gpio:Initial GPIO driver.(ARM)
[minix.git] / drivers / floppy / floppy.c
blob2fb576c5f337f142a2f9f6fa1db805c8ecc823d6
1 /* This file contains the device dependent part of the driver for the Floppy
2 * Disk Controller (FDC) using the NEC PD765 chip.
4 * The file contains two entry points:
6 * floppy_task: main entry when system is brought up
8 * Changes:
9 * Sep 11, 2005 code cleanup (Andy Tanenbaum)
10 * Dec 01, 2004 floppy driver moved to user-space (Jorrit N. Herder)
11 * Sep 15, 2004 sync alarms/ local timer management (Jorrit N. Herder)
12 * Aug 12, 2003 null seek no interrupt fix (Mike Haertel)
13 * May 14, 2000 d-d/i rewrite (Kees J. Bot)
14 * Apr 04, 1992 device dependent/independent split (Kees J. Bot)
15 * Mar 27, 1992 last details on density checking (Kees J. Bot)
16 * Feb 14, 1992 check drive density on opens only (Andy Tanenbaum)
17 * 1991 len[] / motors / reset / step rate / ... (Bruce Evans)
18 * May 13, 1991 renovated the errors loop (Don Chapman)
19 * 1989 I/O vector to keep up with 1-1 interleave (Bruce Evans)
20 * Jan 06, 1988 allow 1.44 MB diskettes (Al Crew)
21 * Nov 28, 1986 better resetting for 386 (Peter Kay)
22 * Oct 27, 1986 fdc_results fixed for 8 MHz (Jakob Schripsema)
25 #include "floppy.h"
26 #include <timers.h>
27 #include <machine/diskparm.h>
28 #include <minix/sysutil.h>
29 #include <minix/syslib.h>
30 #include <minix/endpoint.h>
31 #include <stdio.h>
33 /* I/O Ports used by floppy disk task. */
34 #define DOR 0x3F2 /* motor drive control bits */
35 #define FDC_STATUS 0x3F4 /* floppy disk controller status register */
36 #define FDC_DATA 0x3F5 /* floppy disk controller data register */
37 #define FDC_RATE 0x3F7 /* transfer rate register */
38 #define DMA_ADDR 0x004 /* port for low 16 bits of DMA address */
39 #define DMA_TOP 0x081 /* port for top 8 bits of 24-bit DMA addr */
40 #define DMA_COUNT 0x005 /* port for DMA count (count = bytes - 1) */
41 #define DMA_FLIPFLOP 0x00C /* DMA byte pointer flip-flop */
42 #define DMA_MODE 0x00B /* DMA mode port */
43 #define DMA_INIT 0x00A /* DMA init port */
44 #define DMA_RESET_VAL 0x006
46 #define DMA_ADDR_MASK 0xFFFFFF /* mask to verify DMA address is 24-bit */
48 /* Status registers returned as result of operation. */
49 #define ST0 0x00 /* status register 0 */
50 #define ST1 0x01 /* status register 1 */
51 #define ST2 0x02 /* status register 2 */
52 #define ST3 0x00 /* status register 3 (return by DRIVE_SENSE) */
53 #define ST_CYL 0x03 /* slot where controller reports cylinder */
54 #define ST_HEAD 0x04 /* slot where controller reports head */
55 #define ST_SEC 0x05 /* slot where controller reports sector */
56 #define ST_PCN 0x01 /* slot where controller reports present cyl */
58 /* Fields within the I/O ports. */
59 /* Main status register. */
60 #define CTL_BUSY 0x10 /* bit is set when read or write in progress */
61 #define DIRECTION 0x40 /* bit is set when reading data reg is valid */
62 #define MASTER 0x80 /* bit is set when data reg can be accessed */
64 /* Digital output port (DOR). */
65 #define MOTOR_SHIFT 4 /* high 4 bits control the motors in DOR */
66 #define ENABLE_INT 0x0C /* used for setting DOR port */
68 /* ST0. */
69 #define ST0_BITS_TRANS 0xD8 /* check 4 bits of status */
70 #define TRANS_ST0 0x00 /* 4 bits of ST0 for READ/WRITE */
71 #define ST0_BITS_SEEK 0xF8 /* check top 5 bits of seek status */
72 #define SEEK_ST0 0x20 /* top 5 bits of ST0 for SEEK */
74 /* ST1. */
75 #define BAD_SECTOR 0x05 /* if these bits are set in ST1, recalibrate */
76 #define WRITE_PROTECT 0x02 /* bit is set if diskette is write protected */
78 /* ST2. */
79 #define BAD_CYL 0x1F /* if any of these bits are set, recalibrate */
81 /* ST3 (not used). */
82 #define ST3_FAULT 0x80 /* if this bit is set, drive is sick */
83 #define ST3_WR_PROTECT 0x40 /* set when diskette is write protected */
84 #define ST3_READY 0x20 /* set when drive is ready */
86 /* Floppy disk controller command bytes. */
87 #define FDC_SEEK 0x0F /* command the drive to seek */
88 #define FDC_READ 0xE6 /* command the drive to read */
89 #define FDC_WRITE 0xC5 /* command the drive to write */
90 #define FDC_SENSE 0x08 /* command the controller to tell its status */
91 #define FDC_RECALIBRATE 0x07 /* command the drive to go to cyl 0 */
92 #define FDC_SPECIFY 0x03 /* command the drive to accept params */
93 #define FDC_READ_ID 0x4A /* command the drive to read sector identity */
94 #define FDC_FORMAT 0x4D /* command the drive to format a track */
96 /* DMA channel commands. */
97 #define DMA_READ 0x46 /* DMA read opcode */
98 #define DMA_WRITE 0x4A /* DMA write opcode */
100 /* Parameters for the disk drive. */
101 #define HC_SIZE 2880 /* # sectors on largest legal disk (1.44MB) */
102 #define NR_HEADS 0x02 /* two heads (i.e., two tracks/cylinder) */
103 #define MAX_SECTORS 18 /* largest # sectors per track */
104 #define DTL 0xFF /* determines data length (sector size) */
105 #define SPEC2 0x02 /* second parameter to SPECIFY */
106 #define MOTOR_OFF (3*system_hz) /* how long to wait before stopping motor */
107 #define WAKEUP (2*system_hz) /* timeout on I/O, FDC won't quit. */
109 /* Error codes */
110 #define ERR_SEEK (-1) /* bad seek */
111 #define ERR_TRANSFER (-2) /* bad transfer */
112 #define ERR_STATUS (-3) /* something wrong when getting status */
113 #define ERR_READ_ID (-4) /* bad read id */
114 #define ERR_RECALIBRATE (-5) /* recalibrate didn't work properly */
115 #define ERR_DRIVE (-6) /* something wrong with a drive */
116 #define ERR_WR_PROTECT (-7) /* diskette is write protected */
117 #define ERR_TIMEOUT (-8) /* interrupt timeout */
119 /* No retries on some errors. */
120 #define err_no_retry(err) ((err) <= ERR_WR_PROTECT)
122 /* Encoding of drive type in minor device number. */
123 #define DEV_TYPE_BITS 0x7C /* drive type + 1, if nonzero */
124 #define DEV_TYPE_SHIFT 2 /* right shift to normalize type bits */
125 #define FORMAT_DEV_BIT 0x80 /* bit in minor to turn write into format */
127 /* Miscellaneous. */
128 #define MAX_ERRORS 6 /* how often to try rd/wt before quitting */
129 #define MAX_RESULTS 7 /* max number of bytes controller returns */
130 #define NR_DRIVES 2 /* maximum number of drives */
131 #define DIVISOR 128 /* used for sector size encoding */
132 #define SECTOR_SIZE_CODE 2 /* code to say "512" to the controller */
133 #define TIMEOUT_MICROS 5000000L /* microseconds waiting for FDC */
134 #define NT 7 /* number of diskette/drive combinations */
135 #define UNCALIBRATED 0 /* drive needs to be calibrated at next use */
136 #define CALIBRATED 1 /* no calibration needed */
137 #define BASE_SECTOR 1 /* sectors are numbered starting at 1 */
138 #define NO_SECTOR ((unsigned) -1) /* current sector unknown */
139 #define NO_CYL (-1) /* current cylinder unknown, must seek */
140 #define NO_DENS 100 /* current media unknown */
141 #define BSY_IDLE 0 /* busy doing nothing */
142 #define BSY_IO 1 /* busy doing I/O */
143 #define BSY_WAKEN 2 /* got a wakeup call */
145 /* Seven combinations of diskette/drive are supported.
