1 /* $NetBSD: rb.c,v 1.9 2010/11/17 13:19:32 tron Exp $ */
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas <matt@3am-software.com>.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #if !defined(_KERNEL) && !defined(_STANDALONE)
33 #include <sys/types.h>
38 #define KASSERT(s) assert(s)
40 #define KASSERT(s) do { } while (/*CONSTCOND*/ 0)
43 #include <lib/libkern/libkern.h>
47 __weak_alias(rb_tree_init
, _rb_tree_init
)
48 __weak_alias(rb_tree_find_node
, _rb_tree_find_node
)
49 __weak_alias(rb_tree_find_node_geq
, _rb_tree_find_node_geq
)
50 __weak_alias(rb_tree_find_node_leq
, _rb_tree_find_node_leq
)
51 __weak_alias(rb_tree_insert_node
, _rb_tree_insert_node
)
52 __weak_alias(rb_tree_remove_node
, _rb_tree_remove_node
)
53 __weak_alias(rb_tree_iterate
, _rb_tree_iterate
)
55 __weak_alias(rb_tree_check
, _rb_tree_check
)
56 __weak_alias(rb_tree_depths
, _rb_tree_depths
)
59 #include "namespace.h"
65 #include <sys/rbtree.h>
68 static void rb_tree_insert_rebalance(struct rb_tree
*, struct rb_node
*);
69 static void rb_tree_removal_rebalance(struct rb_tree
*, struct rb_node
*,
72 static const struct rb_node
*rb_tree_iterate_const(const struct rb_tree
*,
73 const struct rb_node
*, const unsigned int);
74 static bool rb_tree_check_node(const struct rb_tree
*, const struct rb_node
*,
75 const struct rb_node
*, bool);
77 #define rb_tree_check_node(a, b, c, d) true
80 #define RB_NODETOITEM(rbto, rbn) \
81 ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
82 #define RB_ITEMTONODE(rbto, rbn) \
83 ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
85 #define RB_SENTINEL_NODE NULL
88 rb_tree_init(struct rb_tree
*rbt
, const rb_tree_ops_t
*ops
)
92 *((const struct rb_node
**)&rbt
->rbt_root
) = RB_SENTINEL_NODE
;
93 RB_TAILQ_INIT(&rbt
->rbt_nodes
);
95 rbt
->rbt_minmax
[RB_DIR_LEFT
] = rbt
->rbt_root
; /* minimum node */
96 rbt
->rbt_minmax
[RB_DIR_RIGHT
] = rbt
->rbt_root
; /* maximum node */
100 rbt
->rbt_insertions
= 0;
101 rbt
->rbt_removals
= 0;
102 rbt
->rbt_insertion_rebalance_calls
= 0;
103 rbt
->rbt_insertion_rebalance_passes
= 0;
104 rbt
->rbt_removal_rebalance_calls
= 0;
105 rbt
->rbt_removal_rebalance_passes
= 0;
110 rb_tree_find_node(struct rb_tree
*rbt
, const void *key
)
112 const rb_tree_ops_t
*rbto
= rbt
->rbt_ops
;
113 rbto_compare_key_fn compare_key
= rbto
->rbto_compare_key
;
114 struct rb_node
*parent
= rbt
->rbt_root
;
116 while (!RB_SENTINEL_P(parent
)) {
117 void *pobj
= RB_NODETOITEM(rbto
, parent
);
118 const signed int diff
= (*compare_key
)(rbto
->rbto_context
,
122 parent
= parent
->rb_nodes
[diff
< 0];
129 rb_tree_find_node_geq(struct rb_tree
*rbt
, const void *key
)
131 const rb_tree_ops_t
*rbto
= rbt
->rbt_ops
;
132 rbto_compare_key_fn compare_key
= rbto
->rbto_compare_key
;
133 struct rb_node
*parent
= rbt
->rbt_root
, *last
= NULL
;
135 while (!RB_SENTINEL_P(parent
)) {
136 void *pobj
= RB_NODETOITEM(rbto
, parent
);
137 const signed int diff
= (*compare_key
)(rbto
->rbto_context
,
143 parent
= parent
->rb_nodes
[diff
< 0];
146 return RB_NODETOITEM(rbto
, last
);
150 rb_tree_find_node_leq(struct rb_tree
*rbt
, const void *key
)
152 const rb_tree_ops_t
*rbto
= rbt
->rbt_ops
;
153 rbto_compare_key_fn compare_key
= rbto
->rbto_compare_key
;
154 struct rb_node
*parent
= rbt
->rbt_root
, *last
= NULL
;
156 while (!RB_SENTINEL_P(parent
)) {
157 void *pobj
= RB_NODETOITEM(rbto
, parent
);
158 const signed int diff
= (*compare_key
)(rbto
->rbto_context
,
164 parent
= parent
->rb_nodes
[diff
< 0];
167 return RB_NODETOITEM(rbto
, last
);
171 rb_tree_insert_node(struct rb_tree
*rbt
, void *object
)
173 const rb_tree_ops_t
*rbto
= rbt
->rbt_ops
;
174 rbto_compare_nodes_fn compare_nodes
= rbto
->rbto_compare_nodes
;
175 struct rb_node
*parent
, *tmp
, *self
= RB_ITEMTONODE(rbto
, object
);
176 unsigned int position
;
179 RBSTAT_INC(rbt
->rbt_insertions
);
183 * This is a hack. Because rbt->rbt_root is just a struct rb_node *,
184 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
185 * avoid a lot of tests for root and know that even at root,
186 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
187 * update rbt->rbt_root.
189 parent
= (struct rb_node
*)(void *)&rbt
->rbt_root
;
190 position
= RB_DIR_LEFT
;
193 * Find out where to place this new leaf.
195 while (!RB_SENTINEL_P(tmp
)) {
196 void *tobj
= RB_NODETOITEM(rbto
, tmp
);
197 const signed int diff
= (*compare_nodes
)(rbto
->rbto_context
,
199 if (__predict_false(diff
== 0)) {
201 * Node already exists; return it.
