChar = true;
1169 } else {
1170 IsMultiChar = false;
1173 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1175 // Narrow character literals act as though their value is concatenated
1176 // in this implementation, but warn on overflow.
1177 bool multi_char_too_long = false;
1178 if (isAscii() && isMultiChar()) {
1179 LitVal = 0;
1180 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1181 // check for enough leading zeros to shift into
1182 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1183 LitVal <<= 8;
1184 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1186 } else if (NumCharsSoFar > 0) {
1187 // otherwise just take the last character
1188 LitVal = buffer_begin[-1];
1191 if (!HadError && multi_char_too_long) {
1192 PP.Diag(Loc, diag::warn_char_constant_too_large);
1195 // Transfer the value from APInt to uint64_t
1196 Value = LitVal.getZExtValue();
1198 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1199 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1200 // character constants are not sign extended in the this implementation:
1201 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1202 if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1203 PP.getLangOpts().CharIsSigned)
1204 Value = (signed char)Value;
1207 /// \verbatim
1208 /// string-literal: [C++0x lex.string]
1209 /// encoding-prefix " [s-char-sequence] "
1210 /// encoding-prefix R raw-string
1211 /// encoding-prefix:
1212 /// u8
1213 /// u
1214 /// U
1215 /// L
1216 /// s-char-sequence:
1217 /// s-char
1218 /// s-char-sequence s-char
1219 /// s-char:
1220 /// any member of the source character set except the double-quote ",
1221 /// backslash \, or new-line character
1222 /// escape-sequence
1223 /// universal-character-name
1224 /// raw-string:
1225 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1226 /// r-char-sequence:
1227 /// r-char
1228 /// r-char-sequence r-char
1229 /// r-char:
1230 /// any member of the source character set, except a right parenthesis )
1231 /// followed by the initial d-char-sequence (which may be empty)
1232 /// followed by a double quote ".
1233 /// d-char-sequence:
1234 /// d-char
1235 /// d-char-sequence d-char
1236 /// d-char:
1237 /// any member of the basic source character set except:
1238 /// space, the left parenthesis (, the right parenthesis ),
1239 /// the backslash \, and the control characters representing horizontal
1240 /// tab, vertical tab, form feed, and newline.
1241 /// escape-sequence: [C++0x lex.ccon]
1242 /// simple-escape-sequence
1243 /// octal-escape-sequence
1244 /// hexadecimal-escape-sequence
1245 /// simple-escape-sequence:
1246 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1247 /// octal-escape-sequence:
1248 /// \ octal-digit
1249 /// \ octal-digit octal-digit
1250 /// \ octal-digit octal-digit octal-digit
1251 /// hexadecimal-escape-sequence:
1252 /// \x hexadecimal-digit
1253 /// hexadecimal-escape-sequence hexadecimal-digit
1254 /// universal-character-name:
1255 /// \u hex-quad
1256 /// \U hex-quad hex-quad
1257 /// hex-quad:
1258 /// hex-digit hex-digit hex-digit hex-digit
1259 /// \endverbatim
1261 StringLiteralParser::
1262 StringLiteralParser(ArrayRef<Token> StringToks,
1263 Preprocessor &PP, bool Complain)
1264 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1265 Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
1266 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1267 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1268 init(StringToks);
1271 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1272 // The literal token may have come from an invalid source location (e.g. due
1273 // to a PCH error), in which case the token length will be 0.
1274 if (StringToks.empty() || StringToks[0].getLength() < 2)
1275 return DiagnoseLexingError(SourceLocation());
1277 // Scan all of the string portions, remember the max individual token length,
1278 // computing a bound on the concatenated string length, and see whether any
1279 // piece is a wide-string. If any of the string portions is a wide-string
1280 // literal, the result is a wide-string literal [C99 6.4.5p4].
1281 assert(!StringToks.empty() && "expected at least one token");
1282 MaxTokenLength = StringToks[0].getLength();
1283 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1284 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1285 Kind = StringToks[0].getKind();
1287 hadError = false;
1289 // Implement Translation Phase #6: concatenation of string literals
1290 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1291 for (unsigned i = 1; i != StringToks.size(); ++i) {
1292 if (StringToks[i].getLength() < 2)
1293 return DiagnoseLexingError(StringToks[i].getLocation());
1295 // The string could be shorter than this if it needs cleaning, but this is a
1296 // reasonable bound, which is all we need.
