VM: restore >4k secondary cache functionality
[minix.git] / kernel / proc.c
blob1fff91c300aff746bc3fbe9fb33a946f63b45a19
1 /* This file contains essentially all of the process and message handling.
2 * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
3 * There is one entry point from the outside:
5 * sys_call: a system call, i.e., the kernel is trapped with an INT
7 * Changes:
8 * Aug 19, 2005 rewrote scheduling code (Jorrit N. Herder)
9 * Jul 25, 2005 rewrote system call handling (Jorrit N. Herder)
10 * May 26, 2005 rewrote message passing functions (Jorrit N. Herder)
11 * May 24, 2005 new notification system call (Jorrit N. Herder)
12 * Oct 28, 2004 nonblocking send and receive calls (Jorrit N. Herder)
14 * The code here is critical to make everything work and is important for the
15 * overall performance of the system. A large fraction of the code deals with
16 * list manipulation. To make this both easy to understand and fast to execute
17 * pointer pointers are used throughout the code. Pointer pointers prevent
18 * exceptions for the head or tail of a linked list.
20 * node_t *queue, *new_node; // assume these as global variables
21 * node_t **xpp = &queue; // get pointer pointer to head of queue
22 * while (*xpp != NULL) // find last pointer of the linked list
23 * xpp = &(*xpp)->next; // get pointer to next pointer
24 * *xpp = new_node; // now replace the end (the NULL pointer)
25 * new_node->next = NULL; // and mark the new end of the list
27 * For example, when adding a new node to the end of the list, one normally
28 * makes an exception for an empty list and looks up the end of the list for
29 * nonempty lists. As shown above, this is not required with pointer pointers.
32 #include <minix/com.h>
33 #include <minix/ipcconst.h>
34 #include <stddef.h>
35 #include <signal.h>
36 #include <assert.h>
38 #include "kernel.h"
39 #include "vm.h"
40 #include "clock.h"
41 #include "spinlock.h"
42 #include "arch_proto.h"
44 #include <minix/syslib.h>
46 /* Scheduling and message passing functions */
47 static void idle(void);
48 /**
49 * Made public for use in clock.c (for user-space scheduling)
50 static int mini_send(struct proc *caller_ptr, endpoint_t dst_e, message
51 *m_ptr, int flags);
53 static int mini_receive(struct proc *caller_ptr, endpoint_t src,
54 message *m_ptr, int flags);
55 static int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t
56 size);
57 static int deadlock(int function, register struct proc *caller,
58 endpoint_t src_dst_e);
59 static int try_async(struct proc *caller_ptr);
60 static int try_one(struct proc *src_ptr, struct proc *dst_ptr);
61 static struct proc * pick_proc(void);
62 static void enqueue_head(struct proc *rp);
64 /* all idles share the same idle_priv structure */
65 static struct priv idle_priv;
67 static void set_idle_name(char * name, int n)
69 int i, c;
70 int p_z = 0;
72 if (n > 999)
73 n = 999;
75 name[0] = 'i';
76 name[1] = 'd';
77 name[2] = 'l';
78 name[3] = 'e';
80 for (i = 4, c = 100; c > 0; c /= 10) {
81 int digit;
83 digit = n / c;
84 n -= digit * c;
86 if (p_z || digit != 0 || c == 1) {
87 p_z = 1;
88 name[i++] = '0' + digit;
92 name[i] = '\0';
97 #define PICK_ANY 1
98 #define PICK_HIGHERONLY 2
100 #define BuildNotifyMessage(m_ptr, src, dst_ptr) \
101 (m_ptr)->m_type = NOTIFY_MESSAGE; \
102 (m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
103 switch (src) { \
104 case HARDWARE: \
105 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
106 priv(dst_ptr)->s_int_pending = 0; \
107 break; \
108 case SYSTEM: \
109 (m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending; \
110 priv(dst_ptr)->s_sig_pending = 0; \
111 break; \
114 void proc_init(void)
116 struct proc * rp;
117 struct priv *sp;
118 int i;
120 /* Clear the process table. Anounce each slot as empty and set up
121 * mappings for proc_addr() and proc_nr() macros. Do the same for the
122 * table with privilege structures for the system processes.
124 for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
125 rp->p_rts_flags = RTS_SLOT_FREE;/* initialize free slot */
126 rp->p_magic = PMAGIC;
127 rp->p_nr = i; /* proc number from ptr */
128 rp->p_endpoint = _ENDPOINT(0, rp->p_nr); /* generation no. 0 */
129 rp->p_scheduler = NULL; /* no user space scheduler */
130 rp->p_priority = 0; /* no priority */
131 rp->p_quantum_size_ms = 0; /* no quantum size */
133 /* arch-specific initialization */
134 arch_proc_reset(rp);
136 for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
137 sp->s_proc_nr = NONE; /* initialize as free */
138 sp->s_id = (sys_id_t) i; /* priv structure index */
139 ppriv_addr[i] = sp; /* priv ptr from number */
140 sp->s_sig_mgr = NONE; /* clear signal managers */
141 sp->s_bak_sig_mgr = NONE;
144 idle_priv.s_flags = IDL_F;
145 /* initialize IDLE structures for every CPU */
146 for (i = 0; i < CONFIG_MAX_CPUS; i++) {
147 struct proc * ip = get_cpu_var_ptr(i, idle_proc);
148 ip->p_endpoint = IDLE;
149 ip->p_priv = &idle_priv;
150 /* must not let idle ever get scheduled */
151 ip->p_rts_flags |= RTS_PROC_STOP;
152 set_idle_name(ip->p_name, i);
156 static void switch_address_space_idle(void)
158 #ifdef CONFIG_SMP
160 * currently we bet that VM is always alive and its pages available so
161 * when the CPU wakes up the kernel is mapped and no surprises happen.
162 * This is only a problem if more than 1 cpus are available
164 switch_address_space(proc_addr(VM_PROC_NR));
165 #endif
168 /*===========================================================================*
169 * idle *
170 *===========================================================================*/
171 static void idle(void)
173 struct proc * p;
175 /* This function is called whenever there is no work to do.
176 * Halt the CPU, and measure how many timestamp counter ticks are
177 * spent not doing anything. This allows test setups to measure
178 * the CPU utiliziation of certain workloads with high precision.
181 p = get_cpulocal_var(proc_ptr) = get_cpulocal_var_ptr(idle_proc);
182 if (priv(p)->s_flags & BILLABLE)
183 get_cpulocal_var(bill_ptr) = p;
185 switch_address_space_idle();
187 #ifdef CONFIG_SMP
188 get_cpulocal_var(cpu_is_idle) = 1;
189 /* we don't need to keep time on APs as it is handled on the BSP */
190 if (cpuid != bsp_cpu_id)
191 stop_local_timer();
192 else
193 #endif
196 * If the timer has expired while in kernel we must
197 * rearm it before we go to sleep
199 restart_local_timer();
202 /* start accounting for the idle time */
203 context_stop(proc_addr(KERNEL));
204 #if !SPROFILE
205 halt_cpu();
206 #else
207 if (!sprofiling)
208 halt_cpu();
209 else {
210 volatile int * v;
212 v = get_cpulocal_var_ptr(idle_interrupted);
213 interrupts_enable();
214 while (!*v)
215 arch_pause();
216 interrupts_disable();
217 *v = 0;
219 #endif
221 * end of accounting for the idle task does not happen here, the kernel
222 * is handling stuff for quite a while before it gets back here!
226 /*===========================================================================*
227 * switch_to_user *
228 *===========================================================================*/
229 void switch_to_user(void)
231 /* This function is called an instant before proc_ptr is
232 * to be scheduled again.