147 * # Diskette Drive Sectors Tracks Rotation Data-rate Comment
148 * 0 360K 360K 9 40 300 RPM 250 kbps Standard PC DSDD
149 * 1 1.2M 1.2M 15 80 360 RPM 500 kbps AT disk in AT drive
150 * 2 360K 720K 9 40 300 RPM 250 kbps Quad density PC
151 * 3 720K 720K 9 80 300 RPM 250 kbps Toshiba, et al.
152 * 4 360K 1.2M 9 40 360 RPM 300 kbps PC disk in AT drive
153 * 5 720K 1.2M 9 80 360 RPM 300 kbps Toshiba in AT drive
154 * 6 1.44M 1.44M 18 80 300 RPM 500 kbps PS/2, et al.
156 * In addition, 720K diskettes can be read in 1.44MB drives, but that does
157 * not need a different set of parameters. This combination uses
159 * 3 720K 1.44M 9 80 300 RPM 250 kbps PS/2, et al.
161 static struct density {
162 u8_t secpt; /* sectors per track */
163 u8_t cyls; /* tracks per side */
164 u8_t steps; /* steps per cylinder (2 = double step) */
165 u8_t test; /* sector to try for density test */
166 u8_t rate; /* data rate (2=250, 1=300, 0=500 kbps) */
167 clock_t start_ms; /* motor start (milliseconds) */
168 u8_t gap; /* gap size */
169 u8_t spec1; /* first specify byte (SRT/HUT) */
170 } fdensity[NT] = {
171 { 9, 40, 1, 4*9, 2, 500, 0x2A, 0xDF }, /* 360K / 360K */
172 { 15, 80, 1, 14, 0, 500, 0x1B, 0xDF }, /* 1.2M / 1.2M */
173 { 9, 40, 2, 2*9, 2, 500, 0x2A, 0xDF }, /* 360K / 720K */
174 { 9, 80, 1, 4*9, 2, 750, 0x2A, 0xDF }, /* 720K / 720K */
175 { 9, 40, 2, 2*9, 1, 500, 0x23, 0xDF }, /* 360K / 1.2M */
176 { 9, 80, 1, 4*9, 1, 500, 0x23, 0xDF }, /* 720K / 1.2M */
177 { 18, 80, 1, 17, 0, 750, 0x1B, 0xCF }, /* 1.44M / 1.44M */
180 /* The following table is used with the test_sector array to recognize a
181 * drive/floppy combination. The sector to test has been determined by
182 * looking at the differences in gap size, sectors/track, and double stepping.
183 * This means that types 0 and 3 can't be told apart, only the motor start
184 * time differs. If a read test succeeds then the drive is limited to the
185 * set of densities it can support to avoid unnecessary tests in the future.
188 #define b(d) (1 << (d)) /* bit for density d. */
190 static struct test_order {
191 u8_t t_density; /* floppy/drive type */
192 u8_t t_class; /* limit drive to this class of densities */
193 } test_order[NT-1] = {
194 { 6, b(3) | b(6) }, /* 1.44M {720K, 1.44M} */
195 { 1, b(1) | b(4) | b(5) }, /* 1.2M {1.2M, 360K, 720K} */
196 { 3, b(2) | b(3) | b(6) }, /* 720K {360K, 720K, 1.44M} */
197 { 4, b(1) | b(4) | b(5) }, /* 360K {1.2M, 360K, 720K} */
198 { 5, b(1) | b(4) | b(5) }, /* 720K {1.2M, 360K, 720K} */
199 { 2, b(2) | b(3) }, /* 360K {360K, 720K} */
200 /* Note that type 0 is missing, type 3 can read/write it too, which is
201 * why the type 3 parameters have been pessimized to be like type 0.
205 /* Variables. */
206 static struct floppy { /* main drive struct, one entry per drive */
207 unsigned fl_curcyl; /* current cylinder */
208 unsigned fl_hardcyl; /* hardware cylinder, as opposed to: */
209 unsigned fl_cylinder; /* cylinder number addressed */
210 unsigned fl_sector; /* sector addressed */
211 unsigned fl_head; /* head number addressed */
212 char fl_calibration; /* CALIBRATED or UNCALIBRATED */
213 u8_t fl_density; /* NO_DENS = ?, 0 = 360K; 1 = 360K/1.2M; etc.*/
214 u8_t fl_class; /* bitmap for possible densities */
215 timer_t fl_tmr_stop; /* timer to stop motor */
216 struct device fl_geom; /* Geometry of the drive */
217 struct device fl_part[NR_PARTITIONS]; /* partition's base & size */
218 } floppy[NR_DRIVES];
220 static int irq_hook_id; /* id of irq hook at the kernel */
221 int motor_status; /* bitmap of current motor status */
222 static int need_reset; /* set to 1 when controller must be reset */
223 unsigned f_drive; /* selected drive */
224 static unsigned f_device; /* selected minor device */
225 static struct floppy *f_fp; /* current drive */
226 static struct density *f_dp; /* current density parameters */
227 static struct density *prev_dp;/* previous density parameters */
228 static unsigned f_sectors; /* equal to f_dp->secpt (needed a lot) */
229 u16_t f_busy; /* BSY_IDLE, BSY_IO, BSY_WAKEN */
230 static struct device *f_dv; /* device's base and size */
231 static struct disk_parameter_s fmt_param; /* parameters for format */
232 static u8_t f_results[MAX_RESULTS];/* the controller can give lots of output */
234 /* The floppy uses various timers. These are managed by the floppy driver
235 * itself, because only a single synchronous alarm is available per process.
