1 /* $NetBSD: n_j1.c,v 1.6 2003/08/07 16:44:51 agc Exp $ */
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 static char sccsid
[] = "@(#)j1.c 8.2 (Berkeley) 11/30/93";
39 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
43 * ====================================================
44 * Copyright (C) 1992 by Sun Microsystems, Inc.
46 * Developed at SunPro, a Sun Microsystems, Inc. business.
47 * Permission to use, copy, modify, and distribute this
48 * software is freely granted, provided that this notice
50 * ====================================================
52 * ******************* WARNING ********************
53 * This is an alpha version of SunPro's FDLIBM (Freely
54 * Distributable Math Library) for IEEE double precision
55 * arithmetic. FDLIBM is a basic math library written
56 * in C that runs on machines that conform to IEEE
57 * Standard 754/854. This alpha version is distributed
58 * for testing purpose. Those who use this software
59 * should report any bugs to
61 * fdlibm-comments@sunpro.eng.sun.com
63 * -- K.C. Ng, Oct 12, 1992
64 * ************************************************
67 /* double j1(double x), y1(double x)
68 * Bessel function of the first and second kinds of order zero.
70 * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
71 * 2. Reduce x to |x| since j1(x)=-j1(-x), and
73 * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
74 * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
76 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
77 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
78 * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
80 * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
81 * = 1/sqrt(2) * (sin(x) - cos(x))
82 * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
83 * = -1/sqrt(2) * (sin(x) + cos(x))
84 * (To avoid cancellation, use
85 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
86 * to compute the worse one.)
94 * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
97 * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
98 * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
99 * We use the following function to approximate y1,
100 * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
101 * where for x in [0,2] (abs err less than 2**-65.89)
102 * U(z) = u0 + u1*z + ... + u4*z^4
103 * V(z) = 1 + v1*z + ... + v5*z^5
104 * Note: For tiny x, 1/x dominate y1 and hence
105 * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
107 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
108 * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
109 * by method mentioned above.
112 #include "mathimpl.h"
116 #if defined(__vax__) || defined(tahoe)
120 #define infnan(x) (0.0)
123 static double pone (double), qone (double);
129 invsqrtpi
= 5.641895835477562869480794515607725858441e-0001,
130 tpi
= 0.636619772367581343075535053490057448,
133 r00
= -6.250000000000000020842322918309200910191e-0002,
134 r01
= 1.407056669551897148204830386691427791200e-0003,
135 r02
= -1.599556310840356073980727783817809847071e-0005,
136 r03
= 4.967279996095844750387702652791615403527e-0008,
137 s01
= 1.915375995383634614394860200531091839635e-0002,
138 s02
= 1.859467855886309024045655476348872850396e-0004,
139 s03
= 1.177184640426236767593432585906758230822e-0006,
140 s04
= 5.046362570762170559046714468225101016915e-0009,
141 s05
= 1.235422744261379203512624973117299248281e-0011;
143 #define two_129 6.80564733841876926e+038 /* 2^129 */
144 #define two_m54 5.55111512312578270e-017 /* 2^-54 */
149 double z
, s
,c
,ss
,cc
,r
,u
,v
,y
;
151 if (!finite(x
)) { /* Inf or NaN */
155 return (copysign(x
, zero
));
158 if (y
>= 2) { /* |x| >= 2.0 */
163 if (y
< .5*DBL_MAX
) { /* make sure y+y not overflow */
165 if ((s
*c
)<zero
) cc
= z
/ss
;
169 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
170 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
172 #if !defined(__vax__) && !defined(tahoe)
173 if (y
> two_129
) /* x > 2^129 */
174 z
= (invsqrtpi
*cc
)/sqrt(y
);
176 #endif /* defined(__vax__) || defined(tahoe) */
178 u
= pone(y
); v
= qone(y
);
179 z
= invsqrtpi
*(u
*cc
-v
*ss
)/sqrt(y
);
181 if (x
< 0) return -z
;
184 if (y
< 7.450580596923828125e-009) { /* |x|<2**-27 */
185 if(huge
+x
>one
) return 0.5*x
;/* inexact if x!=0 necessary */
188 r
= z
*(r00
+z
*(r01
+z
*(r02
+z
*r03
)));
189 s
= one
+z
*(s01
+z
*(s02
+z
*(s03
+z
*(s04
+z
*s05
))));
194 static const double u0
[5] = {
195 -1.960570906462389484206891092512047539632e-0001,
196 5.044387166398112572026169863174882070274e-0002,
197 -1.912568958757635383926261729464141209569e-0003,
198 2.352526005616105109577368905595045204577e-0005,
199 -9.190991580398788465315411784276789663849e-0008,
201 static const double v0
[5] = {
202 1.991673182366499064031901734535479833387e-0002,
203 2.025525810251351806268483867032781294682e-0004,
204 1.356088010975162198085369545564475416398e-0006,
205 6.227414523646214811803898435084697863445e-0009,
206 1.665592462079920695971450872592458916421e-0011,
212 double z
, s
, c
, ss
, cc
, u
, v
;
213 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
215 if (!_IEEE
) return (infnan(EDOM
));
224 if (_IEEE
&& x
== 0) return -one
/zero
;
225 else if(x
== 0) return(infnan(-ERANGE
));
226 else if(_IEEE
) return (zero
/zero
);
227 else return(infnan(EDOM
));
229 if (x
>= 2) { /* |x| >= 2.0 */
234 if (x
< .5 * DBL_MAX
) { /* make sure x+x not overflow */
236 if ((s
*c
)>zero
) cc
= z
/ss
;
239 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
242 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
243 * = 1/sqrt(2) * (sin(x) - cos(x))
244 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
245 * = -1/sqrt(2) * (cos(x) + sin(x))
246 * To avoid cancellation, use
247 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
248 * to compute the worse one.