234 struct proc * p;
235 #ifdef CONFIG_SMP
236 int tlb_must_refresh = 0;
237 #endif
239 p = get_cpulocal_var(proc_ptr);
241 * if the current process is still runnable check the misc flags and let
242 * it run unless it becomes not runnable in the meantime
244 if (proc_is_runnable(p))
245 goto check_misc_flags;
247 * if a process becomes not runnable while handling the misc flags, we
248 * need to pick a new one here and start from scratch. Also if the
249 * current process wasn' runnable, we pick a new one here
251 not_runnable_pick_new:
252 if (proc_is_preempted(p)) {
253 p->p_rts_flags &= ~RTS_PREEMPTED;
254 if (proc_is_runnable(p)) {
255 if (!is_zero64(p->p_cpu_time_left))
256 enqueue_head(p);
257 else
258 enqueue(p);
263 * if we have no process to run, set IDLE as the current process for
264 * time accounting and put the cpu in and idle state. After the next
265 * timer interrupt the execution resumes here and we can pick another
266 * process. If there is still nothing runnable we "schedule" IDLE again
268 while (!(p = pick_proc())) {
269 idle();
272 /* update the global variable */
273 get_cpulocal_var(proc_ptr) = p;
275 #ifdef CONFIG_SMP
276 if (p->p_misc_flags & MF_FLUSH_TLB && get_cpulocal_var(ptproc) == p)
277 tlb_must_refresh = 1;
278 #endif
279 switch_address_space(p);
281 check_misc_flags:
283 assert(p);
284 assert(proc_is_runnable(p));
285 while (p->p_misc_flags &
286 (MF_KCALL_RESUME | MF_DELIVERMSG |
287 MF_SC_DEFER | MF_SC_TRACE | MF_SC_ACTIVE)) {
289 assert(proc_is_runnable(p));
290 if (p->p_misc_flags & MF_KCALL_RESUME) {
291 kernel_call_resume(p);
293 else if (p->p_misc_flags & MF_DELIVERMSG) {
294 TRACE(VF_SCHEDULING, printf("delivering to %s / %d\n",
295 p->p_name, p->p_endpoint););
296 delivermsg(p);
298 else if (p->p_misc_flags & MF_SC_DEFER) {
299 /* Perform the system call that we deferred earlier. */
301 assert (!(p->p_misc_flags & MF_SC_ACTIVE));
303 arch_do_syscall(p);
305 /* If the process is stopped for signal delivery, and
306 * not blocked sending a message after the system call,
307 * inform PM.
309 if ((p->p_misc_flags & MF_SIG_DELAY) &&
310 !RTS_ISSET(p, RTS_SENDING))
311 sig_delay_done(p);
313 else if (p->p_misc_flags & MF_SC_TRACE) {
314 /* Trigger a system call leave event if this was a
315 * system call. We must do this after processing the
316 * other flags above, both for tracing correctness and
317 * to be able to use 'break'.
319 if (!(p->p_misc_flags & MF_SC_ACTIVE))
320 break;
322 p->p_misc_flags &=
323 ~(MF_SC_TRACE | MF_SC_ACTIVE);
325 /* Signal the "leave system call" event.
326 * Block the process.
328 cause_sig(proc_nr(p), SIGTRAP);
330 else if (p->p_misc_flags & MF_SC_ACTIVE) {
331 /* If MF_SC_ACTIVE was set, remove it now:
332 * we're leaving the system call.
334 p->p_misc_flags &= ~MF_SC_ACTIVE;
336 break;
340 * the selected process might not be runnable anymore. We have
341 * to checkit and schedule another one
343 if (!proc_is_runnable(p))
344 goto not_runnable_pick_new;
347 * check the quantum left before it runs again. We must do it only here
348 * as we are sure that a possible out-of-quantum message to the
349 * scheduler will not collide with the regular ipc
351 if (is_zero64(p->p_cpu_time_left))
352 proc_no_time(p);
354 * After handling the misc flags the selected process might not be
355 * runnable anymore. We have to checkit and schedule another one
357 if (!proc_is_runnable(p))
358 goto not_runnable_pick_new;
360 TRACE(VF_SCHEDULING, printf("cpu %d starting %s / %d "
361 "pc 0x%08x\n",
362 cpuid, p->p_name, p->p_endpoint, p->p_reg.pc););
363 #if DEBUG_TRACE
364 p->p_schedules++;
365 #endif
367 p = arch_finish_switch_to_user();
368 assert(!is_zero64(p->p_cpu_time_left));
370 context_stop(proc_addr(KERNEL));
372 /* If the process isn't the owner of FPU, enable the FPU exception */
373 if(get_cpulocal_var(fpu_owner) != p)
374 enable_fpu_exception();
375 else
376 disable_fpu_exception();
378 /* If MF_CONTEXT_SET is set, don't clobber process state within
379 * the kernel. The next kernel entry is OK again though.
381 p->p_misc_flags &= ~MF_CONTEXT_SET;
383 assert(p->p_seg.p_cr3 != 0);
384 #ifdef CONFIG_SMP
385 if (p->p_misc_flags & MF_FLUSH_TLB) {
386 if (tlb_must_refresh)
387 refresh_tlb();
388 p->p_misc_flags &= ~MF_FLUSH_TLB;
390 #endif
392 restart_local_timer();
395 * restore_user_context() carries out the actual mode switch from kernel
396 * to userspace. This function does not return
398 restore_user_context(p);
399 NOT_REACHABLE;
403 * handler for all synchronous IPC calls
405 static int do_sync_ipc(struct proc * caller_ptr, /* who made the call */
406 int call_nr, /* system call number and flags */
407 endpoint_t src_dst_e, /* src or dst of the call */
408 message *m_ptr) /* users pointer to a message */
410 int result; /* the system call's result */
411 int src_dst_p; /* Process slot number */
412 char *callname;
414 /* Check destination. RECEIVE is the only call that accepts ANY (in addition
415 * to a real endpoint). The other calls (SEND, SENDREC, and NOTIFY) require an
416 * endpoint to corresponds to a process. In addition, it is necessary to check
417 * whether a process is allowed to send to a given destination.
419 assert(call_nr != SENDA);
421 /* Only allow non-negative call_nr values less than 32 */
422 if (call_nr < 0 || call_nr > IPCNO_HIGHEST || call_nr >= 32
423 || !(callname = ipc_call_names[call_nr])) {
424 #if DEBUG_ENABLE_IPC_WARNINGS
425 printf("sys_call: trap %d not allowed, caller %d, src_dst %d\n",
426 call_nr, proc_nr(caller_ptr), src_dst_e);
427 #endif
428 return(ETRAPDENIED); /* trap denied by mask or kernel */
431 if (src_dst_e == ANY)
433 if (call_nr != RECEIVE)
435 #if 0
436 printf("sys_call: %s by %d with bad endpoint %d\n",
437 callname,
438 proc_nr(caller_ptr), src_dst_e);
439 #endif
440 return EINVAL;
442 src_dst_p = (int) src_dst_e;
444 else
446 /* Require a valid source and/or destination process. */
447 if(!isokendpt(src_dst_e, &src_dst_p)) {
448 #if 0
449 printf("sys_call: %s by %d with bad endpoint %d\n",
450 callname,
451 proc_nr(caller_ptr), src_dst_e);
452 #endif
453 return EDEADSRCDST;
456 /* If the call is to send to a process, i.e., for SEND, SENDNB,
457 * SENDREC or NOTIFY, verify that the caller is allowed to send to
458 * the given destination.
460 if (call_nr != RECEIVE)
462 if (!may_send_to(caller_ptr, src_dst_p)) {
463 #if DEBUG_ENABLE_IPC_WARNINGS
464 printf(
465 "sys_call: ipc mask denied %s from %d to %d\n",
466 callname,
467 caller_ptr->p_endpoint, src_dst_e);
468 #endif
469 return(ECALLDENIED); /* call denied by ipc mask */
474 /* Check if the process has privileges for the requested call. Calls to the
475 * kernel may only be SENDREC, because tasks always reply and may not block
476 * if the caller doesn't do receive().