236 * Besides the 'f_tmr_timeout' timer below, the floppy structure for each
237 * floppy disk drive contains a 'fl_tmr_stop' timer.
239 static timer_t f_tmr_timeout; /* timer for various timeouts */
240 static u32_t system_hz; /* system clock frequency */
241 static void f_expire_tmrs(clock_t stamp);
242 static void stop_motor(timer_t *tp);
243 static void f_timeout(timer_t *tp);
245 static struct device *f_prepare(dev_t device);
246 static struct device *f_part(dev_t minor);
247 static void f_cleanup(void);
248 static ssize_t f_transfer(dev_t minor, int do_write, u64_t position,
249 endpoint_t proc_nr, iovec_t *iov, unsigned int nr_req, int flags);
250 static int dma_setup(int do_write);
251 static void start_motor(void);
252 static int seek(void);
253 static int fdc_transfer(int do_write);
254 static int fdc_results(void);
255 static int fdc_command(const u8_t *cmd, int len);
256 static void fdc_out(int val);
257 static int recalibrate(void);
258 static void f_reset(void);
259 static int f_intr_wait(void);
260 static int read_id(void);
261 static int f_do_open(dev_t minor, int access);
262 static int f_do_close(dev_t minor);
263 static int test_read(int density);
264 static void f_geometry(dev_t minor, struct partition *entry);
266 /* Entry points to this driver. */
267 static struct blockdriver f_dtab = {
268 BLOCKDRIVER_TYPE_DISK, /* handle partition requests */
269 f_do_open, /* open or mount request, sense type of diskette */
270 f_do_close, /* nothing on a close */
271 f_transfer, /* do the I/O */
272 NULL, /* no other I/O control requests are supported */
273 f_cleanup, /* cleanup before sending reply to user process */
274 f_part, /* return partition information structure */
275 f_geometry, /* tell the geometry of the diskette */
276 NULL, /* no processing of hardware interrupts */
277 f_expire_tmrs,/* expire all alarm timers */
278 NULL, /* no processing of other messages */
279 NULL /* no threading support */
282 static char *floppy_buf;
283 static phys_bytes floppy_buf_phys;
285 /* SEF functions and variables. */
286 static void sef_local_startup(void);
287 static int sef_cb_init_fresh(int type, sef_init_info_t *info);
288 static void sef_cb_signal_handler(int signo);
289 EXTERN int sef_cb_lu_prepare(int state);
290 EXTERN int sef_cb_lu_state_isvalid(int state);
291 EXTERN void sef_cb_lu_state_dump(int state);
292 int last_was_write;
294 /*===========================================================================*
295 * floppy_task *
296 *===========================================================================*/
297 int main(void)
299 /* SEF local startup. */
300 sef_local_startup();
302 /* Call the generic receive loop. */
303 blockdriver_task(&f_dtab);
305 return(OK);
308 /*===========================================================================*
309 * sef_local_startup *
310 *===========================================================================*/
311 static void sef_local_startup(void)
313 /* Register init callbacks. */
314 sef_setcb_init_fresh(sef_cb_init_fresh);
315 sef_setcb_init_lu(sef_cb_init_fresh);
317 /* Register live update callbacks. */
318 sef_setcb_lu_prepare(sef_cb_lu_prepare);
319 sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid);
320 sef_setcb_lu_state_dump(sef_cb_lu_state_dump);
322 /* Register signal callbacks. */
323 sef_setcb_signal_handler(sef_cb_signal_handler);
325 /* Let SEF perform startup. */
326 sef_startup();
329 /*===========================================================================*
330 * sef_cb_init_fresh *
331 *===========================================================================*/
332 static int sef_cb_init_fresh(int type, sef_init_info_t *UNUSED(info))
334 /* Initialize the floppy driver. */
335 struct floppy *fp;
336 int s;
338 /* Initialize the floppy structure and the timers. */
339 system_hz = sys_hz();
341 if(!(floppy_buf = alloc_contig(2*DMA_BUF_SIZE,
342 AC_LOWER16M | AC_ALIGN4K, &floppy_buf_phys)))
343 panic("couldn't allocate dma buffer");
345 init_timer(&f_tmr_timeout);
347 for (fp = &floppy[0]; fp < &floppy[NR_DRIVES]; fp++) {
348 fp->fl_curcyl = NO_CYL;
349 fp->fl_density = NO_DENS;
350 fp->fl_class = ~0;
351 init_timer(&fp->fl_tmr_stop);
354 /* Set IRQ policy, only request notifications, do not automatically
355 * reenable interrupts. ID return on interrupt is the IRQ line number.
357 irq_hook_id = FLOPPY_IRQ;
358 if ((s=sys_irqsetpolicy(FLOPPY_IRQ, 0, &irq_hook_id )) != OK)
359 panic("Couldn't set IRQ policy: %d", s);
360 if ((s=sys_irqenable(&irq_hook_id)) != OK)
361 panic("Couldn't enable IRQs: %d", s);
363 /* Announce we are up! */
364 blockdriver_announce(type);
366 return(OK);
369 /*===========================================================================*
370 * sef_cb_signal_handler *
371 *===========================================================================*/
372 static void sef_cb_signal_handler(int signo)
374 int s;
376 /* Only check for termination signal, ignore anything else. */
377 if (signo != SIGTERM) return;
379 /* Stop all activity and cleanly exit with the system. */
380 if ((s=sys_outb(DOR, ENABLE_INT)) != OK)
381 panic("Sys_outb failed: %d", s);
382 exit(0);
385 /*===========================================================================*
386 * f_expire_tmrs *
387 *===========================================================================*/
388 static void f_expire_tmrs(clock_t stamp)
390 /* A synchronous alarm message was received. Call the watchdog function for
391 * each expired timer, if any.