250 if (_IEEE
&& x
>two_129
) {
251 z
= (invsqrtpi
*ss
)/sqrt(x
);
253 u
= pone(x
); v
= qone(x
);
254 z
= invsqrtpi
*(u
*ss
+v
*cc
)/sqrt(x
);
258 if (x
<= two_m54
) { /* x < 2**-54 */
262 u
= u0
[0]+z
*(u0
[1]+z
*(u0
[2]+z
*(u0
[3]+z
*u0
[4])));
263 v
= one
+z
*(v0
[0]+z
*(v0
[1]+z
*(v0
[2]+z
*(v0
[3]+z
*v0
[4]))));
264 return (x
*(u
/v
) + tpi
*(j1(x
)*log(x
)-one
/x
));
267 /* For x >= 8, the asymptotic expansions of pone is
268 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
269 * We approximate pone by
270 * pone(x) = 1 + (R/S)
271 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
272 * S = 1 + ps0*s^2 + ... + ps4*s^10
274 * | pone(x)-1-R/S | <= 2 ** ( -60.06)
277 static const double pr8
[6] = { /* for x in [inf, 8]=1/[0,0.125] */
279 1.171874999999886486643746274751925399540e-0001,
280 1.323948065930735690925827997575471527252e+0001,
281 4.120518543073785433325860184116512799375e+0002,
282 3.874745389139605254931106878336700275601e+0003,
283 7.914479540318917214253998253147871806507e+0003,
285 static const double ps8
[5] = {
286 1.142073703756784104235066368252692471887e+0002,
287 3.650930834208534511135396060708677099382e+0003,
288 3.695620602690334708579444954937638371808e+0004,
289 9.760279359349508334916300080109196824151e+0004,
290 3.080427206278887984185421142572315054499e+0004,
293 static const double pr5
[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
294 1.319905195562435287967533851581013807103e-0011,
295 1.171874931906140985709584817065144884218e-0001,
296 6.802751278684328781830052995333841452280e+0000,
297 1.083081829901891089952869437126160568246e+0002,
298 5.176361395331997166796512844100442096318e+0002,
299 5.287152013633375676874794230748055786553e+0002,
301 static const double ps5
[5] = {
302 5.928059872211313557747989128353699746120e+0001,
303 9.914014187336144114070148769222018425781e+0002,
304 5.353266952914879348427003712029704477451e+0003,
305 7.844690317495512717451367787640014588422e+0003,
306 1.504046888103610723953792002716816255382e+0003,
309 static const double pr3
[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
310 3.025039161373736032825049903408701962756e-0009,
311 1.171868655672535980750284752227495879921e-0001,
312 3.932977500333156527232725812363183251138e+0000,
313 3.511940355916369600741054592597098912682e+0001,
314 9.105501107507812029367749771053045219094e+0001,
315 4.855906851973649494139275085628195457113e+0001,
317 static const double ps3
[5] = {
318 3.479130950012515114598605916318694946754e+0001,
319 3.367624587478257581844639171605788622549e+0002,
320 1.046871399757751279180649307467612538415e+0003,
321 8.908113463982564638443204408234739237639e+0002,
322 1.037879324396392739952487012284401031859e+0002,
325 static const double pr2
[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
326 1.077108301068737449490056513753865482831e-0007,
327 1.171762194626833490512746348050035171545e-0001,
328 2.368514966676087902251125130227221462134e+0000,
329 1.224261091482612280835153832574115951447e+0001,
330 1.769397112716877301904532320376586509782e+0001,
331 5.073523125888185399030700509321145995160e+0000,
333 static const double ps2
[5] = {
334 2.143648593638214170243114358933327983793e+0001,
335 1.252902271684027493309211410842525120355e+0002,
336 2.322764690571628159027850677565128301361e+0002,
337 1.176793732871470939654351793502076106651e+0002,
338 8.364638933716182492500902115164881195742e+0000,
346 if (x
>= 8.0) {p
= pr8
; q
= ps8
;}
347 else if (x
>= 4.54545211791992188) {p
= pr5
; q
= ps5
;}
348 else if (x
>= 2.85714149475097656) {p
= pr3
; q
= ps3
;}
349 else /* if (x >= 2.0) */ {p
= pr2
; q
= ps2
;}
351 r
= p
[0]+z
*(p
[1]+z
*(p
[2]+z
*(p
[3]+z
*(p
[4]+z
*p
[5]))));
352 s
= one
+z
*(q
[0]+z
*(q