478 if (!(priv(caller_ptr)->s_trap_mask & (1 << call_nr))) {
479 #if DEBUG_ENABLE_IPC_WARNINGS
480 printf("sys_call: %s not allowed, caller %d, src_dst %d\n",
481 callname, proc_nr(caller_ptr), src_dst_p);
482 #endif
483 return(ETRAPDENIED); /* trap denied by mask or kernel */
486 if (call_nr != SENDREC && call_nr != RECEIVE && iskerneln(src_dst_p)) {
487 #if DEBUG_ENABLE_IPC_WARNINGS
488 printf("sys_call: trap %s not allowed, caller %d, src_dst %d\n",
489 callname, proc_nr(caller_ptr), src_dst_e);
490 #endif
491 return(ETRAPDENIED); /* trap denied by mask or kernel */
494 switch(call_nr) {
495 case SENDREC:
496 /* A flag is set so that notifications cannot interrupt SENDREC. */
497 caller_ptr->p_misc_flags |= MF_REPLY_PEND;
498 /* fall through */
499 case SEND:
500 result = mini_send(caller_ptr, src_dst_e, m_ptr, 0);
501 if (call_nr == SEND || result != OK)
502 break; /* done, or SEND failed */
503 /* fall through for SENDREC */
504 case RECEIVE:
505 if (call_nr == RECEIVE) {
506 caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
507 IPC_STATUS_CLEAR(caller_ptr); /* clear IPC status code */
509 result = mini_receive(caller_ptr, src_dst_e, m_ptr, 0);
510 break;
511 case NOTIFY:
512 result = mini_notify(caller_ptr, src_dst_e);
513 break;
514 case SENDNB:
515 result = mini_send(caller_ptr, src_dst_e, m_ptr, NON_BLOCKING);
516 break;
517 default:
518 result = EBADCALL; /* illegal system call */
521 /* Now, return the result of the system call to the caller. */
522 return(result);
525 int do_ipc(reg_t r1, reg_t r2, reg_t r3)
527 struct proc *const caller_ptr = get_cpulocal_var(proc_ptr); /* get pointer to caller */
528 int call_nr = (int) r1;
530 assert(!RTS_ISSET(caller_ptr, RTS_SLOT_FREE));
532 /* bill kernel time to this process. */
533 kbill_ipc = caller_ptr;
535 /* If this process is subject to system call tracing, handle that first. */
536 if (caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) {
537 /* Are we tracing this process, and is it the first sys_call entry? */
538 if ((caller_ptr->p_misc_flags & (MF_SC_TRACE | MF_SC_DEFER)) ==
539 MF_SC_TRACE) {
540 /* We must notify the tracer before processing the actual
541 * system call. If we don't, the tracer could not obtain the
542 * input message. Postpone the entire system call.
544 caller_ptr->p_misc_flags &= ~MF_SC_TRACE;
545 caller_ptr->p_misc_flags |= MF_SC_DEFER;
547 /* Signal the "enter system call" event. Block the process. */
548 cause_sig(proc_nr(caller_ptr), SIGTRAP);
550 /* Preserve the return register's value. */
551 return caller_ptr->p_reg.retreg;
554 /* If the MF_SC_DEFER flag is set, the syscall is now being resumed. */
555 caller_ptr->p_misc_flags &= ~MF_SC_DEFER;
557 assert (!(caller_ptr->p_misc_flags & MF_SC_ACTIVE));
559 /* Set a flag to allow reliable tracing of leaving the system call. */
560 caller_ptr->p_misc_flags |= MF_SC_ACTIVE;
563 if(caller_ptr->p_misc_flags & MF_DELIVERMSG) {
564 panic("sys_call: MF_DELIVERMSG on for %s / %d\n",
565 caller_ptr->p_name, caller_ptr->p_endpoint);
568 /* Now check if the call is known and try to perform the request. The only
569 * system calls that exist in MINIX are sending and receiving messages.
570 * - SENDREC: combines SEND and RECEIVE in a single system call
571 * - SEND: sender blocks until its message has been delivered
572 * - RECEIVE: receiver blocks until an acceptable message has arrived
573 * - NOTIFY: asynchronous call; deliver notification or mark pending
574 * - SENDA: list of asynchronous send requests
576 switch(call_nr) {
577 case SENDREC:
578 case SEND:
579 case RECEIVE:
580 case NOTIFY:
581 case SENDNB:
583 /* Process accounting for scheduling */
584 caller_ptr->p_accounting.ipc_sync++;
586 return do_sync_ipc(caller_ptr, call_nr, (endpoint_t) r2,
587 (message *) r3);
589 case SENDA:
592 * Get and check the size of the argument in bytes as it is a
593 * table
595 size_t msg_size = (size_t) r2;
597 /* Process accounting for scheduling */
598 caller_ptr->p_accounting.ipc_async++;
600 /* Limit size to something reasonable. An arbitrary choice is 16
601 * times the number of process table entries.
603 if (msg_size > 16*(NR_TASKS + NR_PROCS))
604 return EDOM;
605 return mini_senda(caller_ptr, (asynmsg_t *) r3, msg_size);
607 case MINIX_KERNINFO:
609 /* It might not be initialized yet. */
610 if(!minix_kerninfo_user) {
611 return EBADCALL;
614 arch_set_secondary_ipc_return(caller_ptr, minix_kerninfo_user);
615 return OK;
617 default:
618 return EBADCALL; /* illegal system call */
622 /*===========================================================================*
623 * deadlock *
624 *===========================================================================*/
625 static int deadlock(function, cp, src_dst_e)
626 int function; /* trap number */
627 register struct proc *cp; /* pointer to caller */
628 endpoint_t src_dst_e; /* src or dst process */
630 /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
631 * a cyclic dependency of blocking send and receive calls. The only cyclic
632 * depency that is not fatal is if the caller and target directly SEND(REC)
633 * and RECEIVE to each other. If a deadlock is found, the group size is
634 * returned. Otherwise zero is returned.
636 register struct proc *xp; /* process pointer */
637 int group_size = 1; /* start with only caller */
638 #if DEBUG_ENABLE_IPC_WARNINGS
639 static struct proc *processes[NR_PROCS + NR_TASKS];
640 processes[0] = cp;
641 #endif
643 while (src_dst_e != ANY) { /* check while process nr */
644 int src_dst_slot;
645 okendpt(src_dst_e, &src_dst_slot);
646 xp = proc_addr(src_dst_slot); /* follow chain of processes */
647 assert(proc_ptr_ok(xp));
648 assert(!RTS_ISSET(xp, RTS_SLOT_FREE));
649 #if DEBUG_ENABLE_IPC_WARNINGS
650 processes[group_size] = xp;
651 #endif
652 group_size ++; /* extra process in group */
654 /* Check whether the last process in the chain has a dependency. If it
655 * has not, the cycle cannot be closed and we are done.
657 if((src_dst_e = P_BLOCKEDON(xp)) == NONE)
658 return 0;
660 /* Now check if there is a cyclic dependency. For group sizes of two,
661 * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
662 * or other combinations indicate a deadlock.
664 if (src_dst_e == cp->p_endpoint) { /* possible deadlock */
665 if (group_size == 2) { /* caller and src_dst */
666 /* The function number is magically converted to flags. */
667 if ((xp->p_rts_flags ^ (function << 2)) & RTS_SENDING) {
668 return(0); /* not a deadlock */
671 #if DEBUG_ENABLE_IPC_WARNINGS
673 int i;
674 printf("deadlock between these processes:\n");
675 for(i = 0; i < group_size; i++) {
676 printf(" %10s ", processes[i]->p_name);
678 printf("\n\n");
679 for(i = 0; i < group_size; i++) {
680 print_proc(processes[i]);
681 proc_stacktrace(processes[i]);
684 #endif
685 return(group_size); /* deadlock found */
688 return(0); /* not a deadlock */
691 /*===========================================================================*
692 * has_pending *
693 *===========================================================================*/
694 static int has_pending(sys_map_t *map, int src_p, int asynm)
696 /* Check to see if there is a pending message from the desired source
697 * available.
700 int src_id;
701 sys_id_t id = NULL_PRIV_ID;
702 #ifdef CONFIG_SMP
703 struct proc * p;
704 #endif
706 /* Either check a specific bit in the mask map, or find the first bit set in
707 * it (if any), depending on whether the receive was called on a specific
708 * source endpoint.