206 position
= (diff
< 0);
207 tmp
= parent
->rb_nodes
[position
];
212 struct rb_node
*prev
= NULL
, *next
= NULL
;
214 if (position
== RB_DIR_RIGHT
)
216 else if (tmp
!= rbt
->rbt_root
)
220 * Verify our sequential position
222 KASSERT(prev
== NULL
|| !RB_SENTINEL_P(prev
));
223 KASSERT(next
== NULL
|| !RB_SENTINEL_P(next
));
224 if (prev
!= NULL
&& next
== NULL
)
225 next
= TAILQ_NEXT(prev
, rb_link
);
226 if (prev
== NULL
&& next
!= NULL
)
227 prev
= TAILQ_PREV(next
, rb_node_qh
, rb_link
);
228 KASSERT(prev
== NULL
|| !RB_SENTINEL_P(prev
));
229 KASSERT(next
== NULL
|| !RB_SENTINEL_P(next
));
230 KASSERT(prev
== NULL
|| (*compare_nodes
)(rbto
->rbto_context
,
231 RB_NODETOITEM(rbto
, prev
), RB_NODETOITEM(rbto
, self
)) < 0);
232 KASSERT(next
== NULL
|| (*compare_nodes
)(rbto
->rbto_context
,
233 RB_NODETOITEM(rbto
, self
), RB_NODETOITEM(rbto
, next
)) < 0);
238 * Initialize the node and insert as a leaf into the tree.
240 RB_SET_FATHER(self
, parent
);
241 RB_SET_POSITION(self
, position
);
242 if (__predict_false(parent
== (struct rb_node
*)(void *)&rbt
->rbt_root
)) {
243 RB_MARK_BLACK(self
); /* root is always black */
245 rbt
->rbt_minmax
[RB_DIR_LEFT
] = self
;
246 rbt
->rbt_minmax
[RB_DIR_RIGHT
] = self
;
250 KASSERT(position
== RB_DIR_LEFT
|| position
== RB_DIR_RIGHT
);
253 * Keep track of the minimum and maximum nodes. If our
254 * parent is a minmax node and we on their min/max side,
255 * we must be the new min/max node.
257 if (parent
== rbt
->rbt_minmax
[position
])
258 rbt
->rbt_minmax
[position
] = self
;
259 #endif /* !RBSMALL */
261 * All new nodes are colored red. We only need to rebalance
262 * if our parent is also red.
265 rebalance
= RB_RED_P(parent
);
267 KASSERT(RB_SENTINEL_P(parent
->rb_nodes
[position
]));
268 self
->rb_left
= parent
->rb_nodes
[position
];
269 self
->rb_right
= parent
->rb_nodes
[position
];
270 parent
->rb_nodes
[position
] = self
;
271 KASSERT(RB_CHILDLESS_P(self
));
274 * Insert the new node into a sorted list for easy sequential access
276 RBSTAT_INC(rbt
->rbt_count
);
278 if (RB_ROOT_P(rbt
, self
)) {
279 RB_TAILQ_INSERT_HEAD(&rbt
->rbt_nodes
, self
, rb_link
);
280 } else if (position
== RB_DIR_LEFT
) {
281 KASSERT((*compare_nodes
)(rbto
->rbto_context
,
282 RB_NODETOITEM(rbto
, self
),
283 RB_NODETOITEM(rbto
, RB_FATHER(self
))) < 0);
284 RB_TAILQ_INSERT_BEFORE(RB_FATHER(self
), self
, rb_link
);
286 KASSERT((*compare_nodes
)(rbto
->rbto_context
,
287 RB_NODETOITEM(rbto
, RB_FATHER(self
)),
288 RB_NODETOITEM(rbto
, self
)) < 0);
289 RB_TAILQ_INSERT_AFTER(&rbt
->rbt_nodes
, RB_FATHER(self
),
293 KASSERT(rb_tree_check_node(rbt
, self
, NULL
, !rebalance
));
296 * Rebalance tree after insertion
299 rb_tree_insert_rebalance(rbt
, self
);
300 KASSERT(rb_tree_check_node(rbt
, self
, NULL
, true));
303 /* Succesfully inserted, return our node pointer. */
308 * Swap the location and colors of 'self' and its child @ which. The child
309 * can not be a sentinel node. This is our rotation function. However,
310 * since it preserves coloring, it great simplifies both insertion and
311 * removal since rotation almost always involves the exchanging of colors
312 * as a separate step.
316 rb_tree_reparent_nodes(struct rb_tree
*rbt
, struct rb_node
*old_father
,
317 const unsigned int which
)
319 const unsigned int other
= which
^ RB_DIR_OTHER
;
320 struct rb_node
* const grandpa
= RB_FATHER(old_father
);
321 struct rb_node
* const old_child
= old_father
->rb_nodes
[which
];
322 struct rb_node
* const new_father
= old_child
;
323 struct rb_node
* const new_child
= old_father
;
325 KASSERT(which
== RB_DIR_LEFT
|| which
== RB_DIR_RIGHT
);
327 KASSERT(!RB_SENTINEL_P(old_child
));
328 KASSERT(RB_FATHER(old_child
) == old_father
);
330 KASSERT(rb_tree_check_node(rbt
, old_father
, NULL
, false));
331 KASSERT(rb_tree_check_node(rbt
, old_child
, NULL
, false));
332 KASSERT(RB_ROOT_P(rbt
, old_father
) ||
333 rb_tree_check_node(rbt
, grandpa
, NULL
, false));
336 * Exchange descendant linkages.
338 grandpa
->rb_nodes
[RB_POSITION(old_father
)] = new_father
;
339 new_child
->rb_nodes
[which
] = old_child
->rb_nodes
[other
];
340 new_father
->rb_nodes
[other
] = new_child
;
343 * Update ancestor linkages
345 RB_SET_FATHER(new_father
, grandpa
);
346 RB_SET_FATHER(new_child
, new_father
);
349 * Exchange properties between new_father and new_child. The only
350 * change is that new_child's position is now on the other side.
356 RB_COPY_PROPERTIES(&tmp
, old_child
);
357 RB_COPY_PROPERTIES(new_father
, old_father
);
358 RB_COPY_PROPERTIES(new_child
, &tmp
);
361 RB_SWAP_PROPERTIES(new_father
, new_child
);
363 RB_SET_POSITION(new_child
, other
);
366 * Make sure to reparent the new child to ourself.
