1 ///////////////////////////////////////////////////////////////////////////////
3 /// \file block_buffer_encoder.c
4 /// \brief Single-call .xz Block encoder
6 // Author: Lasse Collin
8 // This file has been put into the public domain.
9 // You can do whatever you want with this file.
11 ///////////////////////////////////////////////////////////////////////////////
13 #include "block_encoder.h"
14 #include "filter_encoder.h"
15 #include "lzma2_encoder.h"
19 /// Estimate the maximum size of the Block Header and Check fields for
20 /// a Block that uses LZMA2 uncompressed chunks. We could use
21 /// lzma_block_header_size() but this is simpler.
23 /// Block Header Size + Block Flags + Compressed Size
24 /// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check
25 /// and round up to the next multiple of four to take Header Padding
27 #define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \
28 + LZMA_CHECK_SIZE_MAX + 3) & ~3)
32 lzma2_bound(lzma_vli uncompressed_size
)
34 // Prevent integer overflow in overhead calculation.
35 if (uncompressed_size
> COMPRESSED_SIZE_MAX
)
38 // Calculate the exact overhead of the LZMA2 headers: Round
39 // uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX,
40 // multiply by the size of per-chunk header, and add one byte for
42 const lzma_vli overhead
= ((uncompressed_size
+ LZMA2_CHUNK_MAX
- 1)
44 * LZMA2_HEADER_UNCOMPRESSED
+ 1;
46 // Catch the possible integer overflow.
47 if (COMPRESSED_SIZE_MAX
- overhead
< uncompressed_size
)
50 return uncompressed_size
+ overhead
;
54 extern LZMA_API(size_t)
55 lzma_block_buffer_bound(size_t uncompressed_size
)
57 // For now, if the data doesn't compress, we always use uncompressed
58 // chunks of LZMA2. In future we may use Subblock filter too, but
59 // but for simplicity we probably will still use the same bound
60 // calculation even though Subblock filter would have slightly less
62 lzma_vli lzma2_size
= lzma2_bound(uncompressed_size
);
66 // Take Block Padding into account.
67 lzma2_size
= (lzma2_size
+ 3) & ~LZMA_VLI_C(3);
69 #if SIZE_MAX < LZMA_VLI_MAX
70 // Catch the possible integer overflow on 32-bit systems. There's no
71 // overflow on 64-bit systems, because lzma2_bound() already takes
72 // into account the size of the headers in the Block.
73 if (SIZE_MAX
- HEADERS_BOUND
< lzma2_size
)
77 return HEADERS_BOUND
+ lzma2_size
;
82 block_encode_uncompressed(lzma_block
*block
, const uint8_t *in
, size_t in_size
,
83 uint8_t *out
, size_t *out_pos
, size_t out_size
)
85 // TODO: Figure out if the last filter is LZMA2 or Subblock and use
86 // that filter to encode the uncompressed chunks.
88 // Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at
89 // all, but LZMA2 always requires a dictionary, so use the minimum
90 // value to minimize memory usage of the decoder.
91 lzma_options_lzma lzma2
= {
92 .dict_size
= LZMA_DICT_SIZE_MIN
,
95 lzma_filter filters
[2];
96 filters
[0].id
= LZMA_FILTER_LZMA2
;
97 filters
[0].options
= &lzma2
;
98 filters
[1].id
= LZMA_VLI_UNKNOWN
;
100 // Set the above filter options to *block temporarily so that we can
101 // encode the Block Header.
102 lzma_filter
*filters_orig
= block
->filters
;
103 block
->filters
= filters
;
105 if (lzma_block_header_size(block
) != LZMA_OK
) {
106 block
->filters
= filters_orig
;
107 return LZMA_PROG_ERROR
;
110 // Check that there's enough output space. The caller has already
111 // set block->compressed_size to what lzma2_bound() has returned,
112 // so we can reuse that value. We know that compressed_size is a
113 // known valid VLI and header_size is a small value so their sum
114 // will never overflow.
115 assert(block
->compressed_size
== lzma2_bound(in_size
));
116 if (out_size
- *out_pos
117 < block
->header_size
+ block
->compressed_size
) {
118 block
->filters
= filters_orig
;
119 return LZMA_BUF_ERROR
;
122 if (lzma_block_header_encode(block
, out
+ *out_pos
) != LZMA_OK
) {
123 block
->filters
= filters_orig
;
124 return LZMA_PROG_ERROR
;
127 block
->filters
= filters_orig
;
128 *out_pos
+= block
->header_size
;
130 // Encode the data using LZMA2 uncompressed chunks.
132 uint8_t control
= 0x01; // Dictionary reset
134 while (in_pos
< in_size
) {
135 // Control byte: Indicate uncompressed chunk, of which
136 // the first resets the dictionary.
137 out
[(*out_pos
)++] = control
;
138 control
= 0x02; // No dictionary reset
140 // Size of the uncompressed chunk
141 const size_t copy_size
142 = my_min(in_size
- in_pos
, LZMA2_CHUNK_MAX
);
143 out
[(*out_pos
)++] = (copy_size
- 1) >> 8;
144 out
[(*out_pos
)++] = (copy_size
- 1) & 0xFF;
147 assert(*out_pos
+ copy_size
<= out_size
);
148 memcpy(out
+ *out_pos
, in
+ in_pos
, copy_size
);
151 *out_pos
+= copy_size
;
155 out
[(*out_pos
)++] = 0x00;
156 assert(*out_pos
<= out_size
);
163 block_encode_normal(lzma_block
*block
, lzma_allocator
*allocator
,
164 const uint8_t *in
, size_t in_size
,
165 uint8_t *out
, size_t *out_pos
, size_t out_size
)
167 // Find out the size of the Block Header.