710 if (src_p != ANY) {
711 src_id = nr_to_id(src_p);
712 if (get_sys_bit(*map, src_id)) {
713 #ifdef CONFIG_SMP
714 p = proc_addr(id_to_nr(src_id));
715 if (asynm && RTS_ISSET(p, RTS_VMINHIBIT))
716 p->p_misc_flags |= MF_SENDA_VM_MISS;
717 else
718 #endif
719 id = src_id;
721 } else {
722 /* Find a source with a pending message */
723 for (src_id = 0; src_id < NR_SYS_PROCS; src_id += BITCHUNK_BITS) {
724 if (get_sys_bits(*map, src_id) != 0) {
725 #ifdef CONFIG_SMP
726 while (src_id < NR_SYS_PROCS) {
727 while (!get_sys_bit(*map, src_id)) {
728 if (src_id == NR_SYS_PROCS)
729 goto quit_search;
730 src_id++;
732 p = proc_addr(id_to_nr(src_id));
734 * We must not let kernel fiddle with pages of a
735 * process which are currently being changed by
736 * VM. It is dangerous! So do not report such a
737 * process as having pending async messages.
738 * Skip it.
740 if (asynm && RTS_ISSET(p, RTS_VMINHIBIT)) {
741 p->p_misc_flags |= MF_SENDA_VM_MISS;
742 src_id++;
743 } else
744 goto quit_search;
746 #else
747 while (!get_sys_bit(*map, src_id)) src_id++;
748 goto quit_search;
749 #endif
753 quit_search:
754 if (src_id < NR_SYS_PROCS) /* Found one */
755 id = src_id;
758 return(id);
761 /*===========================================================================*
762 * has_pending_notify *
763 *===========================================================================*/
764 int has_pending_notify(struct proc * caller, int src_p)
766 sys_map_t * map = &priv(caller)->s_notify_pending;
767 return has_pending(map, src_p, 0);
770 /*===========================================================================*
771 * has_pending_asend *
772 *===========================================================================*/
773 int has_pending_asend(struct proc * caller, int src_p)
775 sys_map_t * map = &priv(caller)->s_asyn_pending;
776 return has_pending(map, src_p, 1);
779 /*===========================================================================*
780 * unset_notify_pending *
781 *===========================================================================*/
782 void unset_notify_pending(struct proc * caller, int src_p)
784 sys_map_t * map = &priv(caller)->s_notify_pending;
785 unset_sys_bit(*map, src_p);
788 /*===========================================================================*
789 * mini_send *
790 *===========================================================================*/
791 int mini_send(
792 register struct proc *caller_ptr, /* who is trying to send a message? */
793 endpoint_t dst_e, /* to whom is message being sent? */
794 message *m_ptr, /* pointer to message buffer */
795 const int flags
798 /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
799 * for this message, copy the message to it and unblock 'dst'. If 'dst' is
800 * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
802 register struct proc *dst_ptr;
803 register struct proc **xpp;
804 int dst_p;
805 dst_p = _ENDPOINT_P(dst_e);
806 dst_ptr = proc_addr(dst_p);
808 if (RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT))
810 return EDEADSRCDST;
813 /* Check if 'dst' is blocked waiting for this message. The destination's
814 * RTS_SENDING flag may be set when its SENDREC call blocked while sending.
816 if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint)) {
817 int call;
818 /* Destination is indeed waiting for this message. */
819 assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));
821 if (!(flags & FROM_KERNEL)) {
822 if(copy_msg_from_user(m_ptr, &dst_ptr->p_delivermsg))
823 return EFAULT;
824 } else {
825 dst_ptr->p_delivermsg = *m_ptr;
826 IPC_STATUS_ADD_FLAGS(dst_ptr, IPC_FLG_MSG_FROM_KERNEL);
829 dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
830 dst_ptr->p_misc_flags |= MF_DELIVERMSG;
832 call = (caller_ptr->p_misc_flags & MF_REPLY_PEND ? SENDREC
833 : (flags & NON_BLOCKING ? SENDNB : SEND));
834 IPC_STATUS_ADD_CALL(dst_ptr, call);
836 if (dst_ptr->p_misc_flags & MF_REPLY_PEND)
837 dst_ptr->p_misc_flags &= ~MF_REPLY_PEND;
839 RTS_UNSET(dst_ptr, RTS_RECEIVING);
841 #if DEBUG_IPC_HOOK
842 hook_ipc_msgsend(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
843 hook_ipc_msgrecv(&dst_ptr->p_delivermsg, caller_ptr, dst_ptr);
844 #endif
845 } else {
846 if(flags & NON_BLOCKING) {
847 return(ENOTREADY);
850 /* Check for a possible deadlock before actually blocking. */
851 if (deadlock(SEND, caller_ptr, dst_e)) {
852 return(ELOCKED);
855 /* Destination is not waiting. Block and dequeue caller. */
856 if (!(flags & FROM_KERNEL)) {
857 if(copy_msg_from_user(m_ptr, &caller_ptr->p_sendmsg))
858 return EFAULT;
859 } else {
860 caller_ptr->p_sendmsg = *m_ptr;
862 * we need to remember that this message is from kernel so we
863 * can set the delivery status flags when the message is
864 * actually delivered
866 caller_ptr->p_misc_flags |= MF_SENDING_FROM_KERNEL;
869 RTS_SET(caller_ptr, RTS_SENDING);
870 caller_ptr->p_sendto_e = dst_e;
872 /* Process is now blocked. Put in on the destination's queue. */
873 assert(caller_ptr->p_q_link == NULL);
874 xpp = &dst_ptr->p_caller_q; /* find end of list */
875 while (*xpp) xpp = &(*xpp)->p_q_link;
876 *xpp = caller_ptr; /* add caller to end */
878 #if DEBUG_IPC_HOOK
879 hook_ipc_msgsend(&caller_ptr->p_sendmsg, caller_ptr, dst_ptr);
880 #endif
882 return(OK);
885 /*===========================================================================*
886 * mini_receive *
887 *===========================================================================*/
888 static int mini_receive(struct proc * caller_ptr,
889 endpoint_t src_e, /* which message source is wanted */
890 message * m_buff_usr, /* pointer to message buffer */
891 const int flags)
893 /* A process or task wants to get a message. If a message is already queued,
894 * acquire it and deblock the sender. If no message from the desired source
895 * is available block the caller.
897 register struct proc **xpp;
898 int r, src_id, src_proc_nr, src_p;
900 assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
902 /* This is where we want our message. */
903 caller_ptr->p_delivermsg_vir = (vir_bytes) m_buff_usr;
905 if(src_e == ANY) src_p = ANY;
906 else
908 okendpt(src_e, &src_p);
909 if (RTS_ISSET(proc_addr(src_p), RTS_NO_ENDPOINT))
911 return EDEADSRCDST;
916 /* Check to see if a message from desired source is already available. The
917 * caller's RTS_SENDING flag may be set if SENDREC couldn't send. If it is
918 * set, the process should be blocked.