368 if (!RB_SENTINEL_P(new_child
->rb_nodes
[which
])) {
369 RB_SET_FATHER(new_child
->rb_nodes
[which
], new_child
);
370 RB_SET_POSITION(new_child
->rb_nodes
[which
], which
);
373 KASSERT(rb_tree_check_node(rbt
, new_father
, NULL
, false));
374 KASSERT(rb_tree_check_node(rbt
, new_child
, NULL
, false));
375 KASSERT(RB_ROOT_P(rbt
, new_father
) ||
376 rb_tree_check_node(rbt
, grandpa
, NULL
, false));
380 rb_tree_insert_rebalance(struct rb_tree
*rbt
, struct rb_node
*self
)
382 struct rb_node
* father
= RB_FATHER(self
);
383 struct rb_node
* grandpa
= RB_FATHER(father
);
384 struct rb_node
* uncle
;
388 KASSERT(!RB_ROOT_P(rbt
, self
));
389 KASSERT(RB_RED_P(self
));
390 KASSERT(RB_RED_P(father
));
391 RBSTAT_INC(rbt
->rbt_insertion_rebalance_calls
);
394 KASSERT(!RB_SENTINEL_P(self
));
396 KASSERT(RB_RED_P(self
));
397 KASSERT(RB_RED_P(father
));
399 * We are red and our parent is red, therefore we must have a
400 * grandfather and he must be black.
402 grandpa
= RB_FATHER(father
);
403 KASSERT(RB_BLACK_P(grandpa
));
404 KASSERT(RB_DIR_RIGHT
== 1 && RB_DIR_LEFT
== 0);
405 which
= (father
== grandpa
->rb_right
);
406 other
= which
^ RB_DIR_OTHER
;
407 uncle
= grandpa
->rb_nodes
[other
];
409 if (RB_BLACK_P(uncle
))
412 RBSTAT_INC(rbt
->rbt_insertion_rebalance_passes
);
414 * Case 1: our uncle is red
415 * Simply invert the colors of our parent and
416 * uncle and make our grandparent red. And
417 * then solve the problem up at his level.
419 RB_MARK_BLACK(uncle
);
420 RB_MARK_BLACK(father
);
421 if (__predict_false(RB_ROOT_P(rbt
, grandpa
))) {
423 * If our grandpa is root, don't bother
424 * setting him to red, just return.
426 KASSERT(RB_BLACK_P(grandpa
));
429 RB_MARK_RED(grandpa
);
431 father
= RB_FATHER(self
);
432 KASSERT(RB_RED_P(self
));
433 if (RB_BLACK_P(father
)) {
435 * If our greatgrandpa is black, we're done.
437 KASSERT(RB_BLACK_P(rbt
->rbt_root
));
442 KASSERT(!RB_ROOT_P(rbt
, self
));
443 KASSERT(RB_RED_P(self
));
444 KASSERT(RB_RED_P(father
));
445 KASSERT(RB_BLACK_P(uncle
));
446 KASSERT(RB_BLACK_P(grandpa
));
448 * Case 2&3: our uncle is black.
450 if (self
== father
->rb_nodes
[other
]) {
452 * Case 2: we are on the same side as our uncle
453 * Swap ourselves with our parent so this case
454 * becomes case 3. Basically our parent becomes our
457 rb_tree_reparent_nodes(rbt
, father
, other
);
458 KASSERT(RB_FATHER(father
) == self
);
459 KASSERT(self
->rb_nodes
[which
] == father
);
460 KASSERT(RB_FATHER(self
) == grandpa
);
462 father
= RB_FATHER(self
);
464 KASSERT(RB_RED_P(self
) && RB_RED_P(father
));
465 KASSERT(grandpa
->rb_nodes
[which
] == father
);
467 * Case 3: we are opposite a child of a black uncle.
468 * Swap our parent and grandparent. Since our grandfather
469 * is black, our father will become black and our new sibling
470 * (former grandparent) will become red.
472 rb_tree_reparent_nodes(rbt
, grandpa
, which
);
473 KASSERT(RB_FATHER(self
) == father
);
474 KASSERT(RB_FATHER(self
)->rb_nodes
[RB_POSITION(self
) ^ RB_DIR_OTHER
] == grandpa
);
475 KASSERT(RB_RED_P(self
));
476 KASSERT(RB_BLACK_P(father
));
477 KASSERT(RB_RED_P(grandpa
));
480 * Final step: Set the root to black.
482 RB_MARK_BLACK(rbt
->rbt_root
);
486 rb_tree_prune_node(struct rb_tree
*rbt
, struct rb_node
*self
, bool rebalance
)
488 const unsigned int which
= RB_POSITION(self
);
489 struct rb_node
*father
= RB_FATHER(self
);
491 const bool was_root
= RB_ROOT_P(rbt
, self
);
494 KASSERT(rebalance
|| (RB_ROOT_P(rbt
, self
) || RB_RED_P(self
)));
495 KASSERT(!rebalance
|| RB_BLACK_P(self
));
496 KASSERT(RB_CHILDLESS_P(self
));
497 KASSERT(rb_tree_check_node(rbt
, self
, NULL
, false));
500 * Since we are childless, we know that self->rb_left is pointing
501 * to the sentinel node.
503 father
->rb_nodes
[which
] = self
->rb_left
;
506 * Remove ourselves from the node list, decrement the count,
507 * and update min/max.
509 RB_TAILQ_REMOVE(&rbt
->rbt_nodes
, self
, rb_link
);
510 RBSTAT_DEC(rbt
->rbt_count
);
512 if (__predict_false(rbt
->rbt_minmax
[RB_POSITION(self
)] == self
)) {
513 rbt
->rbt_minmax
[RB_POSITION(self
)] = father
;
515 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
516 * updated automatically, but we also need to update
517 * rbt->rbt_minmax[RB_DIR_RIGHT];
519 if (__predict_false(was_root
)) {
520 rbt
->rbt_minmax
[RB_DIR_RIGHT
] = father
;
523 RB_SET_FATHER(self
, NULL
);
527 * Rebalance if requested.