394 expire_timers(stamp);
397 /*===========================================================================*
398 * f_prepare *
399 *===========================================================================*/
400 static struct device *f_prepare(dev_t device)
402 /* Prepare for I/O on a device. */
404 f_device = device;
405 f_drive = device & ~(DEV_TYPE_BITS | FORMAT_DEV_BIT);
406 if (f_drive >= NR_DRIVES) return(NULL);
408 f_fp = &floppy[f_drive];
409 f_dv = &f_fp->fl_geom;
410 if (f_fp->fl_density < NT) {
411 f_dp = &fdensity[f_fp->fl_density];
412 f_sectors = f_dp->secpt;
413 f_fp->fl_geom.dv_size = mul64u((long) (NR_HEADS * f_sectors
414 * f_dp->cyls), SECTOR_SIZE);
417 /* A partition? */
418 if ((device &= DEV_TYPE_BITS) >= MINOR_fd0p0)
419 f_dv = &f_fp->fl_part[(device - MINOR_fd0p0) >> DEV_TYPE_SHIFT];
421 return f_dv;
424 /*===========================================================================*
425 * f_part *
426 *===========================================================================*/
427 static struct device *f_part(dev_t minor)
429 /* Return a pointer to the partition information of the given minor device. */
431 return f_prepare(minor);
434 /*===========================================================================*
435 * f_cleanup *
436 *===========================================================================*/
437 static void f_cleanup(void)
439 /* Start a timer to turn the motor off in a few seconds. */
440 set_timer(&f_fp->fl_tmr_stop, MOTOR_OFF, stop_motor, f_drive);
442 /* Exiting the floppy driver, so forget where we are. */
443 f_fp->fl_sector = NO_SECTOR;
446 /*===========================================================================*
447 * f_transfer *
448 *===========================================================================*/
449 static ssize_t f_transfer(
450 dev_t minor, /* minor device number */
451 int do_write, /* read or write? */
452 u64_t pos64, /* offset on device to read or write */
453 endpoint_t proc_nr, /* process doing the request */
454 iovec_t *iov, /* pointer to read or write request vector */
455 unsigned int nr_req, /* length of request vector */
456 int UNUSED(flags) /* transfer flags */
459 #define NO_OFFSET -1
460 struct floppy *fp;
461 iovec_t *iop, *iov_end = iov + nr_req;
462 int s, r, errors, nr;
463 unsigned block, nbytes, count, chunk, sector;
464 unsigned long dv_size;
465 vir_bytes user_offset, iov_offset = 0, iop_offset;
466 unsigned long position;
467 signed long uoffsets[MAX_SECTORS], *up;
468 cp_grant_id_t ugrants[MAX_SECTORS], *ug = NULL;
469 u8_t cmd[3];
470 ssize_t total;
472 if (f_prepare(minor) == NULL) return(ENXIO);
474 fp = f_fp;
475 dv_size = cv64ul(f_dv->dv_size);
477 if (ex64hi(pos64) != 0)
478 return OK; /* Way beyond EOF */
479 position= cv64ul(pos64);
480 total = 0;
482 /* Record the direction of the last transfer performed. */
483 last_was_write = do_write;
485 /* Check disk address. */
486 if ((position & SECTOR_MASK) != 0) return(EINVAL);
488 #if 0 /* XXX hack to create a disk driver that crashes */
489 { static int count= 0; if (++count > 10) {
490 printf("floppy: time to die\n"); *(int *)-1= 42;
492 #endif
494 errors = 0;
495 while (nr_req > 0) {
496 /* How many bytes to transfer? */
497 nbytes = 0;
498 for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
500 /* Which block on disk and how close to EOF? */
501 if (position >= dv_size) return(total); /* At EOF */
502 if (position + nbytes > dv_size) nbytes = dv_size - position;
503 block = div64u(add64ul(f_dv->dv_base, position), SECTOR_SIZE);
505 if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
507 /* Using a formatting device? */
508 if (f_device & FORMAT_DEV_BIT) {
509 if (!do_write) return(EIO);
510 if (iov->iov_size < SECTOR_SIZE + sizeof(fmt_param))
511 return(EINVAL);
513 if(proc_nr != SELF) {
514 s=sys_safecopyfrom(proc_nr, iov->iov_addr,
515 SECTOR_SIZE + iov_offset, (vir_bytes) &fmt_param,
516 (phys_bytes) sizeof(fmt_param));
517 if(s != OK)
518 panic("sys_safecopyfrom failed: %d", s);
519 } else {
520 memcpy(&fmt_param, (void *) (iov->iov_addr +
521 SECTOR_SIZE + iov_offset),
522 (phys_bytes) sizeof(fmt_param));
525 /* Check that the number of sectors in the data is reasonable,
526 * to avoid division by 0. Leave checking of other data to
527 * the FDC.
529 if (fmt_param.sectors_per_cylinder == 0) return(EIO);
531 /* Only the first sector of the parameters now needed. */
532 iov->iov_size = nbytes = SECTOR_SIZE;
535 /* Only try one sector if there were errors. */
536 if (errors > 0) nbytes = SECTOR_SIZE;
538 /* Compute cylinder and head of the track to access. */
539 fp->fl_cylinder = block / (NR_HEADS * f_sectors);
540 fp->fl_hardcyl = fp->fl_cylinder * f_dp->steps;
541 fp->fl_head = (block % (NR_HEADS * f_sectors)) / f_sectors;
543 /* For each sector on this track compute the user address it is to
544 * go or to come from.
546 for (up = uoffsets; up < uoffsets + MAX_SECTORS; up++) *up = NO_OFFSET;
547 count = 0;
548 iop = iov;
549 sector = block % f_sectors;
550 nr = 0;
551 iop_offset = iov_offset;
552 for (;;) {
553 nr++;
554 user_offset = iop_offset;
555 chunk = iop->iov_size;
556 if ((chunk & SECTOR_MASK) != 0) return(EINVAL);
558 while (chunk > 0) {
559 ugrants[sector] = iop->iov_addr;
560 uoffsets[sector++] = user_offset;
561 chunk -= SECTOR_SIZE;
562 user_offset += SECTOR_SIZE;
563 count += SECTOR_SIZE;
564 if (sector == f_sectors || count == nbytes)
565 goto track_set_up;
567 iop_offset = 0;
568 iop++;
570 track_set_up:
572 /* First check to see if a reset is needed. */
573 if (need_reset) f_reset();
575 /* See if motor is running; if not, turn it on and wait. */
576 start_motor();
578 /* Set the stepping rate and data rate */
579 if (f_dp != prev_dp) {
580 cmd[0] = FDC_SPECIFY;
581 cmd[1] = f_dp->spec1;
582 cmd[2] = SPEC2;
583 (void) fdc_command(cmd, 3);
584 if ((s=sys_outb(FDC_RATE, f_dp->rate)) != OK)
585 panic("Sys_outb failed: %d", s);
586 prev_dp = f_dp;
589 /* If we are going to a new cylinder, perform a seek. */
590 r = seek();
592 /* Avoid read_id() if we don't plan to read much. */
593 if (fp->fl_sector == NO_SECTOR && count < (6 * SECTOR_SIZE))
594 fp->fl_sector = 0;
596 for (nbytes = 0; nbytes < count; nbytes += SECTOR_SIZE) {
597 if (fp->fl_sector == NO_SECTOR) {
598 /* Find out what the current sector is. This often
599 * fails right after a seek, so try it twice.
601 if (r == OK && read_id() != OK) r = read_id();
604 /* Look for the next job in uoffsets[] */
605 if (r == OK) {
606 for (;;) {
607 if (fp->fl_sector >= f_sectors)
608 fp->fl_sector = 0;
610 up = &uoffsets[fp->fl_sector];
611 ug = &ugrants[fp->fl_sector];
612 if (*up != NO_OFFSET) break;
613 fp->fl_sector++;
616 if (do_write) {
617 /* Copy the user bytes to the DMA buffer. */
618 if(proc_nr != SELF) {
619 s=sys_safecopyfrom(proc_nr, *ug, *up,
620 (vir_bytes) floppy_buf,
621 (phys_bytes) SECTOR_SIZE);
622 if(s != OK)
623 panic("sys_safecopyfrom failed: %d", s);
624 } else {
625 memcpy(floppy_buf, (void *) (*ug + *up), SECTOR_SIZE);
630 /* Set up the DMA chip and perform the transfer. */
631 if (r == OK) {
632 if (dma_setup(do_write) != OK) {
633 /* This can only fail for addresses above 16MB
634 * that cannot be handled by the controller,
635 * because it uses 24-bit addressing.