920 if (!RTS_ISSET(caller_ptr, RTS_SENDING)) {
922 /* Check if there are pending notifications, except for SENDREC. */
923 if (! (caller_ptr->p_misc_flags & MF_REPLY_PEND)) {
925 /* Check for pending notifications */
926 if ((src_id = has_pending_notify(caller_ptr, src_p)) != NULL_PRIV_ID) {
927 endpoint_t hisep;
929 src_proc_nr = id_to_nr(src_id); /* get source proc */
930 #if DEBUG_ENABLE_IPC_WARNINGS
931 if(src_proc_nr == NONE) {
932 printf("mini_receive: sending notify from NONE\n");
934 #endif
935 assert(src_proc_nr != NONE);
936 unset_notify_pending(caller_ptr, src_id); /* no longer pending */
938 /* Found a suitable source, deliver the notification message. */
939 hisep = proc_addr(src_proc_nr)->p_endpoint;
940 assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
941 assert(src_e == ANY || hisep == src_e);
943 /* assemble message */
944 BuildNotifyMessage(&caller_ptr->p_delivermsg, src_proc_nr, caller_ptr);
945 caller_ptr->p_delivermsg.m_source = hisep;
946 caller_ptr->p_misc_flags |= MF_DELIVERMSG;
948 IPC_STATUS_ADD_CALL(caller_ptr, NOTIFY);
950 goto receive_done;
954 /* Check for pending asynchronous messages */
955 if (has_pending_asend(caller_ptr, src_p) != NULL_PRIV_ID) {
956 if (src_p != ANY)
957 r = try_one(proc_addr(src_p), caller_ptr);
958 else
959 r = try_async(caller_ptr);
961 if (r == OK) {
962 IPC_STATUS_ADD_CALL(caller_ptr, SENDA);
963 goto receive_done;
967 /* Check caller queue. Use pointer pointers to keep code simple. */
968 xpp = &caller_ptr->p_caller_q;
969 while (*xpp) {
970 struct proc * sender = *xpp;
972 if (src_e == ANY || src_p == proc_nr(sender)) {
973 int call;
974 assert(!RTS_ISSET(sender, RTS_SLOT_FREE));
975 assert(!RTS_ISSET(sender, RTS_NO_ENDPOINT));
977 /* Found acceptable message. Copy it and update status. */
978 assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
979 caller_ptr->p_delivermsg = sender->p_sendmsg;
980 caller_ptr->p_delivermsg.m_source = sender->p_endpoint;
981 caller_ptr->p_misc_flags |= MF_DELIVERMSG;
982 RTS_UNSET(sender, RTS_SENDING);
984 call = (sender->p_misc_flags & MF_REPLY_PEND ? SENDREC : SEND);
985 IPC_STATUS_ADD_CALL(caller_ptr, call);
988 * if the message is originaly from the kernel on behalf of this
989 * process, we must send the status flags accordingly
991 if (sender->p_misc_flags & MF_SENDING_FROM_KERNEL) {
992 IPC_STATUS_ADD_FLAGS(caller_ptr, IPC_FLG_MSG_FROM_KERNEL);
993 /* we can clean the flag now, not need anymore */
994 sender->p_misc_flags &= ~MF_SENDING_FROM_KERNEL;
996 if (sender->p_misc_flags & MF_SIG_DELAY)
997 sig_delay_done(sender);
999 #if DEBUG_IPC_HOOK
1000 hook_ipc_msgrecv(&caller_ptr->p_delivermsg, *xpp, caller_ptr);
1001 #endif
1003 *xpp = sender->p_q_link; /* remove from queue */
1004 sender->p_q_link = NULL;
1005 goto receive_done;
1007 xpp = &sender->p_q_link; /* proceed to next */
1011 /* No suitable message is available or the caller couldn't send in SENDREC.
1012 * Block the process trying to receive, unless the flags tell otherwise.
1014 if ( ! (flags & NON_BLOCKING)) {
1015 /* Check for a possible deadlock before actually blocking. */
1016 if (deadlock(RECEIVE, caller_ptr, src_e)) {
1017 return(ELOCKED);
1020 caller_ptr->p_getfrom_e = src_e;
1021 RTS_SET(caller_ptr, RTS_RECEIVING);
1022 return(OK);
1023 } else {
1024 return(ENOTREADY);
1027 receive_done:
1028 if (caller_ptr->p_misc_flags & MF_REPLY_PEND)
1029 caller_ptr->p_misc_flags &= ~MF_REPLY_PEND;
1030 return OK;
1033 /*===========================================================================*
1034 * mini_notify *
1035 *===========================================================================*/
1036 int mini_notify(
1037 const struct proc *caller_ptr, /* sender of the notification */
1038 endpoint_t dst_e /* which process to notify */
1041 register struct proc *dst_ptr;
1042 int src_id; /* source id for late delivery */
1043 int dst_p;
1045 if (!isokendpt(dst_e, &dst_p)) {
1046 util_stacktrace();
1047 printf("mini_notify: bogus endpoint %d\n", dst_e);
1048 return EDEADSRCDST;
1051 dst_ptr = proc_addr(dst_p);
1053 /* Check to see if target is blocked waiting for this message. A process
1054 * can be both sending and receiving during a SENDREC system call.
1056 if (WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
1057 ! (dst_ptr->p_misc_flags & MF_REPLY_PEND)) {
1058 /* Destination is indeed waiting for a message. Assemble a notification
1059 * message and deliver it. Copy from pseudo-source HARDWARE, since the
1060 * message is in the kernel's address space.
1062 assert(!(dst_ptr->p_misc_flags & MF_DELIVERMSG));
1064 BuildNotifyMessage(&dst_ptr->p_delivermsg, proc_nr(caller_ptr), dst_ptr);
1065 dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
1066 dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1068 IPC_STATUS_ADD_CALL(dst_ptr, NOTIFY);
1069 RTS_UNSET(dst_ptr, RTS_RECEIVING);
1071 return(OK);
1074 /* Destination is not ready to receive the notification. Add it to the
1075 * bit map with pending notifications. Note the indirectness: the privilege id
1076 * instead of the process number is used in the pending bit map.
1078 src_id = priv(caller_ptr)->s_id;
1079 set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
1080 return(OK);
1083 #define ASCOMPLAIN(caller, entry, field) \
1084 printf("kernel:%s:%d: asyn failed for %s in %s " \
1085 "(%d/%d, tab 0x%lx)\n",__FILE__,__LINE__, \
1086 field, caller->p_name, entry, priv(caller)->s_asynsize, priv(caller)->s_asyntab)
1088 #define A_RETR_FLD(entry, field) \
1089 if(data_copy(caller_ptr->p_endpoint, \
1090 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
1091 KERNEL, (vir_bytes) &tabent.field, \
1092 sizeof(tabent.field)) != OK) {\
1093 ASCOMPLAIN(caller_ptr, entry, #field); \
1094 r = EFAULT; \
1095 goto asyn_error; \
1098 #define A_RETR(entry) do { \
1099 if (data_copy( \
1100 caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
1101 KERNEL, (vir_bytes) &tabent, \
1102 sizeof(tabent)) != OK) { \
1103 ASCOMPLAIN(caller_ptr, entry, "message entry"); \
1104 r = EFAULT; \
1105 goto asyn_error; \
1107 } while(0)
1109 #define A_INSRT_FLD(entry, field) \
1110 if(data_copy(KERNEL, (vir_bytes) &tabent.field, \
1111 caller_ptr->p_endpoint, \
1112 table_v + (entry)*sizeof(asynmsg_t) + offsetof(struct asynmsg,field),\
1113 sizeof(tabent.field)) != OK) {\
1114 ASCOMPLAIN(caller_ptr, entry, #field); \
1115 r = EFAULT; \
1116 goto asyn_error; \
1119 #define A_INSRT(entry) do { \
1120 if (data_copy(KERNEL, (vir_bytes) &tabent, \
1121 caller_ptr->p_endpoint, table_v + (entry)*sizeof(asynmsg_t),\
1122 sizeof(tabent)) != OK) { \
1123 ASCOMPLAIN(caller_ptr, entry, "message entry"); \
1124 r = EFAULT; \
1125 goto asyn_error; \
1127 } while(0)
1129 /*===========================================================================*
1130 * try_deliver_senda *
1131 *===========================================================================*/
1132 int try_deliver_senda(struct proc *caller_ptr,
1133 asynmsg_t *table,
1134 size_t size)
1136 int r, dst_p, done, do_notify;
1137 unsigned int i;
1138 unsigned flags;
1139 endpoint_t dst;
1140 struct proc *dst_ptr;
1141 struct priv *privp;
1142 asynmsg_t tabent;
1143 const vir_bytes table_v = (vir_bytes) table;
1145 privp = priv(caller_ptr);
1147 /* Clear table */
1148 privp->s_asyntab = -1;
1149 privp->s_asynsize = 0;
1151 if (size == 0) return(OK); /* Nothing to do, just return */
1153 /* Scan the table */
1154 do_notify = FALSE;
1155 done = TRUE;
1157 /* Limit size to something reasonable. An arbitrary choice is 16
1158 * times the number of process table entries.
1160 * (this check has been duplicated in sys_call but is left here
1161 * as a sanity check)
1163 if (size > 16*(NR_TASKS + NR_PROCS)) {
1164 r = EDOM;
1165 return r;
1168 for (i = 0; i < size; i++) {
1169 /* Process each entry in the table and store the result in the table.