530 rb_tree_removal_rebalance(rbt
, father
, which
);
531 KASSERT(was_root
|| rb_tree_check_node(rbt
, father
, NULL
, true));
535 * When deleting an interior node
538 rb_tree_swap_prune_and_rebalance(struct rb_tree
*rbt
, struct rb_node
*self
,
539 struct rb_node
*standin
)
541 const unsigned int standin_which
= RB_POSITION(standin
);
542 unsigned int standin_other
= standin_which
^ RB_DIR_OTHER
;
543 struct rb_node
*standin_son
;
544 struct rb_node
*standin_father
= RB_FATHER(standin
);
545 bool rebalance
= RB_BLACK_P(standin
);
547 if (standin_father
== self
) {
549 * As a child of self, any childen would be opposite of
552 KASSERT(RB_SENTINEL_P(standin
->rb_nodes
[standin_other
]));
553 standin_son
= standin
->rb_nodes
[standin_which
];
556 * Since we aren't a child of self, any childen would be
557 * on the same side as our parent.
559 KASSERT(RB_SENTINEL_P(standin
->rb_nodes
[standin_which
]));
560 standin_son
= standin
->rb_nodes
[standin_other
];
564 * the node we are removing must have two children.
566 KASSERT(RB_TWOCHILDREN_P(self
));
568 * If standin has a child, it must be red.
570 KASSERT(RB_SENTINEL_P(standin_son
) || RB_RED_P(standin_son
));
573 * Verify things are sane.
575 KASSERT(rb_tree_check_node(rbt
, self
, NULL
, false));
576 KASSERT(rb_tree_check_node(rbt
, standin
, NULL
, false));
578 if (__predict_false(RB_RED_P(standin_son
))) {
580 * We know we have a red child so if we flip it to black
581 * we don't have to rebalance.
583 KASSERT(rb_tree_check_node(rbt
, standin_son
, NULL
, true));
584 RB_MARK_BLACK(standin_son
);
587 if (standin_father
== self
) {
588 KASSERT(RB_POSITION(standin_son
) == standin_which
);
590 KASSERT(RB_POSITION(standin_son
) == standin_other
);
592 * Change the son's parentage to point to his grandpa.
594 RB_SET_FATHER(standin_son
, standin_father
);
595 RB_SET_POSITION(standin_son
, standin_which
);
599 if (standin_father
== self
) {
601 * If we are about to delete the standin's father, then when
602 * we call rebalance, we need to use ourselves as our father.
603 * Otherwise remember our original father. Also, sincef we are
604 * our standin's father we only need to reparent the standin's
611 KASSERT(RB_SENTINEL_P(standin
->rb_nodes
[standin_other
]));
612 KASSERT(!RB_SENTINEL_P(self
->rb_nodes
[standin_other
]));
613 KASSERT(self
->rb_nodes
[standin_which
] == standin
);
615 * Have our son/standin adopt his brother as his new son.
617 standin_father
= standin
;
621 * | / \ | T --> / \ | / |
622 * | ..... | S --> ..... | T |
624 * Sever standin's connection to his father.
626 standin_father
->rb_nodes
[standin_which
] = standin_son
;
630 standin
->rb_nodes
[standin_other
] = self
->rb_nodes
[standin_other
];
631 RB_SET_FATHER(standin
->rb_nodes
[standin_other
], standin
);
632 KASSERT(RB_POSITION(self
->rb_nodes
[standin_other
]) == standin_other
);
634 * Use standin_other because we need to preserve standin_which
635 * for the removal_rebalance.
637 standin_other
= standin_which
;
641 * Move the only remaining son to our standin. If our standin is our
642 * son, this will be the only son needed to be moved.
644 KASSERT(standin
->rb_nodes
[standin_other
] != self
->rb_nodes
[standin_other
]);
645 standin
->rb_nodes
[standin_other
] = self
->rb_nodes
[standin_other
];
646 RB_SET_FATHER(standin
->rb_nodes
[standin_other
], standin
);
649 * Now copy the result of self to standin and then replace
650 * self with standin in the tree.
652 RB_COPY_PROPERTIES(standin
, self
);
653 RB_SET_FATHER(standin
, RB_FATHER(self
));
654 RB_FATHER(standin
)->rb_nodes
[RB_POSITION(standin
)] = standin
;
657 * Remove ourselves from the node list, decrement the count,
658 * and update min/max.
660 RB_TAILQ_REMOVE(&rbt
->rbt_nodes
, self
, rb_link
);
661 RBSTAT_DEC(rbt
->rbt_count
);
663 if (__predict_false(rbt
->rbt_minmax
[RB_POSITION(self
)] == self
))
664 rbt
->rbt_minmax
[RB_POSITION(self
)] = RB_FATHER(self
);
665 RB_SET_FATHER(self
, NULL
);
668 KASSERT(rb_tree_check_node(rbt
, standin
, NULL
, false));
669 KASSERT(RB_FATHER_SENTINEL_P(standin
)
670 || rb_tree_check_node(rbt
, standin_father
, NULL
, false));
671 KASSERT(RB_LEFT_SENTINEL_P(standin
)
672 || rb_tree_check_node(rbt
, standin
->rb_left
, NULL
, false));
673 KASSERT(RB_RIGHT_SENTINEL_P(standin
)
674 || rb_tree_check_node(rbt
, standin
->rb_right
, NULL
, false));
679 rb_tree_removal_rebalance(rbt
, standin_father
, standin_which
);
680 KASSERT(rb_tree_check_node(rbt
, standin
, NULL
, true));
684 * We could do this by doing
685 * rb_tree_node_swap(rbt, self, which);
686 * rb_tree_prune_node(rbt, self, false);
688 * But it's more efficient to just evalate and recolor the child.