637 return(EIO);
639 r = fdc_transfer(do_write);
642 if (r == OK && !do_write) {
643 /* Copy the DMA buffer to user space. */
644 if(proc_nr != SELF) {
645 s=sys_safecopyto(proc_nr, *ug, *up,
646 (vir_bytes) floppy_buf,
647 (phys_bytes) SECTOR_SIZE);
648 if(s != OK)
649 panic("sys_safecopyto failed: %d", s);
650 } else {
651 memcpy((void *) (*ug + *up), floppy_buf, SECTOR_SIZE);
655 if (r != OK) {
656 /* Don't retry if write protected or too many errors. */
657 if (err_no_retry(r) || ++errors == MAX_ERRORS) {
658 return(EIO);
661 /* Recalibrate if halfway. */
662 if (errors == MAX_ERRORS / 2)
663 fp->fl_calibration = UNCALIBRATED;
665 nbytes = 0;
666 break; /* retry */
670 /* Book the bytes successfully transferred. */
671 position += nbytes;
672 total += nbytes;
673 while (nbytes > 0) {
674 if (nbytes < iov->iov_size) {
675 /* Not done with this one yet. */
676 iov_offset += nbytes;
677 iov->iov_size -= nbytes;
678 break;
680 iov_offset = 0;
681 nbytes -= iov->iov_size;
682 iov->iov_size = 0;
683 iov++;
684 nr_req--;
687 return(total);
690 /*===========================================================================*
691 * dma_setup *
692 *===========================================================================*/
693 static int dma_setup(int do_write)
695 /* The IBM PC can perform DMA operations by using the DMA chip. To use it,
696 * the DMA (Direct Memory Access) chip is loaded with the 20-bit memory address
697 * to be read from or written to, the byte count minus 1, and a read or write
698 * opcode. This routine sets up the DMA chip. Note that the chip is not
699 * capable of doing a DMA across a 64K boundary (e.g., you can't read a
700 * 512-byte block starting at physical address 65520).
702 * Warning! Also note that it's not possible to do DMA above 16 MB because
703 * the ISA bus uses 24-bit addresses. Addresses above 16 MB therefore will
704 * be interpreted modulo 16 MB, dangerously overwriting arbitrary memory.
705 * A check here denies the I/O if the address is out of range.
707 pvb_pair_t byte_out[9];
708 int s;
710 /* First check the DMA memory address not to exceed maximum. */
711 if (floppy_buf_phys != (floppy_buf_phys & DMA_ADDR_MASK)) {
712 printf("floppy: DMA denied because address out of range\n");
713 return(EIO);
716 /* Set up the DMA registers. (The comment on the reset is a bit strong,
717 * it probably only resets the floppy channel.)
719 pv_set(byte_out[0], DMA_INIT, DMA_RESET_VAL); /* reset the dma controller */
720 pv_set(byte_out[1], DMA_FLIPFLOP, 0); /* write anything to reset it */
721 pv_set(byte_out[2], DMA_MODE, do_write ? DMA_WRITE : DMA_READ);
722 pv_set(byte_out[3], DMA_ADDR, (unsigned) (floppy_buf_phys >> 0) & 0xff);
723 pv_set(byte_out[4], DMA_ADDR, (unsigned) (floppy_buf_phys >> 8) & 0xff);
724 pv_set(byte_out[5], DMA_TOP, (unsigned) (floppy_buf_phys >> 16) & 0xff);
725 pv_set(byte_out[6], DMA_COUNT, (((SECTOR_SIZE - 1) >> 0)) & 0xff);
726 pv_set(byte_out[7], DMA_COUNT, (SECTOR_SIZE - 1) >> 8);
727 pv_set(byte_out[8], DMA_INIT, 2); /* some sort of enable */
729 if ((s=sys_voutb(byte_out, 9)) != OK)
730 panic("Sys_voutb in dma_setup() failed: %d", s);
731 return(OK);
734 /*===========================================================================*
735 * start_motor *
736 *===========================================================================*/
737 static void start_motor(void)
739 /* Control of the floppy disk motors is a big pain. If a motor is off, you
740 * have to turn it on first, which takes 1/2 second. You can't leave it on
741 * all the time, since that would wear out the diskette. However, if you turn
742 * the motor off after each operation, the system performance will be awful.
743 * The compromise used here is to leave it on for a few seconds after each
744 * operation. If a new operation is started in that interval, it need not be
745 * turned on again. If no new operation is started, a timer goes off and the
746 * motor is turned off. I/O port DOR has bits to control each of 4 drives.
749 int s, motor_bit, running;
750 message mess;
751 int ipc_status;
753 motor_bit = 1 << f_drive; /* bit mask for this drive */
754 running = motor_status & motor_bit; /* nonzero if this motor is running */
755 motor_status |= motor_bit; /* want this drive running too */
757 if ((s=sys_outb(DOR,
758 (motor_status << MOTOR_SHIFT) | ENABLE_INT | f_drive)) != OK)
759 panic("Sys_outb in start_motor() failed: %d", s);
761 /* If the motor was already running, we don't have to wait for it. */
762 if (running) return; /* motor was already running */
764 /* Set an alarm timer to force a timeout if the hardware does not interrupt
765 * in time. Expect an interrupt, but check for a timeout.
767 set_timer(&f_tmr_timeout, f_dp->start_ms * system_hz / 1000, f_timeout, 0);
768 f_busy = BSY_IO;
769 do {
770 if ((s = driver_receive(ANY, &mess, &ipc_status)) != OK)
771 panic("Couldn't receive message: %d", s);
773 if (is_ipc_notify(ipc_status)) {
774 switch (_ENDPOINT_P(mess.m_source)) {
775 case CLOCK:
776 f_expire_tmrs(mess.NOTIFY_TIMESTAMP);
777 break;
778 default :
779 f_busy = BSY_IDLE;
780 break;
782 } else {
783 f_busy = BSY_IDLE;
785 } while (f_busy == BSY_IO);
786 f_fp->fl_sector = NO_SECTOR;
789 /*===========================================================================*
790 * stop_motor *
791 *===========================================================================*/
792 static void stop_motor(timer_t *tp)
794 /* This routine is called from an alarm timer after several seconds have
795 * elapsed with no floppy disk activity. It turns the drive motor off.