1170 * If we're done handling a message, copy the result to the sender. */
1172 dst = NONE;
1173 /* Copy message to kernel */
1174 A_RETR(i);
1175 flags = tabent.flags;
1176 dst = tabent.dst;
1178 if (flags == 0) continue; /* Skip empty entries */
1180 /* 'flags' field must contain only valid bits */
1181 if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR)) {
1182 r = EINVAL;
1183 goto asyn_error;
1185 if (!(flags & AMF_VALID)) { /* Must contain message */
1186 r = EINVAL;
1187 goto asyn_error;
1189 if (flags & AMF_DONE) continue; /* Already done processing */
1191 r = OK;
1192 if (!isokendpt(tabent.dst, &dst_p))
1193 r = EDEADSRCDST; /* Bad destination, report the error */
1194 else if (iskerneln(dst_p))
1195 r = ECALLDENIED; /* Asyn sends to the kernel are not allowed */
1196 else if (!may_send_to(caller_ptr, dst_p))
1197 r = ECALLDENIED; /* Send denied by IPC mask */
1198 else /* r == OK */
1199 dst_ptr = proc_addr(dst_p);
1201 /* XXX: RTS_NO_ENDPOINT should be removed */
1202 if (r == OK && RTS_ISSET(dst_ptr, RTS_NO_ENDPOINT)) {
1203 r = EDEADSRCDST;
1206 /* Check if 'dst' is blocked waiting for this message.
1207 * If AMF_NOREPLY is set, do not satisfy the receiving part of
1208 * a SENDREC.
1210 if (r == OK && WILLRECEIVE(dst_ptr, caller_ptr->p_endpoint) &&
1211 (!(flags&AMF_NOREPLY) || !(dst_ptr->p_misc_flags&MF_REPLY_PEND))) {
1212 /* Destination is indeed waiting for this message. */
1213 dst_ptr->p_delivermsg = tabent.msg;
1214 dst_ptr->p_delivermsg.m_source = caller_ptr->p_endpoint;
1215 dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1216 IPC_STATUS_ADD_CALL(dst_ptr, SENDA);
1217 RTS_UNSET(dst_ptr, RTS_RECEIVING);
1218 } else if (r == OK) {
1219 /* Inform receiver that something is pending */
1220 set_sys_bit(priv(dst_ptr)->s_asyn_pending,
1221 priv(caller_ptr)->s_id);
1222 done = FALSE;
1223 continue;
1226 /* Store results */
1227 tabent.result = r;
1228 tabent.flags = flags | AMF_DONE;
1229 if (flags & AMF_NOTIFY)
1230 do_notify = TRUE;
1231 else if (r != OK && (flags & AMF_NOTIFY_ERR))
1232 do_notify = TRUE;
1233 A_INSRT(i); /* Copy results to caller */
1234 continue;
1236 asyn_error:
1237 if (dst != NONE)
1238 printf("KERNEL senda error %d to %d\n", r, dst);
1239 else
1240 printf("KERNEL senda error %d\n", r);
1243 if (do_notify)
1244 mini_notify(proc_addr(ASYNCM), caller_ptr->p_endpoint);
1246 if (!done) {
1247 privp->s_asyntab = (vir_bytes) table;
1248 privp->s_asynsize = size;
1251 return(OK);
1254 /*===========================================================================*
1255 * mini_senda *
1256 *===========================================================================*/
1257 static int mini_senda(struct proc *caller_ptr, asynmsg_t *table, size_t size)
1259 struct priv *privp;
1261 privp = priv(caller_ptr);
1262 if (!(privp->s_flags & SYS_PROC)) {
1263 printf( "mini_senda: warning caller has no privilege structure\n");
1264 return(EPERM);
1267 return try_deliver_senda(caller_ptr, table, size);
1271 /*===========================================================================*
1272 * try_async *
1273 *===========================================================================*/
1274 static int try_async(caller_ptr)
1275 struct proc *caller_ptr;
1277 int r;
1278 struct priv *privp;
1279 struct proc *src_ptr;
1280 sys_map_t *map;
1282 map = &priv(caller_ptr)->s_asyn_pending;
1284 /* Try all privilege structures */
1285 for (privp = BEG_PRIV_ADDR; privp < END_PRIV_ADDR; ++privp) {
1286 if (privp->s_proc_nr == NONE)
1287 continue;
1289 if (!get_sys_bit(*map, privp->s_id))
1290 continue;
1292 src_ptr = proc_addr(privp->s_proc_nr);
1294 #ifdef CONFIG_SMP
1296 * Do not copy from a process which does not have a stable address space
1297 * due to VM fiddling with it
1299 if (RTS_ISSET(src_ptr, RTS_VMINHIBIT)) {
1300 src_ptr->p_misc_flags |= MF_SENDA_VM_MISS;
1301 continue;
1303 #endif
1305 assert(!(caller_ptr->p_misc_flags & MF_DELIVERMSG));
1306 if ((r = try_one(src_ptr, caller_ptr)) == OK)
1307 return(r);
1310 return(ESRCH);
1314 /*===========================================================================*
1315 * try_one *
1316 *===========================================================================*/
1317 static int try_one(struct proc *src_ptr, struct proc *dst_ptr)
1319 /* Try to receive an asynchronous message from 'src_ptr' */
1320 int r = EAGAIN, done, do_notify;
1321 unsigned int flags, i;
1322 size_t size;
1323 endpoint_t dst;
1324 struct proc *caller_ptr;
1325 struct priv *privp;
1326 asynmsg_t tabent;
1327 vir_bytes table_v;
1329 privp = priv(src_ptr);
1330 if (!(privp->s_flags & SYS_PROC)) return(EPERM);
1331 size = privp->s_asynsize;
1332 table_v = privp->s_asyntab;
1334 /* Clear table pending message flag. We're done unless we're not. */
1335 unset_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1337 if (size == 0) return(EAGAIN);
1338 if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return(ECALLDENIED);
1340 caller_ptr = src_ptr; /* Needed for A_ macros later on */
1342 /* Scan the table */
1343 do_notify = FALSE;
1344 done = TRUE;
1346 for (i = 0; i < size; i++) {
1347 /* Process each entry in the table and store the result in the table.
1348 * If we're done handling a message, copy the result to the sender.
1349 * Some checks done in mini_senda are duplicated here, as the sender
1350 * could've altered the contents of the table in the meantime.
1353 /* Copy message to kernel */
1354 A_RETR(i);
1355 flags = tabent.flags;
1356 dst = tabent.dst;
1358 if (flags == 0) continue; /* Skip empty entries */
1360 /* 'flags' field must contain only valid bits */
1361 if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR))
1362 r = EINVAL;
1363 else if (!(flags & AMF_VALID)) /* Must contain message */
1364 r = EINVAL;
1365 else if (flags & AMF_DONE) continue; /* Already done processing */
1367 /* Clear done flag. The sender is done sending when all messages in the
1368 * table are marked done or empty. However, we will know that only
1369 * the next time we enter this function or when the sender decides to
1370 * send additional asynchronous messages and manages to deliver them
1371 * all.
1373 done = FALSE;
1375 if (r == EINVAL)
1376 goto store_result;
1378 /* Message must be directed at receiving end */
1379 if (dst != dst_ptr->p_endpoint) continue;
1381 /* If AMF_NOREPLY is set, then this message is not a reply to a
1382 * SENDREC and thus should not satisfy the receiving part of the
1383 * SENDREC. This message is to be delivered later.