691 rb_tree_prune_blackred_branch(struct rb_tree
*rbt
, struct rb_node
*self
,
694 struct rb_node
*father
= RB_FATHER(self
);
695 struct rb_node
*son
= self
->rb_nodes
[which
];
697 const bool was_root
= RB_ROOT_P(rbt
, self
);
700 KASSERT(which
== RB_DIR_LEFT
|| which
== RB_DIR_RIGHT
);
701 KASSERT(RB_BLACK_P(self
) && RB_RED_P(son
));
702 KASSERT(!RB_TWOCHILDREN_P(son
));
703 KASSERT(RB_CHILDLESS_P(son
));
704 KASSERT(rb_tree_check_node(rbt
, self
, NULL
, false));
705 KASSERT(rb_tree_check_node(rbt
, son
, NULL
, false));
708 * Remove ourselves from the tree and give our former child our
709 * properties (position, color, root).
711 RB_COPY_PROPERTIES(son
, self
);
712 father
->rb_nodes
[RB_POSITION(son
)] = son
;
713 RB_SET_FATHER(son
, father
);
716 * Remove ourselves from the node list, decrement the count,
719 RB_TAILQ_REMOVE(&rbt
->rbt_nodes
, self
, rb_link
);
720 RBSTAT_DEC(rbt
->rbt_count
);
722 if (__predict_false(was_root
)) {
723 KASSERT(rbt
->rbt_minmax
[which
] == son
);
724 rbt
->rbt_minmax
[which
^ RB_DIR_OTHER
] = son
;
725 } else if (rbt
->rbt_minmax
[RB_POSITION(self
)] == self
) {
726 rbt
->rbt_minmax
[RB_POSITION(self
)] = son
;
728 RB_SET_FATHER(self
, NULL
);
731 KASSERT(was_root
|| rb_tree_check_node(rbt
, father
, NULL
, true));
732 KASSERT(rb_tree_check_node(rbt
, son
, NULL
, true));
736 rb_tree_remove_node(struct rb_tree
*rbt
, void *object
)
738 const rb_tree_ops_t
*rbto
= rbt
->rbt_ops
;
739 struct rb_node
*standin
, *self
= RB_ITEMTONODE(rbto
, object
);
742 KASSERT(!RB_SENTINEL_P(self
));
743 RBSTAT_INC(rbt
->rbt_removals
);
746 * In the following diagrams, we (the node to be removed) are S. Red
747 * nodes are lowercase. T could be either red or black.
749 * Remember the major axiom of the red-black tree: the number of
750 * black nodes from the root to each leaf is constant across all
751 * leaves, only the number of red nodes varies.
753 * Thus removing a red leaf doesn't require any other changes to a
754 * red-black tree. So if we must remove a node, attempt to rearrange
755 * the tree so we can remove a red node.
757 * The simpliest case is a childless red node or a childless root node:
759 * | T --> T | or | R --> * |
762 if (RB_CHILDLESS_P(self
)) {
763 const bool rebalance
= RB_BLACK_P(self
) && !RB_ROOT_P(rbt
, self
);
764 rb_tree_prune_node(rbt
, self
, rebalance
);
767 KASSERT(!RB_CHILDLESS_P(self
));
768 if (!RB_TWOCHILDREN_P(self
)) {
770 * The next simpliest case is the node we are deleting is
771 * black and has one red child.
777 which
= RB_LEFT_SENTINEL_P(self
) ? RB_DIR_RIGHT
: RB_DIR_LEFT
;
778 KASSERT(RB_BLACK_P(self
));
779 KASSERT(RB_RED_P(self
->rb_nodes
[which
]));
780 KASSERT(RB_CHILDLESS_P(self
->rb_nodes
[which
]));
781 rb_tree_prune_blackred_branch(rbt
, self
, which
);
784 KASSERT(RB_TWOCHILDREN_P(self
));
787 * We invert these because we prefer to remove from the inside of
790 which
= RB_POSITION(self
) ^ RB_DIR_OTHER
;
793 * Let's find the node closes to us opposite of our parent
794 * Now swap it with ourself, "prune" it, and rebalance, if needed.
796 standin
= RB_ITEMTONODE(rbto
, rb_tree_iterate(rbt
, object
, which
));
797 rb_tree_swap_prune_and_rebalance(rbt
, self
, standin
);
801 rb_tree_removal_rebalance(struct rb_tree
*rbt
, struct rb_node
*parent
,
804 KASSERT(!RB_SENTINEL_P(parent
));
805 KASSERT(RB_SENTINEL_P(parent
->rb_nodes
[which
]));
806 KASSERT(which
== RB_DIR_LEFT
|| which
== RB_DIR_RIGHT
);
807 RBSTAT_INC(rbt
->rbt_removal_rebalance_calls
);
809 while (RB_BLACK_P(parent
->rb_nodes
[which
])) {
810 unsigned int other
= which
^ RB_DIR_OTHER
;
811 struct rb_node
*brother
= parent
->rb_nodes
[other
];
813 RBSTAT_INC(rbt
->rbt_removal_rebalance_passes
);
815 KASSERT(!RB_SENTINEL_P(brother
));
817 * For cases 1, 2a, and 2b, our brother's children must
818 * be black and our father must be black
820 if (RB_BLACK_P(parent
)
821 && RB_BLACK_P(brother
->rb_left
)
822 && RB_BLACK_P(brother
->rb_right
)) {
823 if (RB_RED_P(brother
)) {
825 * Case 1: Our brother is red, swap its
826 * position (and colors) with our parent.
827 * This should now be case 2b (unless C or E
828 * has a red child which is case 3; thus no
829 * explicit branch to case 2b).
835 KASSERT(RB_BLACK_P(parent
));
836 rb_tree_reparent_nodes(rbt
, parent
, other
);
837 brother
= parent
->rb_nodes
[other
];
838 KASSERT(!RB_SENTINEL_P(brother
));
839 KASSERT(RB_RED_P(parent
));
840 KASSERT(RB_BLACK_P(brother
));
841 KASSERT(rb_tree_check_node(rbt
, brother
, NULL
, false));
842 KASSERT(rb_tree_check_node(rbt
, parent
, NULL
, false));
845 * Both our parent and brother are black.
846 * Change our brother to red, advance up rank
847 * and go through the loop again.