1297 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1298 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1300 // Remember maximum string piece length.
1301 if (StringToks[i].getLength() > MaxTokenLength)
1302 MaxTokenLength = StringToks[i].getLength();
1304 // Remember if we see any wide or utf-8/16/32 strings.
1305 // Also check for illegal concatenations.
1306 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1307 if (isAscii()) {
1308 Kind = StringToks[i].getKind();
1309 } else {
1310 if (Diags)
1311 Diags->Report(StringToks[i].getLocation(),
1312 diag::err_unsupported_string_concat);
1313 hadError = true;
1318 // Include space for the null terminator.
1319 ++SizeBound;
1321 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1323 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1324 CharByteWidth = getCharWidth(Kind, Target);
1325 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1326 CharByteWidth /= 8;
1328 // The output buffer size needs to be large enough to hold wide characters.
1329 // This is a worst-case assumption which basically corresponds to L"" "long".
1330 SizeBound *= CharByteWidth;
1332 // Size the temporary buffer to hold the result string data.
1333 ResultBuf.resize(SizeBound);
1335 // Likewise, but for each string piece.
1336 SmallString<512> TokenBuf;
1337 TokenBuf.resize(MaxTokenLength);
1339 // Loop over all the strings, getting their spelling, and expanding them to
1340 // wide strings as appropriate.
1341 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1343 Pascal = false;
1345 SourceLocation UDSuffixTokLoc;
1347 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1348 const char *ThisTokBuf = &TokenBuf[0];
1349 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1350 // that ThisTokBuf points to a buffer that is big enough for the whole token
1351 // and 'spelled' tokens can only shrink.
1352 bool StringInvalid = false;
1353 unsigned ThisTokLen =
1354 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1355 &StringInvalid);
1356 if (StringInvalid)
1357 return DiagnoseLexingError(StringToks[i].getLocation());
1359 const char *ThisTokBegin = ThisTokBuf;
1360 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1362 // Remove an optional ud-suffix.
1363 if (ThisTokEnd[-1] != '"') {
1364 const char *UDSuffixEnd = ThisTokEnd;
1365 do {
1366 --ThisTokEnd;
1367 } while (ThisTokEnd[-1] != '"');
1369 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1371 if (UDSuffixBuf.empty()) {
1372 if (StringToks[i].hasUCN())
1373 expandUCNs(UDSuffixBuf, UDSuffix);
1374 else
1375 UDSuffixBuf.assign(UDSuffix);
1376 UDSuffixToken = i;
1377 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1378 UDSuffixTokLoc = StringToks[i].getLocation();
1379 } else {
1380 SmallString<32> ExpandedUDSuffix;
1381 if (StringToks[i].hasUCN()) {
1382 expandUCNs(ExpandedUDSuffix, UDSuffix);
1383 UDSuffix = ExpandedUDSuffix;
1386 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1387 // result of a concatenation involving at least one user-defined-string-
1388 // literal, all the participating user-defined-string-literals shall
1389 // have the same ud-suffix.
1390 if (UDSuffixBuf != UDSuffix) {
1391 if (Diags) {
1392 SourceLocation TokLoc = StringToks[i].getLocation();
1393 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1394 << UDSuffixBuf << UDSuffix
1395 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1396 << SourceRange(TokLoc, TokLoc);
1398 hadError = true;
1403 // Strip the end quote.
1404 --ThisTokEnd;
1406 // TODO: Input character set mapping support.
1408 // Skip marker for wide or unicode strings.
1409 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1410 ++ThisTokBuf;
1411 // Skip 8 of u8 marker for utf8 strings.