797 int s;
798 motor_status &= ~(1 << tmr_arg(tp)->ta_int);
799 if ((s=sys_outb(DOR, (motor_status << MOTOR_SHIFT) | ENABLE_INT)) != OK)
800 panic("Sys_outb in stop_motor() failed: %d", s);
803 /*===========================================================================*
804 * seek *
805 *===========================================================================*/
806 static int seek(void)
808 /* Issue a SEEK command on the indicated drive unless the arm is already
809 * positioned on the correct cylinder.
812 struct floppy *fp = f_fp;
813 int r;
814 message mess;
815 int ipc_status;
816 u8_t cmd[3];
818 /* Are we already on the correct cylinder? */
819 if (fp->fl_calibration == UNCALIBRATED)
820 if (recalibrate() != OK) return(ERR_SEEK);
821 if (fp->fl_curcyl == fp->fl_hardcyl) return(OK);
823 /* No. Wrong cylinder. Issue a SEEK and wait for interrupt. */
824 cmd[0] = FDC_SEEK;
825 cmd[1] = (fp->fl_head << 2) | f_drive;
826 cmd[2] = fp->fl_hardcyl;
827 if (fdc_command(cmd, 3) != OK) return(ERR_SEEK);
828 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
830 /* Interrupt has been received. Check drive status. */
831 fdc_out(FDC_SENSE); /* probe FDC to make it return status */
832 r = fdc_results(); /* get controller status bytes */
833 if (r != OK || (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0
834 || f_results[ST1] != fp->fl_hardcyl) {
835 /* seek failed, may need a recalibrate */
836 return(ERR_SEEK);
838 /* Give head time to settle on a format, no retrying here! */
839 if (f_device & FORMAT_DEV_BIT) {
840 /* Set a synchronous alarm to force a timeout if the hardware does
841 * not interrupt.
843 set_timer(&f_tmr_timeout, system_hz/30, f_timeout, 0);
844 f_busy = BSY_IO;
845 do {
846 if ((r = driver_receive(ANY, &mess, &ipc_status)) != OK)
847 panic("Couldn't receive message: %d", r);
849 if (is_ipc_notify(ipc_status)) {
850 switch (_ENDPOINT_P(mess.m_source)) {
851 case CLOCK:
852 f_expire_tmrs(mess.NOTIFY_TIMESTAMP);
853 break;
854 default :
855 f_busy = BSY_IDLE;
856 break;
858 } else {
859 f_busy = BSY_IDLE;
861 } while (f_busy == BSY_IO);
863 fp->fl_curcyl = fp->fl_hardcyl;
864 fp->fl_sector = NO_SECTOR;
865 return(OK);
868 /*===========================================================================*
869 * fdc_transfer *
870 *===========================================================================*/
871 static int fdc_transfer(int do_write)
873 /* The drive is now on the proper cylinder. Read, write or format 1 block. */
875 struct floppy *fp = f_fp;
876 int r, s;
877 u8_t cmd[9];
879 /* Never attempt a transfer if the drive is uncalibrated or motor is off. */
880 if (fp->fl_calibration == UNCALIBRATED) return(ERR_TRANSFER);
881 if ((motor_status & (1 << f_drive)) == 0) return(ERR_TRANSFER);
883 /* The command is issued by outputting several bytes to the controller chip.
885 if (f_device & FORMAT_DEV_BIT) {
886 cmd[0] = FDC_FORMAT;
887 cmd[1] = (fp->fl_head << 2) | f_drive;
888 cmd[2] = fmt_param.sector_size_code;
889 cmd[3] = fmt_param.sectors_per_cylinder;
890 cmd[4] = fmt_param.gap_length_for_format;
891 cmd[5] = fmt_param.fill_byte_for_format;
892 if (fdc_command(cmd, 6) != OK) return(ERR_TRANSFER);
893 } else {
894 cmd[0] = do_write ? FDC_WRITE : FDC_READ;
895 cmd[1] = (fp->fl_head << 2) | f_drive;
896 cmd[2] = fp->fl_cylinder;
897 cmd[3] = fp->fl_head;
898 cmd[4] = BASE_SECTOR + fp->fl_sector;
899 cmd[5] = SECTOR_SIZE_CODE;
900 cmd[6] = f_sectors;
901 cmd[7] = f_dp->gap; /* sector gap */
902 cmd[8] = DTL; /* data length */
903 if (fdc_command(cmd, 9) != OK) return(ERR_TRANSFER);
906 /* Block, waiting for disk interrupt. */
907 if (f_intr_wait() != OK) {
908 printf("fd%u: disk interrupt timed out.\n", f_drive);
909 return(ERR_TIMEOUT);
912 /* Get controller status and check for errors. */
913 r = fdc_results();
914 if (r != OK) return(r);
916 if (f_results[ST1] & WRITE_PROTECT) {
917 printf("fd%u: diskette is write protected.\n", f_drive);
918 return(ERR_WR_PROTECT);
921 if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_TRANSFER);
922 if (f_results[ST1] | f_results[ST2]) return(ERR_TRANSFER);
924 if (f_device & FORMAT_DEV_BIT) return(OK);
926 /* Compare actual numbers of sectors transferred with expected number. */
927 s = (f_results[ST_CYL] - fp->fl_cylinder) * NR_HEADS * f_sectors;
928 s += (f_results[ST_HEAD] - fp->fl_head) * f_sectors;
929 s += (f_results[ST_SEC] - BASE_SECTOR - fp->fl_sector);
930 if (s != 1) return(ERR_TRANSFER);
932 /* This sector is next for I/O: */
933 fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR;
934 #if 0
935 if (processor < 386) fp->fl_sector++; /* Old CPU can't keep up. */
936 #endif
937 return(OK);
940 /*===========================================================================*
941 * fdc_results *
942 *===========================================================================*/
943 static int fdc_results(void)
945 /* Extract results from the controller after an operation, then allow floppy
946 * interrupts again.
949 int s, result_nr;
950 u32_t status;
951 spin_t spin;
953 /* Extract bytes from FDC until it says it has no more. The loop is
954 * really an outer loop on result_nr and an inner loop on status.
955 * A timeout flag alarm is set.
957 result_nr = 0;
958 SPIN_FOR(&spin, TIMEOUT_MICROS) {
959 /* Reading one byte is almost a mirror of fdc_out() - the DIRECTION
960 * bit must be set instead of clear, but the CTL_BUSY bit destroys
961 * the perfection of the mirror.
963 if ((s=sys_inb(FDC_STATUS, &status)) != OK)
964 panic("Sys_inb in fdc_results() failed: %d", s);
965 status &= (MASTER | DIRECTION | CTL_BUSY);
966 if (status == (MASTER | DIRECTION | CTL_BUSY)) {
967 u32_t tmp_r;
968 if (result_nr >= MAX_RESULTS) break; /* too many results */
969 if ((s=sys_inb(FDC_DATA, &tmp_r)) != OK)
970 panic("Sys_inb in fdc_results() failed: %d", s);
971 f_results[result_nr] = tmp_r;
972 result_nr ++;
973 continue;
975 if (status == MASTER) { /* all read */
976 if ((s=sys_irqenable(&irq_hook_id)) != OK)
977 panic("Couldn't enable IRQs: %d", s);
979 return(OK); /* only good exit */
982 need_reset = TRUE; /* controller chip must be reset */
984 if ((s=sys_irqenable(&irq_hook_id)) != OK)
985 panic("Couldn't enable IRQs: %d", s);
986 return(ERR_STATUS);
989 /*===========================================================================*
990 * fdc_command *
991 *===========================================================================*/
992 static int fdc_command(
993 const u8_t *cmd, /* command bytes */
994 int len /* command length */
997 /* Output a command to the controller. */
999 /* Set a synchronous alarm to force a timeout if the hardware does
1000 * not interrupt.