853 RB_MARK_RED(brother
);
854 KASSERT(RB_BLACK_P(brother
->rb_left
));
855 KASSERT(RB_BLACK_P(brother
->rb_right
));
856 if (RB_ROOT_P(rbt
, parent
))
857 return; /* root == parent == black */
858 KASSERT(rb_tree_check_node(rbt
, brother
, NULL
, false));
859 KASSERT(rb_tree_check_node(rbt
, parent
, NULL
, false));
860 which
= RB_POSITION(parent
);
861 parent
= RB_FATHER(parent
);
866 * Avoid an else here so that case 2a above can hit either
870 && RB_BLACK_P(brother
)
871 && RB_BLACK_P(brother
->rb_left
)
872 && RB_BLACK_P(brother
->rb_right
)) {
873 KASSERT(RB_RED_P(parent
));
874 KASSERT(RB_BLACK_P(brother
));
875 KASSERT(RB_BLACK_P(brother
->rb_left
));
876 KASSERT(RB_BLACK_P(brother
->rb_right
));
878 * We are black, our father is red, our brother and
879 * both nephews are black. Simply invert/exchange the
880 * colors of our father and brother (to black and red
887 RB_MARK_BLACK(parent
);
888 RB_MARK_RED(brother
);
889 KASSERT(rb_tree_check_node(rbt
, brother
, NULL
, true));
890 break; /* We're done! */
893 * Our brother must be black and have at least one
894 * red child (it may have two).
896 KASSERT(RB_BLACK_P(brother
));
897 KASSERT(RB_RED_P(brother
->rb_nodes
[which
]) ||
898 RB_RED_P(brother
->rb_nodes
[other
]));
899 if (RB_BLACK_P(brother
->rb_nodes
[other
])) {
901 * Case 3: our brother is black, our near
902 * nephew is red, and our far nephew is black.
903 * Swap our brother with our near nephew.
904 * This result in a tree that matches case 4.
905 * (Our father could be red or black).
911 KASSERT(RB_RED_P(brother
->rb_nodes
[which
]));
912 rb_tree_reparent_nodes(rbt
, brother
, which
);
913 KASSERT(RB_FATHER(brother
) == parent
->rb_nodes
[other
]);
914 brother
= parent
->rb_nodes
[other
];
915 KASSERT(RB_RED_P(brother
->rb_nodes
[other
]));
918 * Case 4: our brother is black and our far nephew
919 * is red. Swap our father and brother locations and
920 * change our far nephew to black. (these can be
921 * done in either order so we change the color first).
922 * The result is a valid red-black tree and is a
923 * terminal case. (again we don't care about the
926 * If the father is red, we will get a red-black-black
932 * If the father is black, we will get an all black
938 * If we had two red nephews, then after the swap,
939 * our former father would have a red grandson.
941 KASSERT(RB_BLACK_P(brother
));
942 KASSERT(RB_RED_P(brother
->rb_nodes
[other
]));
943 RB_MARK_BLACK(brother
->rb_nodes
[other
]);
944 rb_tree_reparent_nodes(rbt
, parent
, other
);
945 break; /* We're done! */
948 KASSERT(rb_tree_check_node(rbt
, parent
, NULL
, true));
952 rb_tree_iterate(struct rb_tree
*rbt
, void *object
, const unsigned int direction
)
954 const rb_tree_ops_t
*rbto
= rbt
->rbt_ops
;
955 const unsigned int other
= direction
^ RB_DIR_OTHER
;
956 struct rb_node
*self
;
958 KASSERT(direction
== RB_DIR_LEFT
|| direction
== RB_DIR_RIGHT
);
960 if (object
== NULL
) {
962 if (RB_SENTINEL_P(rbt
->rbt_root
))
964 return RB_NODETOITEM(rbto
, rbt
->rbt_minmax
[direction
]);
966 self
= rbt
->rbt_root
;
967 if (RB_SENTINEL_P(self
))
969 while (!RB_SENTINEL_P(self
->rb_nodes
[direction
]))
970 self
= self
->rb_nodes
[direction
];
971 return RB_NODETOITEM(rbto
, self
);
972 #endif /* !RBSMALL */
974 self
= RB_ITEMTONODE(rbto
, object
);
975 KASSERT(!RB_SENTINEL_P(self
));
977 * We can't go any further in this direction. We proceed up in the
978 * opposite direction until our parent is in direction we want to go.
980 if (RB_SENTINEL_P(self
->rb_nodes
[direction
])) {
981 while (!RB_ROOT_P(rbt
, self
)) {
982 if (other
== RB_POSITION(self
))
983 return RB_NODETOITEM(rbto
, RB_FATHER(self
));
984 self
= RB_FATHER(self
);
990 * Advance down one in current direction and go down as far as possible
991 * in the opposite direction.
993 self
= self
->rb_nodes
[direction
];
994 KASSERT(!RB_SENTINEL_P(self
));
995 while (!RB_SENTINEL_P(self
->rb_nodes
[other
]))
996 self
= self
->rb_nodes
[other
];
997 return RB_NODETOITEM(rbto
, self
);
1001 static const struct rb_node
*
1002 rb_tree_iterate_const(const struct rb_tree
*rbt
, const struct rb_node
*self
,
1003 const unsigned int direction
)
1005 const unsigned int other
= direction
^ RB_DIR_OTHER
;
1006 KASSERT(direction
== RB_DIR_LEFT
|| direction
== RB_DIR_RIGHT
);
1010 if (RB_SENTINEL_P(rbt
->rbt_root
))
1012 return rbt
->rbt_minmax
[direction
];
1014 self
= rbt
->rbt_root
;
1015 if (RB_SENTINEL_P(self
))
1017 while (!RB_SENTINEL_P(self
->rb_nodes
[direction
]))
1018 self
= self
->rb_nodes
[direction
];
1020 #endif /* !RBSMALL */
1022 KASSERT(!RB_SENTINEL_P(self
));
1024 * We can't go any further in this direction. We proceed up in the
1025 * opposite direction until our parent is in direction we want to go.
1027 if (RB_SENTINEL_P(self
->rb_nodes
[direction
])) {
1028 while (!RB_ROOT_P(rbt
, self
)) {
1029 if (other
== RB_POSITION(self
))
1030 return RB_FATHER(self
);
1031 self
= RB_FATHER(self
);
1037 * Advance down one in current direction and go down as far as possible
1038 * in the opposite direction.