[1]+z
*(q
[2]+z
*(q
[3]+z
*q
[4]))));
357 /* For x >= 8, the asymptotic expansions of qone is
358 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
359 * We approximate pone by
360 * qone(x) = s*(0.375 + (R/S))
361 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
362 * S = 1 + qs1*s^2 + ... + qs6*s^12
364 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
367 static const double qr8
[6] = { /* for x in [inf, 8]=1/[0,0.125] */
369 -1.025390624999927207385863635575804210817e-0001,
370 -1.627175345445899724355852152103771510209e+0001,
371 -7.596017225139501519843072766973047217159e+0002,
372 -1.184980667024295901645301570813228628541e+0004,
373 -4.843851242857503225866761992518949647041e+0004,
375 static const double qs8
[6] = {
376 1.613953697007229231029079421446916397904e+0002,
377 7.825385999233484705298782500926834217525e+0003,
378 1.338753362872495800748094112937868089032e+0005,
379 7.196577236832409151461363171617204036929e+0005,
380 6.666012326177764020898162762642290294625e+0005,
381 -2.944902643038346618211973470809456636830e+0005,
384 static const double qr5
[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
385 -2.089799311417640889742251585097264715678e-0011,
386 -1.025390502413754195402736294609692303708e-0001,
387 -8.056448281239359746193011295417408828404e+0000,
388 -1.836696074748883785606784430098756513222e+0002,
389 -1.373193760655081612991329358017247355921e+0003,
390 -2.612444404532156676659706427295870995743e+0003,
392 static const double qs5
[6] = {
393 8.127655013843357670881559763225310973118e+0001,
394 1.991798734604859732508048816860471197220e+0003,
395 1.746848519249089131627491835267411777366e+0004,
396 4.985142709103522808438758919150738000353e+0004,
397 2.794807516389181249227113445299675335543e+0004,
398 -4.719183547951285076111596613593553911065e+0003,
401 static const double qr3
[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
402 -5.078312264617665927595954813341838734288e-0009,
403 -1.025378298208370901410560259001035577681e-0001,
404 -4.610115811394734131557983832055607679242e+0000,
405 -5.784722165627836421815348508816936196402e+0001,
406 -2.282445407376317023842545937526967035712e+0002,
407 -2.192101284789093123936441805496580237676e+0002,
409 static const double qs3
[6] = {
410 4.766515503237295155392317984171640809318e+0001,
411 6.738651126766996691330687210949984203167e+0002,
412 3.380152866795263466426219644231687474174e+0003,
413 5.547729097207227642358288160210745890345e+0003,
414 1.903119193388108072238947732674639066045e+0003,
415 -1.352011914443073322978097159157678748982e+0002,
418 static const double qr2
[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
419 -1.783817275109588656126772316921194887979e-0007,
420 -1.025170426079855506812435356168903694433e-0001,
421 -2.752205682781874520495702498875020485552e+0000,
422 -1.966361626437037351076756351268110418862e+0001,
423 -4.232531333728305108194363846333841480336e+0001,
424 -2.137192117037040574661406572497288723430e+0001,
426 static const double qs2
[6] = {
427 2.953336290605238495019307530224241335502e+0001,
428 2.529815499821905343698811319455305266409e+0002,
429 7.575028348686454070022561120722815892346e+0002,
430 7.393932053204672479746835719678434981599e+0002,
431 1.559490033366661142496448853793707126179e+0002,
432 -4.959498988226281813825263003231704397158e+0000,
440 if (x
>= 8.0) {p
= qr8
; q
= qs8
;}
441 else if (x
>= 4.54545211791992188) {p
= qr5
; q
= qs5
;}
442 else if (x
>= 2.85714149475097656) {p
= qr3
; q
= qs3
;}
443 else /* if (x >= 2.0) */ {p
= qr2
; q
= qs2
;}
445 r
= p
[0]+z
*(p
[1]+z
*(p
[2]+z
*(p
[3]+z
*(p
[4]+z
*p
[5]))));
446 s
= one
+z
*(q
[0]+z
*(q
[1]+z
*(q
[2]+z
*(q
[3]+z
*(q
[4]+z
*q
[5])))));
447 return (.375 + r
/s
)/x
;