1412 if (ThisTokBuf[0] == '8')
1413 ++ThisTokBuf;
1416 // Check for raw string
1417 if (ThisTokBuf[0] == 'R') {
1418 ThisTokBuf += 2; // skip R"
1420 const char *Prefix = ThisTokBuf;
1421 while (ThisTokBuf[0] != '(')
1422 ++ThisTokBuf;
1423 ++ThisTokBuf; // skip '('
1425 // Remove same number of characters from the end
1426 ThisTokEnd -= ThisTokBuf - Prefix;
1427 assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
1429 // Copy the string over
1430 if (CopyStringFragment(StringToks[i], ThisTokBegin,
1431 StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
1432 hadError = true;
1433 } else {
1434 if (ThisTokBuf[0] != '"') {
1435 // The file may have come from PCH and then changed after loading the
1436 // PCH; Fail gracefully.
1437 return DiagnoseLexingError(StringToks[i].getLocation());
1439 ++ThisTokBuf; // skip "
1441 // Check if this is a pascal string
1442 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1443 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1445 // If the \p sequence is found in the first token, we have a pascal string
1446 // Otherwise, if we already have a pascal string, ignore the first \p
1447 if (i == 0) {
1448 ++ThisTokBuf;
1449 Pascal = true;
1450 } else if (Pascal)
1451 ThisTokBuf += 2;
1454 while (ThisTokBuf != ThisTokEnd) {
1455 // Is this a span of non-escape characters?
1456 if (ThisTokBuf[0] != '\\') {
1457 const char *InStart = ThisTokBuf;
1458 do {
1459 ++ThisTokBuf;
1460 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1462 // Copy the character span over.
1463 if (CopyStringFragment(StringToks[i], ThisTokBegin,
1464 StringRef(InStart, ThisTokBuf - InStart)))
1465 hadError = true;
1466 continue;
1468 // Is this a Universal Character Name escape?
1469 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1470 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1471 ResultPtr, hadError,
1472 FullSourceLoc(StringToks[i].getLocation(), SM),
1473 CharByteWidth, Diags, Features);
1474 continue;
1476 // Otherwise, this is a non-UCN escape character. Process it.
1477 unsigned ResultChar =
1478 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1479 FullSourceLoc(StringToks[i].getLocation(), SM),
1480 CharByteWidth*8, Diags, Features);
1482 if (CharByteWidth == 4) {
1483 // FIXME: Make the type of the result buffer correct instead of
1484 // using reinterpret_cast.
1485 UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
1486 *ResultWidePtr = ResultChar;
1487 ResultPtr += 4;
1488 } else if (CharByteWidth == 2) {
1489 // FIXME: Make the type of the result buffer correct instead of
1490 // using reinterpret_cast.
1491 UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
1492 *ResultWidePtr = ResultChar & 0xFFFF;
1493 ResultPtr += 2;
1494 } else {
1495 assert(CharByteWidth == 1 && "Unexpected char width");
1496 *ResultPtr++ = ResultChar & 0xFF;
1502 if (Pascal) {
1503 if (CharByteWidth == 4) {
1504 // FIXME: Make the type of the result buffer correct instead of
1505 // using reinterpret_cast.
1506 UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
1507 ResultWidePtr[0] = GetNumStringChars() - 1;
1508 } else if (CharByteWidth == 2) {
1509 // FIXME: Make the type of the result buffer correct instead of
1510 // using reinterpret_cast.
1511 UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
1512 ResultWidePtr[0] = GetNumStringChars() - 1;
1513 } else {
1514 assert(CharByteWidth == 1 && "Unexpected char width");
1515 ResultBuf[0] = GetNumStringChars() - 1;
1518 // Verify that pascal strings aren't too large.
1519 if (GetStringLength() > 256) {
1520 if (Diags)
1521 Diags->Report(StringToks.front().getLocation(),
1522 diag::err_pascal_string_too_long)
1523 << SourceRange(StringToks.front().getLocation(),
1524 StringToks.back().getLocation());
1525 hadError = true;
1526 return;
1528 } else if (Diags) {
1529 // Complain if this string literal has too many characters.