1040 self
= self
->rb_nodes
[direction
];
1041 KASSERT(!RB_SENTINEL_P(self
));
1042 while (!RB_SENTINEL_P(self
->rb_nodes
[other
]))
1043 self
= self
->rb_nodes
[other
];
1048 rb_tree_count_black(const struct rb_node
*self
)
1050 unsigned int left
, right
;
1052 if (RB_SENTINEL_P(self
))
1055 left
= rb_tree_count_black(self
->rb_left
);
1056 right
= rb_tree_count_black(self
->rb_right
);
1058 KASSERT(left
== right
);
1060 return left
+ RB_BLACK_P(self
);
1064 rb_tree_check_node(const struct rb_tree
*rbt
, const struct rb_node
*self
,
1065 const struct rb_node
*prev
, bool red_check
)
1067 const rb_tree_ops_t
*rbto
= rbt
->rbt_ops
;
1068 rbto_compare_nodes_fn compare_nodes
= rbto
->rbto_compare_nodes
;
1070 KASSERT(!RB_SENTINEL_P(self
));
1071 KASSERT(prev
== NULL
|| (*compare_nodes
)(rbto
->rbto_context
,
1072 RB_NODETOITEM(rbto
, prev
), RB_NODETOITEM(rbto
, self
)) < 0);
1075 * Verify our relationship to our parent.
1077 if (RB_ROOT_P(rbt
, self
)) {
1078 KASSERT(self
== rbt
->rbt_root
);
1079 KASSERT(RB_POSITION(self
) == RB_DIR_LEFT
);
1080 KASSERT(RB_FATHER(self
)->rb_nodes
[RB_DIR_LEFT
] == self
);
1081 KASSERT(RB_FATHER(self
) == (const struct rb_node
*) &rbt
->rbt_root
);
1083 int diff
= (*compare_nodes
)(rbto
->rbto_context
,
1084 RB_NODETOITEM(rbto
, self
),
1085 RB_NODETOITEM(rbto
, RB_FATHER(self
)));
1087 KASSERT(self
!= rbt
->rbt_root
);
1088 KASSERT(!RB_FATHER_SENTINEL_P(self
));
1089 if (RB_POSITION(self
) == RB_DIR_LEFT
) {
1091 KASSERT(RB_FATHER(self
)->rb_nodes
[RB_DIR_LEFT
] == self
);
1094 KASSERT(RB_FATHER(self
)->rb_nodes
[RB_DIR_RIGHT
] == self
);
1099 * Verify our position in the linked list against the tree itself.
1102 const struct rb_node
*prev0
= rb_tree_iterate_const(rbt
, self
, RB_DIR_LEFT
);
1103 const struct rb_node
*next0
= rb_tree_iterate_const(rbt
, self
, RB_DIR_RIGHT
);
1104 KASSERT(prev0
== TAILQ_PREV(self
, rb_node_qh
, rb_link
));
1105 KASSERT(next0
== TAILQ_NEXT(self
, rb_link
));
1107 KASSERT(prev0
!= NULL
|| self
== rbt
->rbt_minmax
[RB_DIR_LEFT
]);
1108 KASSERT(next0
!= NULL
|| self
== rbt
->rbt_minmax
[RB_DIR_RIGHT
]);
1113 * The root must be black.
1114 * There can never be two adjacent red nodes.
1117 KASSERT(!RB_ROOT_P(rbt
, self
) || RB_BLACK_P(self
));
1118 (void) rb_tree_count_black(self
);
1119 if (RB_RED_P(self
)) {
1120 const struct rb_node
*brother
;
1121 KASSERT(!RB_ROOT_P(rbt
, self
));
1122 brother
= RB_FATHER(self
)->rb_nodes
[RB_POSITION(self
) ^ RB_DIR_OTHER
];
1123 KASSERT(RB_BLACK_P(RB_FATHER(self
)));
1125 * I'm red and have no children, then I must either
1126 * have no brother or my brother also be red and
1127 * also have no children. (black count == 0)
1129 KASSERT(!RB_CHILDLESS_P(self
)
1130 || RB_SENTINEL_P(brother
)
1131 || RB_RED_P(brother
)
1132 || RB_CHILDLESS_P(brother
));
1134 * If I'm not childless, I must have two children
1135 * and they must be both be black.
1137 KASSERT(RB_CHILDLESS_P(self
)
1138 || (RB_TWOCHILDREN_P(self
)
1139 && RB_BLACK_P(self
->rb_left
)
1140 && RB_BLACK_P(self
->rb_right
)));
1142 * If I'm not childless, thus I have black children,
1143 * then my brother must either be black or have two
1146 KASSERT(RB_CHILDLESS_P(self
)
1147 || RB_BLACK_P(brother
)
1148 || (RB_TWOCHILDREN_P(brother
)
1149 && RB_BLACK_P(brother
->rb_left
)
1150 && RB_BLACK_P(brother
->rb_right
)));
1153 * If I'm black and have one child, that child must
1154 * be red and childless.
1156 KASSERT(RB_CHILDLESS_P(self
)
1157 || RB_TWOCHILDREN_P(self
)
1158 || (!RB_LEFT_SENTINEL_P(self
)
1159 && RB_RIGHT_SENTINEL_P(self
)
1160 && RB_RED_P(self
->rb_left
)
1161 && RB_CHILDLESS_P(self
->rb_left
))
1162 || (!RB_RIGHT_SENTINEL_P(self
)
1163 && RB_LEFT_SENTINEL_P(self
)
1164 && RB_RED_P(self
->rb_right
)
1165 && RB_CHILDLESS_P(self
->rb_right
)));
1168 * If I'm a childless black node and my parent is
1169 * black, my 2nd closet relative away from my parent
1170 * is either red or has a red parent or red children.