1001 * Note that the actual check is done by the code that issued the
1002 * fdc_command() call.
1004 set_timer(&f_tmr_timeout, WAKEUP, f_timeout, 0);
1006 f_busy = BSY_IO;
1007 while (len > 0) {
1008 fdc_out(*cmd++);
1009 len--;
1011 return(need_reset ? ERR_DRIVE : OK);
1014 /*===========================================================================*
1015 * fdc_out *
1016 *===========================================================================*/
1017 static void fdc_out(
1018 int val /* write this byte to floppy disk controller */
1021 /* Output a byte to the controller. This is not entirely trivial, since you
1022 * can only write to it when it is listening, and it decides when to listen.
1023 * If the controller refuses to listen, the FDC chip is given a hard reset.
1025 spin_t spin;
1026 int s;
1027 u32_t status;
1029 if (need_reset) return; /* if controller is not listening, return */
1031 /* It may take several tries to get the FDC to accept a command. */
1032 SPIN_FOR(&spin, TIMEOUT_MICROS) {
1033 if ((s=sys_inb(FDC_STATUS, &status)) != OK)
1034 panic("Sys_inb in fdc_out() failed: %d", s);
1036 if ((status & (MASTER | DIRECTION)) == (MASTER | 0)) {
1037 if ((s=sys_outb(FDC_DATA, val)) != OK)
1038 panic("Sys_outb in fdc_out() failed: %d", s);
1040 return;
1044 need_reset = TRUE; /* hit it over the head */
1047 /*===========================================================================*
1048 * recalibrate *
1049 *===========================================================================*/
1050 static int recalibrate(void)
1052 /* The floppy disk controller has no way of determining its absolute arm
1053 * position (cylinder). Instead, it steps the arm a cylinder at a time and
1054 * keeps track of where it thinks it is (in software). However, after a
1055 * SEEK, the hardware reads information from the diskette telling where the
1056 * arm actually is. If the arm is in the wrong place, a recalibration is done,
1057 * which forces the arm to cylinder 0. This way the controller can get back
1058 * into sync with reality.
1061 struct floppy *fp = f_fp;
1062 int r;
1063 u8_t cmd[2];
1065 /* Issue the RECALIBRATE command and wait for the interrupt. */
1066 cmd[0] = FDC_RECALIBRATE; /* tell drive to recalibrate itself */
1067 cmd[1] = f_drive; /* specify drive */
1068 if (fdc_command(cmd, 2) != OK) return(ERR_SEEK);
1069 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1071 /* Determine if the recalibration succeeded. */
1072 fdc_out(FDC_SENSE); /* issue SENSE command to request results */
1073 r = fdc_results(); /* get results of the FDC_RECALIBRATE command*/
1074 fp->fl_curcyl = NO_CYL; /* force a SEEK next time */
1075 fp->fl_sector = NO_SECTOR;
1076 if (r != OK || /* controller would not respond */
1077 (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0 || f_results[ST_PCN] != 0) {
1078 /* Recalibration failed. FDC must be reset. */
1079 need_reset = TRUE;
1080 return(ERR_RECALIBRATE);
1081 } else {
1082 /* Recalibration succeeded. */
1083 fp->fl_calibration = CALIBRATED;
1084 fp->fl_curcyl = f_results[ST_PCN];
1085 return(OK);
1089 /*===========================================================================*
1090 * f_reset *
1091 *===========================================================================*/
1092 static void f_reset(void)
1094 /* Issue a reset to the controller. This is done after any catastrophe,
1095 * like the controller refusing to respond.
1097 pvb_pair_t byte_out[2];
1098 int s,i;
1099 message mess;
1100 int ipc_status;
1102 /* Disable interrupts and strobe reset bit low. */
1103 need_reset = FALSE;
1105 /* It is not clear why the next lock is needed. Writing 0 to DOR causes
1106 * interrupt, while the PC documentation says turning bit 8 off disables
1107 * interrupts. Without the lock:
1108 * 1) the interrupt handler sets the floppy mask bit in the 8259.
1109 * 2) writing ENABLE_INT to DOR causes the FDC to assert the interrupt
1110 * line again, but the mask stops the cpu being interrupted.
1111 * 3) the sense interrupt clears the interrupt (not clear which one).
1112 * and for some reason the reset does not work.
1114 (void) fdc_command((u8_t *) 0, 0); /* need only the timer */
1115 motor_status = 0;
1116 pv_set(byte_out[0], DOR, 0); /* strobe reset bit low */
1117 pv_set(byte_out[1], DOR, ENABLE_INT); /* strobe it high again */
1118 if ((s=sys_voutb(byte_out, 2)) != OK)
1119 panic("Sys_voutb in f_reset() failed: %d", s);
1121 /* A synchronous alarm timer was set in fdc_command. Expect an interrupt,
1122 * but be prepared to handle a timeout.
1124 do {
1125 if ((s = driver_receive(ANY, &mess, &ipc_status)) != OK)
1126 panic("Couldn't receive message: %d", s);
1127 if (is_ipc_notify(ipc_status)) {
1128 switch (_ENDPOINT_P(mess.m_source)) {
1129 case CLOCK:
1130 f_expire_tmrs(mess.NOTIFY_TIMESTAMP);
1131 break;
1132 default :
1133 f_busy = BSY_IDLE;
1134 break;
1136 } else { /* expect hw interrupt */
1137 f_busy = BSY_IDLE;
1139 } while (f_busy == BSY_IO);
1141 /* The controller supports 4 drives and returns a result for each of them.
1142 * Collect all the results now. The old version only collected the first
1143 * result. This happens to work for 2 drives, but it doesn't work for 3
1144 * or more drives, at least with only drives 0 and 2 actually connected
1145 * (the controller generates an extra interrupt for the middle drive when
1146 * drive 2 is accessed and the driver panics).
1148 * It would be better to keep collecting results until there are no more.
1149 * For this, fdc_results needs to return the number of results (instead
1150 * of OK) when it succeeds.
1152 for (i = 0; i < 4; i++) {
1153 fdc_out(FDC_SENSE); /* probe FDC to make it return status */
1154 (void) fdc_results(); /* flush controller */
1156 for (i = 0; i < NR_DRIVES; i++) /* clear each drive */
1157 floppy[i].fl_calibration = UNCALIBRATED;
1159 /* The current timing parameters must be specified again. */
1160 prev_dp = NULL;
1163 /*===========================================================================*
1164 * f_intr_wait *
1165 *===========================================================================*/
1166 static int f_intr_wait(void)
1168 /* Wait for an interrupt, but not forever. The FDC may have all the time of
1169 * the world, but we humans do not.