1530 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1532 if (GetNumStringChars() > MaxChars)
1533 Diags->Report(StringToks.front().getLocation(),
1534 diag::ext_string_too_long)
1535 << GetNumStringChars() << MaxChars
1536 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1537 << SourceRange(StringToks.front().getLocation(),
1538 StringToks.back().getLocation());
1542 static const char *resyncUTF8(const char *Err, const char *End) {
1543 if (Err == End)
1544 return End;
1545 End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
1546 while (++Err != End && (*Err & 0xC0) == 0x80)
1548 return Err;
1551 /// \brief This function copies from Fragment, which is a sequence of bytes
1552 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
1553 /// Performs widening for multi-byte characters.
1554 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1555 const char *TokBegin,
1556 StringRef Fragment) {
1557 const UTF8 *ErrorPtrTmp;
1558 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1559 return false;
1561 // If we see bad encoding for unprefixed string literals, warn and
1562 // simply copy the byte values, for compatibility with gcc and older
1563 // versions of clang.
1564 bool NoErrorOnBadEncoding = isAscii();
1565 if (NoErrorOnBadEncoding) {
1566 memcpy(ResultPtr, Fragment.data(), Fragment.size());
1567 ResultPtr += Fragment.size();
1570 if (Diags) {
1571 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1573 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
1574 const DiagnosticBuilder &Builder =
1575 Diag(Diags, Features, SourceLoc, TokBegin,
1576 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
1577 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
1578 : diag::err_bad_string_encoding);
1580 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1581 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
1583 // Decode into a dummy buffer.
1584 SmallString<512> Dummy;
1585 Dummy.reserve(Fragment.size() * CharByteWidth);
1586 char *Ptr = Dummy.data();
1588 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
1589 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1590 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
1591 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
1592 ErrorPtr, NextStart);
1593 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
1596 return !NoErrorOnBadEncoding;
1599 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
1600 hadError = true;
1601 if (Diags)
1602 Diags->Report(Loc, diag::err_lexing_string);
1605 /// getOffsetOfStringByte - This function returns the offset of the
1606 /// specified byte of the string data represented by Token. This handles
1607 /// advancing over escape sequences in the string.
1608 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
1609 unsigned ByteNo) const {
1610 // Get the spelling of the token.
1611 SmallString<32> SpellingBuffer;
1612 SpellingBuffer.resize(Tok.getLength());
1614 bool StringInvalid = false;
1615 const char *SpellingPtr = &SpellingBuffer[0];
1616 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
1617 &StringInvalid);
1618 if (StringInvalid)
1619 return 0;
1621 const char *SpellingStart = SpellingPtr;
1622 const char *SpellingEnd = SpellingPtr+TokLen;
1624 // Handle UTF-8 strings just like narrow strings.
1625 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
1626 SpellingPtr += 2;
1628 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
1629 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
1631 // For raw string literals, this is easy.
1632 if (SpellingPtr[0] == 'R') {
1633 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
1634 // Skip 'R"'.
1635 SpellingPtr += 2;
1636 while (*SpellingPtr != '(') {
1637 ++SpellingPtr;
1638 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
1640 // Skip '('.
1641 ++SpellingPtr;
1642 return SpellingPtr - SpellingStart + ByteNo;
1645 // Skip over the leading quote
1646 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
1647 ++SpellingPtr;
1649 // Skip over bytes until we find the offset we're looking for.
1650 while (ByteNo) {
1651 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
1653 // Step over non-escapes simply.
1654 if (*SpellingPtr != '\\') {
1655 ++SpellingPtr;
1656 --ByteNo;
1657 continue;
1660 // Otherwise, this is an escape character. Advance over it.
1661 bool HadError = false;
1662 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
1663 const char *EscapePtr = SpellingPtr;
1664 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
1665 1, Features, HadError);
1666 if (Len > ByteNo) {
1667 // ByteNo is somewhere within the escape sequence.
1668 SpellingPtr = EscapePtr;
1669 break;
1671 ByteNo -= Len;
1672 } else {
1673 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
1674 FullSourceLoc(Tok.getLocation(), SM),
1675 CharByteWidth*8, Diags, Features);
1676 --ByteNo;
1678 assert(!HadError && "This method isn't valid on erroneous strings");
1681 return SpellingPtr-SpellingStart;