1385 if ((flags & AMF_NOREPLY) && (dst_ptr->p_misc_flags & MF_REPLY_PEND))
1386 continue;
1388 /* Destination is ready to receive the message; deliver it */
1389 r = OK;
1390 dst_ptr->p_delivermsg = tabent.msg;
1391 dst_ptr->p_delivermsg.m_source = src_ptr->p_endpoint;
1392 dst_ptr->p_misc_flags |= MF_DELIVERMSG;
1394 store_result:
1395 /* Store results for sender */
1396 tabent.result = r;
1397 tabent.flags = flags | AMF_DONE;
1398 if (flags & AMF_NOTIFY) do_notify = TRUE;
1399 else if (r != OK && (flags & AMF_NOTIFY_ERR)) do_notify = TRUE;
1400 A_INSRT(i); /* Copy results to sender */
1402 break;
1405 if (do_notify)
1406 mini_notify(proc_addr(ASYNCM), src_ptr->p_endpoint);
1408 if (done) {
1409 privp->s_asyntab = -1;
1410 privp->s_asynsize = 0;
1411 } else {
1412 set_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1415 asyn_error:
1416 return(r);
1419 /*===========================================================================*
1420 * cancel_async *
1421 *===========================================================================*/
1422 int cancel_async(struct proc *src_ptr, struct proc *dst_ptr)
1424 /* Cancel asynchronous messages from src to dst, because dst is not interested
1425 * in them (e.g., dst has been restarted) */
1426 int done, do_notify;
1427 unsigned int flags, i;
1428 size_t size;
1429 endpoint_t dst;
1430 struct proc *caller_ptr;
1431 struct priv *privp;
1432 asynmsg_t tabent;
1433 vir_bytes table_v;
1435 privp = priv(src_ptr);
1436 if (!(privp->s_flags & SYS_PROC)) return(EPERM);
1437 size = privp->s_asynsize;
1438 table_v = privp->s_asyntab;
1440 /* Clear table pending message flag. We're done unless we're not. */
1441 privp->s_asyntab = -1;
1442 privp->s_asynsize = 0;
1443 unset_sys_bit(priv(dst_ptr)->s_asyn_pending, privp->s_id);
1445 if (size == 0) return(EAGAIN);
1446 if (!may_send_to(src_ptr, proc_nr(dst_ptr))) return(ECALLDENIED);
1448 caller_ptr = src_ptr; /* Needed for A_ macros later on */
1450 /* Scan the table */
1451 do_notify = FALSE;
1452 done = TRUE;
1455 for (i = 0; i < size; i++) {
1456 /* Process each entry in the table and store the result in the table.
1457 * If we're done handling a message, copy the result to the sender.
1458 * Some checks done in mini_senda are duplicated here, as the sender
1459 * could've altered the contents of the table in the mean time.
1462 int r = EDEADSRCDST; /* Cancel delivery due to dead dst */
1464 /* Copy message to kernel */
1465 A_RETR(i);
1466 flags = tabent.flags;
1467 dst = tabent.dst;
1469 if (flags == 0) continue; /* Skip empty entries */
1471 /* 'flags' field must contain only valid bits */
1472 if(flags & ~(AMF_VALID|AMF_DONE|AMF_NOTIFY|AMF_NOREPLY|AMF_NOTIFY_ERR))
1473 r = EINVAL;
1474 else if (!(flags & AMF_VALID)) /* Must contain message */
1475 r = EINVAL;
1476 else if (flags & AMF_DONE) continue; /* Already done processing */
1478 /* Message must be directed at receiving end */
1479 if (dst != dst_ptr->p_endpoint) {
1480 done = FALSE;
1481 continue;
1484 /* Store results for sender */
1485 tabent.result = r;
1486 tabent.flags = flags | AMF_DONE;
1487 if (flags & AMF_NOTIFY) do_notify = TRUE;
1488 else if (r != OK && (flags & AMF_NOTIFY_ERR)) do_notify = TRUE;
1489 A_INSRT(i); /* Copy results to sender */
1492 if (do_notify)
1493 mini_notify(proc_addr(ASYNCM), src_ptr->p_endpoint);
1495 if (!done) {
1496 privp->s_asyntab = table_v;
1497 privp->s_asynsize = size;
1500 asyn_error:
1501 return(OK);
1504 /*===========================================================================*
1505 * enqueue *
1506 *===========================================================================*/
1507 void enqueue(
1508 register struct proc *rp /* this process is now runnable */
1511 /* Add 'rp' to one of the queues of runnable processes. This function is
1512 * responsible for inserting a process into one of the scheduling queues.
1513 * The mechanism is implemented here. The actual scheduling policy is
1514 * defined in sched() and pick_proc().
1516 * This function can be used x-cpu as it always uses the queues of the cpu the
1517 * process is assigned to.
1519 int q = rp->p_priority; /* scheduling queue to use */
1520 struct proc **rdy_head, **rdy_tail;
1522 assert(proc_is_runnable(rp));
1524 assert(q >= 0);
1526 rdy_head = get_cpu_var(rp->p_cpu, run_q_head);
1527 rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1529 /* Now add the process to the queue. */
1530 if (!rdy_head[q]) { /* add to empty queue */
1531 rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
1532 rp->p_nextready = NULL; /* mark new end */
1534 else { /* add to tail of queue */
1535 rdy_tail[q]->p_nextready = rp; /* chain tail of queue */
1536 rdy_tail[q] = rp; /* set new queue tail */
1537 rp->p_nextready = NULL; /* mark new end */
1540 if (cpuid == rp->p_cpu) {
1542 * enqueueing a process with a higher priority than the current one,
1543 * it gets preempted. The current process must be preemptible. Testing
1544 * the priority also makes sure that a process does not preempt itself
1546 struct proc * p;
1547 p = get_cpulocal_var(proc_ptr);
1548 assert(p);
1549 if((p->p_priority > rp->p_priority) &&
1550 (priv(p)->s_flags & PREEMPTIBLE))
1551 RTS_SET(p, RTS_PREEMPTED); /* calls dequeue() */
1553 #ifdef CONFIG_SMP
1555 * if the process was enqueued on a different cpu and the cpu is idle, i.e.
1556 * the time is off, we need to wake up that cpu and let it schedule this new
1557 * process
1559 else if (get_cpu_var(rp->p_cpu, cpu_is_idle)) {
1560 smp_schedule(rp->p_cpu);
1562 #endif
1564 /* Make note of when this process was added to queue */
1565 read_tsc_64(&(get_cpulocal_var(proc_ptr)->p_accounting.enter_queue));
1568 #if DEBUG_SANITYCHECKS
1569 assert(runqueues_ok_local());
1570 #endif
1573 /*===========================================================================*
1574 * enqueue_head *
1575 *===========================================================================*/
1577 * put a process at the front of its run queue. It comes handy when a process is
1578 * preempted and removed from run queue to not to have a currently not-runnable
1579 * process on a run queue. We have to put this process back at the fron to be
1580 * fair
1582 static void enqueue_head(struct proc *rp)
1584 const int q = rp->p_priority; /* scheduling queue to use */
1586 struct proc **rdy_head, **rdy_tail;
1588 assert(proc_ptr_ok(rp));
1589 assert(proc_is_runnable(rp));
1592 * the process was runnable without its quantum expired when dequeued. A
1593 * process with no time left should vahe been handled else and differently
1595 assert(!is_zero64(rp->p_cpu_time_left));
1597 assert(q >= 0);
1600 rdy_head = get_cpu_var(rp->p_cpu, run_q_head);
1601 rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1603 /* Now add the process to the queue. */
1604 if (!rdy_head[q]) { /* add to empty queue */
1605 rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
1606 rp->p_nextready = NULL; /* mark new end */
1608 else /* add to head of queue */
1609 rp->p_nextready = rdy_head[q]; /* chain head of queue */
1610 rdy_head[q] = rp; /* set new queue head */
1612 /* Make note of when this process was added to queue */
1613 read_tsc_64(&(get_cpulocal_var(proc_ptr->p_accounting.enter_queue)));
1616 /* Process accounting for scheduling */
1617 rp->p_accounting.dequeues--;
1618 rp->p_accounting.preempted++;
1620 #if DEBUG_SANITYCHECKS
1621 assert(runqueues_ok_local());
1622 #endif
1625 /*===========================================================================*
1626 * dequeue *
1627 *===========================================================================*/
1628 void dequeue(struct proc *rp)
1629 /* this process is no longer runnable */
1631 /* A process must be removed from the scheduling queues, for example, because
1632 * it has blocked. If the currently active process is removed, a new process
1633 * is picked to run by calling pick_proc().
1635 * This function can operate x-cpu as it always removes the process from the
1636 * queue of the cpu the process is currently assigned to.
1638 int q = rp->p_priority; /* queue to use */
1639 struct proc **xpp; /* iterate over queue */
1640 struct proc *prev_xp;
1641 u64_t tsc, tsc_delta;
1643 struct proc **rdy_tail;
1645 assert(proc_ptr_ok(rp));
1646 assert(!proc_is_runnable(rp));
1648 /* Side-effect for kernel: check if the task's stack still is ok? */
1649 assert (!iskernelp(rp) || *priv(rp)->s_stack_guard == STACK_GUARD);
1651 rdy_tail = get_cpu_var(rp->p_cpu, run_q_tail);
1653 /* Now make sure that the process is not in its ready queue. Remove the
1654 * process if it is found. A process can be made unready even if it is not
1655 * running by being sent a signal that kills it.