168 block
->compressed_size
= lzma2_bound(in_size
);
169 if (block
->compressed_size
== 0)
170 return LZMA_DATA_ERROR
;
172 block
->uncompressed_size
= in_size
;
173 return_if_error(lzma_block_header_size(block
));
175 // Reserve space for the Block Header and skip it for now.
176 if (out_size
- *out_pos
<= block
->header_size
)
177 return LZMA_BUF_ERROR
;
179 const size_t out_start
= *out_pos
;
180 *out_pos
+= block
->header_size
;
182 // Limit out_size so that we stop encoding if the output would grow
183 // bigger than what uncompressed Block would be.
184 if (out_size
- *out_pos
> block
->compressed_size
)
185 out_size
= *out_pos
+ block
->compressed_size
;
187 // TODO: In many common cases this could be optimized to use
188 // significantly less memory.
189 lzma_next_coder raw_encoder
= LZMA_NEXT_CODER_INIT
;
190 lzma_ret ret
= lzma_raw_encoder_init(
191 &raw_encoder
, allocator
, block
->filters
);
193 if (ret
== LZMA_OK
) {
195 ret
= raw_encoder
.code(raw_encoder
.coder
, allocator
,
196 in
, &in_pos
, in_size
, out
, out_pos
, out_size
,
200 // NOTE: This needs to be run even if lzma_raw_encoder_init() failed.
201 lzma_next_end(&raw_encoder
, allocator
);
203 if (ret
== LZMA_STREAM_END
) {
204 // Compression was successful. Write the Block Header.
205 block
->compressed_size
206 = *out_pos
- (out_start
+ block
->header_size
);
207 ret
= lzma_block_header_encode(block
, out
+ out_start
);
209 ret
= LZMA_PROG_ERROR
;
211 } else if (ret
== LZMA_OK
) {
212 // Output buffer became full.
213 ret
= LZMA_BUF_ERROR
;
216 // Reset *out_pos if something went wrong.
218 *out_pos
= out_start
;
224 extern LZMA_API(lzma_ret
)
225 lzma_block_buffer_encode(lzma_block
*block
, lzma_allocator
*allocator
,
226 const uint8_t *in
, size_t in_size
,
227 uint8_t *out
, size_t *out_pos
, size_t out_size
)
230 if (block
== NULL
|| block
->filters
== NULL
231 || (in
== NULL
&& in_size
!= 0) || out
== NULL
232 || out_pos
== NULL
|| *out_pos
> out_size
)
233 return LZMA_PROG_ERROR
;
235 // Check the version field.
236 if (block
->version
!= 0)
237 return LZMA_OPTIONS_ERROR
;
239 // Size of a Block has to be a multiple of four, so limit the size
240 // here already. This way we don't need to check it again when adding
242 out_size
-= (out_size
- *out_pos
) & 3;
244 // Get the size of the Check field.
245 const size_t check_size
= lzma_check_size(block
->check
);
246 if (check_size
== UINT32_MAX
)
247 return LZMA_PROG_ERROR
;
249 // Reserve space for the Check field.
250 if (out_size
- *out_pos
<= check_size
)
251 return LZMA_BUF_ERROR
;
253 out_size
-= check_size
;
255 // Do the actual compression.
256 const lzma_ret ret
= block_encode_normal(block
, allocator
,
257 in
, in_size
, out
, out_pos
, out_size
);
258 if (ret
!= LZMA_OK
) {
259 // If the error was something else than output buffer
260 // becoming full, return the error now.
261 if (ret
!= LZMA_BUF_ERROR
)
264 // The data was uncompressible (at least with the options
265 // given to us) or the output buffer was too small. Use the
266 // uncompressed chunks of LZMA2 to wrap the data into a valid
267 // Block. If we haven't been given enough output space, even
269 return_if_error(block_encode_uncompressed(block
, in
, in_size
,
270 out
, out_pos
, out_size
));
273 assert(*out_pos
<= out_size
);
275 // Block Padding. No buffer overflow here, because we already adjusted
276 // out_size so that (out_size - out_start) is a multiple of four.
277 // Thus, if the buffer is full, the loop body can never run.
278 for (size_t i
= (size_t)(block
->compressed_size
); i
& 3; ++i
) {
279 assert(*out_pos
< out_size
);
280 out
[(*out_pos
)++] = 0x00;
283 // If there's no Check field, we are done now.
284 if (check_size
> 0) {
285 // Calculate the integrity check. We reserved space for
286 // the Check field earlier so we don't need to check for
287 // available output space here.
288 lzma_check_state check
;
289 lzma_check_init(&check
, block
->check
);
290 lzma_check_update(&check
, block
->check
, in
, in_size
);
291 lzma_check_finish(&check
, block
->check
);
293 memcpy(block
->raw_check
, check
.buffer
.u8
, check_size
);
294 memcpy(out
+ *out_pos
, check
.buffer
.u8
, check_size
);
295 *out_pos
+= check_size
;