1172 if (!RB_ROOT_P(rbt
, self
)
1173 && RB_CHILDLESS_P(self
)
1174 && RB_BLACK_P(RB_FATHER(self
))) {
1175 const unsigned int which
= RB_POSITION(self
);
1176 const unsigned int other
= which
^ RB_DIR_OTHER
;
1177 const struct rb_node
*relative0
, *relative
;
1179 relative0
= rb_tree_iterate_const(rbt
,
1181 KASSERT(relative0
!= NULL
);
1182 relative
= rb_tree_iterate_const(rbt
,
1184 KASSERT(relative
!= NULL
);
1185 KASSERT(RB_SENTINEL_P(relative
->rb_nodes
[which
]));
1187 KASSERT(RB_RED_P(relative
)
1188 || RB_RED_P(relative
->rb_left
)
1189 || RB_RED_P(relative
->rb_right
)
1190 || RB_RED_P(RB_FATHER(relative
)));
1195 * A grandparent's children must be real nodes and not
1196 * sentinels. First check out grandparent.
1198 KASSERT(RB_ROOT_P(rbt
, self
)
1199 || RB_ROOT_P(rbt
, RB_FATHER(self
))
1200 || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self
))));
1202 * If we are have grandchildren on our left, then
1203 * we must have a child on our right.
1205 KASSERT(RB_LEFT_SENTINEL_P(self
)
1206 || RB_CHILDLESS_P(self
->rb_left
)
1207 || !RB_RIGHT_SENTINEL_P(self
));
1209 * If we are have grandchildren on our right, then
1210 * we must have a child on our left.
1212 KASSERT(RB_RIGHT_SENTINEL_P(self
)
1213 || RB_CHILDLESS_P(self
->rb_right
)
1214 || !RB_LEFT_SENTINEL_P(self
));
1217 * If we have a child on the left and it doesn't have two
1218 * children make sure we don't have great-great-grandchildren on
1221 KASSERT(RB_TWOCHILDREN_P(self
->rb_left
)
1222 || RB_CHILDLESS_P(self
->rb_right
)
1223 || RB_CHILDLESS_P(self
->rb_right
->rb_left
)
1224 || RB_CHILDLESS_P(self
->rb_right
->rb_left
->rb_left
)
1225 || RB_CHILDLESS_P(self
->rb_right
->rb_left
->rb_right
)
1226 || RB_CHILDLESS_P(self
->rb_right
->rb_right
)
1227 || RB_CHILDLESS_P(self
->rb_right
->rb_right
->rb_left
)
1228 || RB_CHILDLESS_P(self
->rb_right
->rb_right
->rb_right
));
1231 * If we have a child on the right and it doesn't have two
1232 * children make sure we don't have great-great-grandchildren on
1235 KASSERT(RB_TWOCHILDREN_P(self
->rb_right
)
1236 || RB_CHILDLESS_P(self
->rb_left
)
1237 || RB_CHILDLESS_P(self
->rb_left
->rb_left
)
1238 || RB_CHILDLESS_P(self
->rb_left
->rb_left
->rb_left
)
1239 || RB_CHILDLESS_P(self
->rb_left
->rb_left
->rb_right
)
1240 || RB_CHILDLESS_P(self
->rb_left
->rb_right
)
1241 || RB_CHILDLESS_P(self
->rb_left
->rb_right
->rb_left
)
1242 || RB_CHILDLESS_P(self
->rb_left
->rb_right
->rb_right
));
1245 * If we are fully interior node, then our predecessors and
1246 * successors must have no children in our direction.
1248 if (RB_TWOCHILDREN_P(self
)) {
1249 const struct rb_node
*prev0
;
1250 const struct rb_node
*next0
;
1252 prev0
= rb_tree_iterate_const(rbt
, self
, RB_DIR_LEFT
);
1253 KASSERT(prev0
!= NULL
);
1254 KASSERT(RB_RIGHT_SENTINEL_P(prev0
));
1256 next0
= rb_tree_iterate_const(rbt
, self
, RB_DIR_RIGHT
);
1257 KASSERT(next0
!= NULL
);
1258 KASSERT(RB_LEFT_SENTINEL_P(next0
));
1266 rb_tree_check(const struct rb_tree
*rbt
, bool red_check
)
1268 const struct rb_node
*self
;
1269 const struct rb_node
*prev
;
1271 unsigned int count
= 0;
1274 KASSERT(rbt
->rbt_root
!= NULL
);
1275 KASSERT(RB_LEFT_P(rbt
->rbt_root
));
1277 #if defined(RBSTATS) && !defined(RBSMALL)
1278 KASSERT(rbt
->rbt_count
> 1
1279 || rbt
->rbt_minmax
[RB_DIR_LEFT
] == rbt
->rbt_minmax
[RB_DIR_RIGHT
]);
1283 TAILQ_FOREACH(self
, &rbt
->rbt_nodes
, rb_link
) {
1284 rb_tree_check_node(rbt
, self
, prev
, false);
1290 KASSERT(rbt
->rbt_count
== count
);
1293 KASSERT(RB_BLACK_P(rbt
->rbt_root
));
1294 KASSERT(RB_SENTINEL_P(rbt
->rbt_root
)
1295 || rb_tree_count_black(rbt
->rbt_root
));
1298 * The root must be black.
1299 * There can never be two adjacent red nodes.
1301 TAILQ_FOREACH(self
, &rbt
->rbt_nodes
, rb_link
) {
1302 rb_tree_check_node(rbt
, self
, NULL
, true);
1306 #endif /* RBDEBUG */
1310 rb_tree_mark_depth(const struct rb_tree
*rbt
, const struct rb_node
*self
,
1311 size_t *depths
, size_t depth
)
1313 if (RB_SENTINEL_P(self
))
1316 if (RB_TWOCHILDREN_P(self
)) {
1317 rb_tree_mark_depth(rbt
, self
->rb_left
, depths
, depth
+ 1);
1318 rb_tree_mark_depth(rbt
, self
->rb_right
, depths
, depth
+ 1);
1322 if (!RB_LEFT_SENTINEL_P(self
)) {
1323 rb_tree_mark_depth(rbt
, self
->rb_left
, depths
, depth
+ 1);
1325 if (!RB_RIGHT_SENTINEL_P(self
)) {
1326 rb_tree_mark_depth(rbt
, self
->rb_right
, depths
, depth
+ 1);
1331 rb_tree_depths(const struct rb_tree
*rbt
, size_t *depths
)
1333 rb_tree_mark_depth(rbt
, rbt
->rbt_root
, depths
, 1);
1335 #endif /* RBSTATS */