1657 prev_xp = NULL;
1658 for (xpp = get_cpu_var_ptr(rp->p_cpu, run_q_head[q]); *xpp;
1659 xpp = &(*xpp)->p_nextready) {
1660 if (*xpp == rp) { /* found process to remove */
1661 *xpp = (*xpp)->p_nextready; /* replace with next chain */
1662 if (rp == rdy_tail[q]) { /* queue tail removed */
1663 rdy_tail[q] = prev_xp; /* set new tail */
1666 break;
1668 prev_xp = *xpp; /* save previous in chain */
1672 /* Process accounting for scheduling */
1673 rp->p_accounting.dequeues++;
1675 /* this is not all that accurate on virtual machines, especially with
1676 IO bound processes that only spend a short amount of time in the queue
1677 at a time. */
1678 if (!is_zero64(rp->p_accounting.enter_queue)) {
1679 read_tsc_64(&tsc);
1680 tsc_delta = sub64(tsc, rp->p_accounting.enter_queue);
1681 rp->p_accounting.time_in_queue = add64(rp->p_accounting.time_in_queue,
1682 tsc_delta);
1683 make_zero64(rp->p_accounting.enter_queue);
1687 #if DEBUG_SANITYCHECKS
1688 assert(runqueues_ok_local());
1689 #endif
1692 /*===========================================================================*
1693 * pick_proc *
1694 *===========================================================================*/
1695 static struct proc * pick_proc(void)
1697 /* Decide who to run now. A new process is selected an returned.
1698 * When a billable process is selected, record it in 'bill_ptr', so that the
1699 * clock task can tell who to bill for system time.
1701 * This function always uses the run queues of the local cpu!
1703 register struct proc *rp; /* process to run */
1704 struct proc **rdy_head;
1705 int q; /* iterate over queues */
1707 /* Check each of the scheduling queues for ready processes. The number of
1708 * queues is defined in proc.h, and priorities are set in the task table.
1709 * If there are no processes ready to run, return NULL.
1711 rdy_head = get_cpulocal_var(run_q_head);
1712 for (q=0; q < NR_SCHED_QUEUES; q++) {
1713 if(!(rp = rdy_head[q])) {
1714 TRACE(VF_PICKPROC, printf("cpu %d queue %d empty\n", cpuid, q););
1715 continue;
1717 assert(proc_is_runnable(rp));
1718 if (priv(rp)->s_flags & BILLABLE)
1719 get_cpulocal_var(bill_ptr) = rp; /* bill for system time */
1720 return rp;
1722 return NULL;
1725 /*===========================================================================*
1726 * endpoint_lookup *
1727 *===========================================================================*/
1728 struct proc *endpoint_lookup(endpoint_t e)
1730 int n;
1732 if(!isokendpt(e, &n)) return NULL;
1734 return proc_addr(n);
1737 /*===========================================================================*
1738 * isokendpt_f *
1739 *===========================================================================*/
1740 #if DEBUG_ENABLE_IPC_WARNINGS
1741 int isokendpt_f(file, line, e, p, fatalflag)
1742 const char *file;
1743 int line;
1744 #else
1745 int isokendpt_f(e, p, fatalflag)
1746 #endif
1747 endpoint_t e;
1748 int *p;
1749 const int fatalflag;
1751 int ok = 0;
1752 /* Convert an endpoint number into a process number.
1753 * Return nonzero if the process is alive with the corresponding
1754 * generation number, zero otherwise.
1756 * This function is called with file and line number by the
1757 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
1758 * otherwise without. This allows us to print the where the
1759 * conversion was attempted, making the errors verbose without
1760 * adding code for that at every call.
1762 * If fatalflag is nonzero, we must panic if the conversion doesn't
1763 * succeed.
1765 *p = _ENDPOINT_P(e);
1766 ok = 0;
1767 if(isokprocn(*p) && !isemptyn(*p) && proc_addr(*p)->p_endpoint == e)
1768 ok = 1;
1769 if(!ok && fatalflag)
1770 panic("invalid endpoint: %d", e);
1771 return ok;
1774 static void notify_scheduler(struct proc *p)
1776 message m_no_quantum;
1777 int err;
1779 assert(!proc_kernel_scheduler(p));
1781 /* dequeue the process */
1782 RTS_SET(p, RTS_NO_QUANTUM);
1784 * Notify the process's scheduler that it has run out of
1785 * quantum. This is done by sending a message to the scheduler
1786 * on the process's behalf
1788 m_no_quantum.m_source = p->p_endpoint;
1789 m_no_quantum.m_type = SCHEDULING_NO_QUANTUM;
1790 m_no_quantum.SCHEDULING_ACNT_QUEUE = cpu_time_2_ms(p->p_accounting.time_in_queue);
1791 m_no_quantum.SCHEDULING_ACNT_DEQS = p->p_accounting.dequeues;
1792 m_no_quantum.SCHEDULING_ACNT_IPC_SYNC = p->p_accounting.ipc_sync;
1793 m_no_quantum.SCHEDULING_ACNT_IPC_ASYNC = p->p_accounting.ipc_async;
1794 m_no_quantum.SCHEDULING_ACNT_PREEMPT = p->p_accounting.preempted;
1795 m_no_quantum.SCHEDULING_ACNT_CPU = cpuid;
1796 m_no_quantum.SCHEDULING_ACNT_CPU_LOAD = cpu_load();
1798 /* Reset accounting */
1799 reset_proc_accounting(p);
1801 if ((err = mini_send(p, p->p_scheduler->p_endpoint,
1802 &m_no_quantum, FROM_KERNEL))) {
1803 panic("WARNING: Scheduling: mini_send returned %d\n", err);
1807 void proc_no_time(struct proc * p)
1809 if (!proc_kernel_scheduler(p) && priv(p)->s_flags & PREEMPTIBLE) {
1810 /* this dequeues the process */
1811 notify_scheduler(p);
1813 else {
1815 * non-preemptible processes only need their quantum to
1816 * be renewed. In fact, they by pass scheduling
1818 p->p_cpu_time_left = ms_2_cpu_time(p->p_quantum_size_ms);
1819 #if DEBUG_RACE
1820 RTS_SET(p, RTS_PREEMPTED);
1821 RTS_UNSET(p, RTS_PREEMPTED);
1822 #endif
1826 void reset_proc_accounting(struct proc *p)
1828 p->p_accounting.preempted = 0;
1829 p->p_accounting.ipc_sync = 0;
1830 p->p_accounting.ipc_async = 0;
1831 p->p_accounting.dequeues = 0;
1832 make_zero64(p->p_accounting.time_in_queue);
1833 make_zero64(p->p_accounting.enter_queue);
1836 void copr_not_available_handler(void)
1838 struct proc * p;
1839 struct proc ** local_fpu_owner;
1841 * Disable the FPU exception (both for the kernel and for the process
1842 * once it's scheduled), and initialize or restore the FPU state.
1845 disable_fpu_exception();
1847 p = get_cpulocal_var(proc_ptr);
1849 /* if FPU is not owned by anyone, do not store anything */
1850 local_fpu_owner = get_cpulocal_var_ptr(fpu_owner);
1851 if (*local_fpu_owner != NULL) {
1852 assert(*local_fpu_owner != p);
1853 save_local_fpu(*local_fpu_owner, FALSE /*retain*/);
1857 * restore the current process' state and let it run again, do not
1858 * schedule!
1860 if (restore_fpu(p) != OK) {
1861 /* Restoring FPU state failed. This is always the process's own
1862 * fault. Send a signal, and schedule another process instead.
1864 *local_fpu_owner = NULL; /* release FPU */
1865 cause_sig(proc_nr(p), SIGFPE);
1866 return;
1869 *local_fpu_owner = p;
1870 context_stop(proc_addr(KERNEL));
1871 restore_user_context(p);
1872 NOT_REACHABLE;
1875 void release_fpu(struct proc * p) {
1876 struct proc ** fpu_owner_ptr;
1878 fpu_owner_ptr = get_cpu_var_ptr(p->p_cpu, fpu_owner);
1880 if (*fpu_owner_ptr == p)
1881 *fpu_owner_ptr = NULL;