1171 message mess;
1172 int r, ipc_status;
1174 /* We expect an interrupt, but if a timeout, occurs, report an error. */
1175 do {
1176 if ((r = driver_receive(ANY, &mess, &ipc_status)) != OK)
1177 panic("Couldn't receive message: %d", r);
1178 if (is_ipc_notify(ipc_status)) {
1179 switch (_ENDPOINT_P(mess.m_source)) {
1180 case CLOCK:
1181 f_expire_tmrs(mess.NOTIFY_TIMESTAMP);
1182 break;
1183 default :
1184 f_busy = BSY_IDLE;
1185 break;
1187 } else {
1188 f_busy = BSY_IDLE;
1190 } while (f_busy == BSY_IO);
1192 if (f_busy == BSY_WAKEN) {
1194 /* No interrupt from the FDC, this means that there is probably no
1195 * floppy in the drive. Get the FDC down to earth and return error.
1197 need_reset = TRUE;
1198 return(ERR_TIMEOUT);
1200 return(OK);
1203 /*===========================================================================*
1204 * f_timeout *
1205 *===========================================================================*/
1206 static void f_timeout(timer_t *UNUSED(tp))
1208 /* This routine is called when a timer expires. Usually to tell that a
1209 * motor has spun up, but also to forge an interrupt when it takes too long
1210 * for the FDC to interrupt (no floppy in the drive). It sets a flag to tell
1211 * what has happened.
1213 if (f_busy == BSY_IO) {
1214 f_busy = BSY_WAKEN;
1218 /*===========================================================================*
1219 * read_id *
1220 *===========================================================================*/
1221 static int read_id(void)
1223 /* Determine current cylinder and sector. */
1225 struct floppy *fp = f_fp;
1226 int result;
1227 u8_t cmd[2];
1229 /* Never attempt a read id if the drive is uncalibrated or motor is off. */
1230 if (fp->fl_calibration == UNCALIBRATED) return(ERR_READ_ID);
1231 if ((motor_status & (1 << f_drive)) == 0) return(ERR_READ_ID);
1233 /* The command is issued by outputting 2 bytes to the controller chip. */
1234 cmd[0] = FDC_READ_ID; /* issue the read id command */
1235 cmd[1] = (fp->fl_head << 2) | f_drive;
1236 if (fdc_command(cmd, 2) != OK) return(ERR_READ_ID);
1237 if (f_intr_wait() != OK) return(ERR_TIMEOUT);
1239 /* Get controller status and check for errors. */
1240 result = fdc_results();
1241 if (result != OK) return(result);
1243 if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_READ_ID);
1244 if (f_results[ST1] | f_results[ST2]) return(ERR_READ_ID);
1246 /* The next sector is next for I/O: */
1247 fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR + 1;
1248 return(OK);
1251 /*===========================================================================*
1252 * f_do_open *
1253 *===========================================================================*/
1254 static int f_do_open(dev_t minor, int UNUSED(access))
1256 /* Handle an open on a floppy. Determine diskette type if need be. */
1258 int dtype;
1259 struct test_order *top;
1261 /* Decode the message parameters. */
1262 if (f_prepare(minor) == NULL) return(ENXIO);
1264 dtype = f_device & DEV_TYPE_BITS; /* get density from minor dev */
1265 if (dtype >= MINOR_fd0p0) dtype = 0;
1267 if (dtype != 0) {
1268 /* All types except 0 indicate a specific drive/medium combination.*/
1269 dtype = (dtype >> DEV_TYPE_SHIFT) - 1;
1270 if (dtype >= NT) return(ENXIO);
1271 f_fp->fl_density = dtype;
1272 (void) f_prepare(f_device); /* Recompute parameters. */
1273 return(OK);
1275 if (f_device & FORMAT_DEV_BIT) return(EIO); /* Can't format /dev/fdN */
1277 /* The device opened is /dev/fdN. Experimentally determine drive/medium.
1278 * First check fl_density. If it is not NO_DENS, the drive has been used
1279 * before and the value of fl_density tells what was found last time. Try
1280 * that first. If the motor is still running then assume nothing changed.
1282 if (f_fp->fl_density != NO_DENS) {
1283 if (motor_status & (1 << f_drive)) return(OK);
1284 if (test_read(f_fp->fl_density) == OK) return(OK);
1287 /* Either drive type is unknown or a different diskette is now present.
1288 * Use test_order to try them one by one.
1290 for (top = &test_order[0]; top < &test_order[NT-1]; top++) {
1291 dtype = top->t_density;
1293 /* Skip densities that have been proven to be impossible */
1294 if (!(f_fp->fl_class & (1 << dtype))) continue;
1296 if (test_read(dtype) == OK) {
1297 /* The test succeeded, use this knowledge to limit the
1298 * drive class to match the density just read.
1300 f_fp->fl_class &= top->t_class;
1301 return(OK);
1303 /* Test failed, wrong density or did it time out? */
1304 if (f_busy == BSY_WAKEN) break;
1306 f_fp->fl_density = NO_DENS;
1307 return(EIO); /* nothing worked */
1310 /*===========================================================================*
1311 * f_do_close *
1312 *===========================================================================*/
1313 static int f_do_close(dev_t UNUSED(minor))
1315 /* Handle a close on a floppy. Nothing to do here. */
1317 return(OK);
1320 /*===========================================================================*
1321 * test_read *
1322 *===========================================================================*/
1323 static int test_read(int density)
1325 /* Try to read the highest numbered sector on cylinder 2. Not all floppy
1326 * types have as many sectors per track, and trying cylinder 2 finds the
1327 * ones that need double stepping.
1329 int device;
1330 off_t position;
1331 iovec_t iovec1;
1332 ssize_t result;
1334 f_fp->fl_density = density;
1335 device = ((density + 1) << DEV_TYPE_SHIFT) + f_drive;
1337 (void) f_prepare(device);
1338 position = (off_t) f_dp->test << SECTOR_SHIFT;
1339 iovec1.iov_addr = (vir_bytes) floppy_buf;
1340 iovec1.iov_size = SECTOR_SIZE;
1341 result = f_transfer(device, FALSE /*do_write*/, cvul64(position), SELF,
1342 &iovec1, 1, BDEV_NOFLAGS);
1344 if (result != SECTOR_SIZE) return(EIO);
1346 partition(&f_dtab, f_drive, P_FLOPPY, 0);
1347 return(OK);
1350 /*===========================================================================*
1351 * f_geometry *
1352 *===========================================================================*/
1353 static void f_geometry(dev_t minor, struct partition *entry)
1355 if (f_prepare(minor) == NULL) return;
1357 entry->cylinders = f_dp->cyls;
1358 entry->heads = NR_HEADS;
1359 entry->sectors = f_sectors;